Solar Power Forecasting: A Review

D. K. Chaturvedi
Professor, Deptt. of Electrical Engineering
Faculty of Engineering,
Dayalbagh Educational Institute
Agra, India

Isha
Research Scholar, Deptt. of Electrical Engineering
Faculty of Engineering,
Dayalbagh Educational Institute
Agra, India

ABSTRACT
The increasing demand for energy is one of the biggest reasons behind the integration of solar energy into the electric grids or networks. To ensure the efficient use of energy PV systems it becomes important to forecast information reliably. The accurate prediction of solar irradiance variation can enhance the quality of service. This integration of solar energy and accurate prediction can help in better planning and distribution of energy.

Here in this paper, a deep review of methods which are used for solar irradiance forecasting is presented. These methods help in selecting the appropriate forecast technique according to the needs or requirements. This paper also presents the metrics that are used for evaluating the performance of a forecast model.

Keywords
Solar forecasting, physical method, statistical method, hybrid method, evaluation metrics.

1. INTRODUCTION
World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society’s most daunting challenges.

The supply and demand of energy is determining the course of global development in every sphere of human activity. Sufficient supplies of clean energy are intimately linked with global stability, economic prosperity and quality of life. Finding energy sources to satisfy the world’s growing demand is one of the society’s foremost challenges for the next half century. The importance of this pervasive problem and the perplexing technical difficulty of solving it require a concerted national effort marshalling our most advanced scientific and technological capabilities.

Solar forecasting is a stepping stone to these challenges. Solar power forecasting depends on the factors like knowledge of the sun’s path, the atmosphere’s condition, the scattering process and the characteristics of a solar energy plant which utilizes the sun’s energy to create solar power. Solar photovoltaic systems transform solar energy into electric power. The output power depends on the incoming radiation and on the solar panel characteristics. Photovoltaic power production is increasing nowadays. Forecast information is essential for an efficient use, the management of the electricity grid and for solar energy trading.

Various solar forecasting research activities get motivated due to the factors that accurate solar forecasting techniques improves the quality of the energy delivered to the grid and minimize the additional cost associated with weather dependency.

Solar forecasts on multiple time horizons play an important role in storage management of PV systems, control systems in buildings, hospitals, schools etc., control of solar thermal power plants, as well as for the grids’ regulation and power scheduling. It allows grid operators to adapt the load in order to optimize the energy transport, allocate the needed balance energy from other sources if no solar energy is available, plan maintenance activities at the production sites and take necessary measures to protect the production from extreme events.

On the basis of the application and the corresponding time scale required, various forecasting approaches are introduced. For time horizon from several minutes up to a few hours i.e., for very short term time scale, time series models using on-site measurements are adequate. Intra-hour forecasts with a high spatial and temporal resolution may be obtained from ground-based sky imagers. For a temporal range of 30 minutes up to 6 hours satellite images based cloud motion vector forecasts show good performance. Grid integration of PV power mainly requires forecasts up to two days ahead or even beyond. These forecasts are based on numerical weather prediction (NWP) models. Kostylyev and Pavlovski [1] gave detailed solar forecast time scales and their corresponding granularities.

For solar forecasting different types of solar power systems need to be distinguished. For solar concentrating systems (concentrating solar thermal or concentrating PV, CPV) the direct normal incident irradiance (DNI) must be forecast. Due to non-linear dependence of concentrating solar thermal efficiency on DNI and the controllability of power generation through thermal energy storage (if available), DNI forecasts are especially important for the management and operation of concentrating solar thermal power plants. Without detailed knowledge of solar thermal processes and controls, it is difficult for 3rd parties (solar forecast providers) to independently forecast power plant output.
On the other hand, CPV production is highly correlated to DNI. DNI is impacted by phenomena that are very difficult to forecast such as cirrus clouds, wild fires, dust storms, and episodic air pollution events which can reduce DNI by up to 30 percent on otherwise cloud-free days. Water vapor, which is also an important determinant of DNI, is typically forecast to a high degree of accuracy through existing NWP. Major improvement in aerosol and satellite remote sensing are required to improve DNI forecasts.

