Abstract

With the advent of increased use of computers and computing power, state of the art of cloud computing has become imperative in the present-day global scenario. It has managed to remove the constraints in many organizations in terms of physical internetworking devices and human resources, leaving room for better growth of many organizations. With all these benefits, cloud computing is still facing a number of impediments in terms of energy consumption within data centers and performance degradation to end users. This has led many industries and researchers to find feasible solutions to the current problems. In the context of realizing the problems faced by cloud data centers and end users, this paper presents a summary of the work done, experimentation setup and the need for a greener cloud computing technique/algorithm which satisfies minimum energy consumption, minimum carbon emission and maximum quality of service.


detection in cloud computing systems via analyzing request execution paths,” in 2011 IEEE/IFIP
41st International Conference on Dependable Systems and Networks Workshops (DSN-W),
2011, pp. 135–139.
18. S. Acharya and D. A. D’Mello, “Cloud computing architectures and dynamic provisioning
mechanisms,” in 2013 International Conference on Green Computing, Communication and
19. G. K. Sehdev and A. Kumar, “Power Efficient VM Consolidation using Live Migration- A
20. N. Kord and H. Haghighi, “An energy-efficient approach for virtual machine placement in
cloud based data centers,” in The 5th Conference on Information and Knowledge Technology,
2013, pp. 44–49.
Computing environment,” in Intelligent System Design and Engineering Application (ISDEA),
2013.
Consolidation in Clouds through Gossiping,” in World of Wireless, Mobile and Multimedia
Mechanism for Dynamic VM Consolidation,” in Cloud Computing (CLOUD), 2012 IEEE 5th
no. 9, pp. 1–6, 2010.
28. Q. W. and N. G. Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam,
“Managing server energy and operational costs in hosting centers,” ACM SIGMETRICS, vol. 33,
High-performance Microprocessors,” in In Proceedings of the 35th annual Design Automation
34. A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics


Index Terms

Computer Science Information Sciences

Keywords

Cloud computing, virtual Machines, Virtualization, IaaS, hypervisors, energy consumption, performance, and energy efficiency