Abstract

In this paper Broadband Reconfigurable low Noise Amplifier for Multiband Application is presented. Low noise amplifier is versatile demanded in modern technology, technology demanded amplifier have less reflection and more rejection of noise, in this paper presented differential cross feedback topology and feedback technique for designing of Broadband Reconfigurable low Noise Amplifier, the requirement of integrated circuits raises significantly with increase in the number of elements in it. However, noise and reflection should be less. The noise content is based on the number of elements and routing of components and its process of fabrication. In this paper presented method to reduce noise contents with reduction of reflection. Significantly reducing noise figure (NF) to around 0.8 db, this paper present trade off between input and noise matching. The proposed LNAs achieve an NF of 0.1–0.8 dB over a impedance bandwidth of amplifier is 1GHz to 10 GHz.

References
1. Ming-Lung Lee, Chong-Yi Liou, Student Member, IEEE, “Fully Monolithic BiCMOS Reconfigurable Power Amplifier for Multi-Mode and Multi-Band Applications” IEEE transactions on microwave theory and techniques, VOL. 63, NO. 2, February 2015 pp 613-624

2. Çağrı Ulusoy, Member, “A SiGe D-Band Low-Noise Amplifier Utilizing Gain-Boosting Technique” IEEE Microwave And Wireless Components Letters, VOL. 25, NO. 1, January 2015 pp 61-66

Index Terms

Computer Science
Signal Processing
Keywords

Differential cross feedback topology; feedback topology; S11 Impedance bandwidth