For non-concentrating systems (such as most PV systems), primarily the global irradiance (GI = diffuse + DNI) on a tilted surface is required which is less sensitive to errors in DNI since a reduction in clear sky DNI usually results in an increase in the diffuse irradiance. Power output of PV systems is primarily a function of GHI. For higher accuracy, forecast of PV panel temperature are needed to account for the (weak) dependence of solar conversion efficiency on PV panel temperature.

2. SOLAR FORECASTING METHODOLOGIES

Broadly solar power forecasting methods are classified into three categories: physical methods, statistical methods and hybrid methods.

2.1. Physical Methods

The physical method is based on the numerical weather prediction (NWP), cloud observations by satellite or Total Sky Imager (TSI) or atmosphere by using physical data such as temperature, pressure, humidity and cloud cover.

2.1.1. Cloud Imagery and Satellite Based Models

The satellite and cloud imagery based model is a physical forecasting model that analyzes clouds. The satellite imagery deals with the cloudiness with high spatial resolution. The high spatial resolution satellite has the potential to derive the required information on cloud motion. The cloud motion helps in locating the position of cloud and hence solar irradiance can be forecasted. The parameters which have the most influence on solar irradiance at the surface are cloud covers and cloud optical depth. The processing of satellite and cloud imageries are done in order to characterize clouds and detect their variability and then forecast the GHI up to 6 hours ahead. This model works by determining the cloud structures during earlier recorded time steps. The structure of the clouds and their positions helps in predicting solar irradiance [2].

2.1.1.1 Physical Satellite Models

The basis of physical satellite models for the purpose of solar irradiance forecasting is totally dependent on the interaction between the atmospheric components like gases and aerosols and the solar radiation. These physical interactions are modelled by way of RTMs. Therefore, physical satellite models are said to be improved RTM based clear sky models. This improvement is through the addition of information regarding current atmospheric conditions. The account of atmospheric conditions is through the measurement of local meteorological data. This eliminates the need for solar irradiance data at the surface, however, because these models need to convert digital counts from satellite based radiometers into a corresponding flux densities, accurate and frequent calibration of the instrument is required [3]. Physical satellite models cover four sub models in it.

Gautier-Diak-Masse Model

One of the earliest physical models was developed by Gautier, Diak and Masse (GDM) in 1980 [4]. In this model clear and cloudy conditions are considered separately. To differentiate a given pixel as clear and cloudy brightness threshold is obtained by selecting a minimum value at every pixel for every hour from the past several days. One shortcoming of the original GDM model was the absence of variations in terrestrial albedo with changing solar zenith angle. Raphael
and Hay [5, 6] included the T-minimum brightness determination [7] in order to correct for the previous consideration.

In GDM clear sky RTM model the parameters which are used as input are: reflection coefficient for diffuse radiation; these coefficients were calculated using the results from Coulson [8, 9]; the absorption coefficient for slant water vapour path and the solar zenith angle; these absorption coefficients used the expression from Paltridge [10]. Other parameters include the atmospheric albedo as a function of the irradiance received by the satellite. Enhancements and improvements to GDM model includes absorption of ozone and aerosols [11] in addition to multiple reflections by [12].

In GDM cloudy sky RTM model absorption is considered in terms of upwelling and downwelling. This upwelling and downwelling are terms used for absorption above and below the clouds respectively. The parameters used as inputs for cloudy sky RTM are: cloud albedo as a function of the absorption of short wave radiation above and below the clouds, and cloud absorption coefficient estimated on the basis of the satellite’s measurement of the visible brightness of the cloud. The relationship between measured visible brightness and absorption is given by Gantier in 1990 [4].

Marullo-Dalu-Viola Model

This model is the re-evaluation of the GDM model by using the data for the METEOSAT data for the Italian peninsula [13]. This model is similar to GDM model where clear sky and cloudy sky are considered separately. The only difference is in the name clear sky and cloudy sky are termed as standard atmosphere and real atmosphere respectively.

The MDV “standard atmosphere” model is similar to GDM clear sky model. In this, information regarding temperature profile of the atmosphere, water vapour content and a three layer aerosol column are considered [14]. A reflecting non-absorbing layer which accounts for the presence of aerosols in atmosphere is added in input parameters apart from all the rest used in GDM clear sky model. In MDV model planetary albedo for a standard atmosphere was assumed to be uniform for the region varying only with solar zenith angle. Planetary albedo for a standard atmosphere was approximated through the use of regional clear sky data and assumed to be uniform for the region and varied only with solar zenith angle.

Any significant deviation from the standard atmosphere model was assumed to be a consequence of atmospheric particle loading. The atmospheric loading in the real atmosphere was resolved by a thin reflecting non-absorbing layer assumed to be higher than the particles responsible for scattering in the standard atmosphere.

Moser-Raschke Model

This model also used METEOSAT images for estimating ground level irradiance [15]. The authors used the RTM developed by Kerschgens [16] which was more complex than the previous models. The only improvements in MR method are addition of parameters for accurately describing the atmospheric state and infrared data so as to estimate the cloud top height.

The input parameters include the solar zenith angle, cloud top height, optical depth of the clouds, terrestrial albedo, boundary layer structure, climatological profiles of temperature, pressure, humidity, ozone concentration and cloud droplet size distribution. One significant result of this model was the demonstration that clouds, rather than aerosols, have a greatest impact on irradiance reaching ground level.

Dedieu-Deschamps-Kerr Model

This model is different from GDM and MDV model where clear sky and cloudy sky methods were considered separately. DDM model [17] used a single equation valid for both clear and cloudy conditions. For using a single equation clear sky model was combined with the model having only the effects of clouds on solar irradiance.

The input parameters include a sky transmissivity factor, which accounted for Mie and Rayleigh scattering as well as gaseous absorption using the formulae of Lacis and Hansen [18] together with the RTM of Tarre [12], and planetary and terrestrial albedo determined from with the METEOSAT radiometer data. Multiple reflections between the cloud base and the ground were assumed to behave isotropically. It should be noted that as a consequence of uniformity of the aerosol content in both the clear sky and cloudy conditions the model treats an unusually strong concentration of aerosols as a cloud [7].

2.1.1.1. Statistical Satellite Models

These models are defined on the basis of the regression between the pyranometer based solar irradiance at ground level and simultaneous digital counts provided by satellite based instruments. The various parameters in regression equations include solar zenith angle, cloud cover index, atmospheric transmissivity, along with current brightness, minimum brightness and maximum brightness of each pixel. According to [7] the two main difficulties which arise when comparing satellite and ground data are errors associated with the localization of the ground based pyranometer sites on the satellite images and the fundamental difference in the measurement technique. According to some authors [19, 20] these problems can be solved by incorporating more pixels in the definition of target areas by enhancing the satellite resolution.

Hay-Hanson model

One of the simplest statistical satellite models was developed by Hay and Hanson (HH) in 1978 [21]. The model was developed for the Global Atmospheric Research Program’s Atlantic Tropical Experiment to generate maps of the shortwave radiation (0.55 - 0.75 µm) reaching the surface of the ocean. The HH model is based of a statistical linear regression of the clearness index and atmospheric absorptivity:

\[
K_c = a - b\alpha_d
\]

Hay and Hanson [21] originally determined regression coefficients a and b as

a ≈ 0.79 \quad b ≈ 0.71

These values were later re-evaluated by Raphael and Hay [3] to be

a ≈ 0.788 \quad b ≈ 1.078

which gives a better agreement with their dataset.

It has been pointed out in [7] that this relationship fails under unusually high surface albedo which results from a snow- or ice-covered surface. In addition, despite what has been mentioned about statistical methods, this approach requires
the calibration of reported digital satellite counts in order to determine visible radiation.

Tarpley & Justus-Paris-Tarpley Models

Tarpley used a set of coincident satellite and ground pyranometer data sets taken by the National Environmental Satellite Data and Information Services (NESDIS) and the Great Plains Agricultural Council over the central U.S. in late 1970s [22]. This study made use of statistical regressions against measurements from GOES VISSR. Three separate cases were considered based on the value of the cloud index defined by Tarpley as,

\[
N = \frac{0.5N_2 + N_3}{N}
\]

where \(N\) is the total number of pixels included in the target area, and \(N_2\) and \(N_3\) are the number of pixels in partly cloudy and cloudy conditions respectively. The Tarpley regression model was defined as,

\[
l = \begin{cases}
 a + b \cos(\theta) + cK + d \left(\frac{B_m}{B_0} \right)^2 & \text{if } n \leq 0.4 \\
 a + b \cos(\theta) + c \left(\frac{B_m}{B_0} \right) & \text{if } 0.4 < n < 1 \\
 a + b \cos(\theta) + c \left(\frac{B_m}{B_0} \right) & \text{if } n = 1
\end{cases}
\]

where \(B_m\) is the mean target brightness, defined as the mean brightness of a 7 x 6 pixel array; \(B_{idt}\) is the mean cloud brightness, estimated through an average of the brightness values of all the pixels in the target area brighter than a specified threshold; and \(B_n = B_0 (\theta_z = 45^\circ, \phi_z = 105^\circ)\) is the normalized clear brightness which is a special case of the clear brightness \(B_0\) which is obtained from the following regression,

\[
B_0 = a + b \cos(\theta_z) + c \sin(\theta_z) \cos(\phi_z) + d \sin(\theta_z) \cos^2(\phi_z)
\]

Raphael and Hay [23] also estimated their own regression coefficients for this model which are different from Tarpley’s treatment.

This model was later refined by Jutus, Paris and Tarpley (JPT) [24] for part of the Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing (AGRISTARS) program. This new model replaced the three equations of Tarpley’s model with the following single equation,

\[
l = l_0 \left(\frac{n}{7} \right)^2 \cos(\theta_z) [a + b \cos(\theta_z) + c \cos^2(\theta_z)] + d \left(B_m - B_0 \right)
\]

where \(B_m\) is again the mean observed target brightness and \(B_0\) is defined by the following relationship,

\[
B_0 = \begin{cases}
 B_0 & \text{if } B_m \geq B_{\text{max}} \\
 \omega_1B + 0' + (1 - \omega_1)B_m & \text{if } B_0 < B_m < B_{\text{max}} \\
 B_m & \text{if } B_0 - 2 < B_m \leq B_0 \\
 \omega_2B + 0' + (1 - \omega_1)B_m & \text{if } B_{\text{min}} \leq B_m < B_0 - 2 \\
 B_0 & \text{if } B_m < B_{\text{min}}
\end{cases}
\]

As before, the authors in [24] assumed that the brightness for clear sky conditions \(B_0\) and the measured target mean brightness \(B_m\) were known. The weights \(\omega_1\) and \(\omega_2\) are values between 0 and 1 which were empirically determined. Each of the cases above approximates various conditions of the atmosphere. The first and fifth cases correspond to the likely presence of clouds and the insufficient scene illumination for radiation forecasts respectively; each of these cases leaves the clear brightness unaltered. The second case allows for seasonal variation in the clear brightness due to snow- or ice-cover. The third case is to account for clearer than normal days while the fourth case allows for the removal of erroneous effects from the satellite image on \(B_0\) [7].

Cano-HELIOSAT Model

Cano developed a model for the French HELIOSAT project in 1982 which used visible band METEOSAT data [25]. The Cano-HELIOSAT model proposes a simple linear relationship between the clearness index \(K_i\) and the cloud index \(n_i\) at the same point in time and space. This is accomplished by considering local values of \(K_i\) and \(n_i\) at each pixel as,

\[
K_i(i,j) = A(i,j)n_i(i,j) + B(i,j)
\]

where \(A\) and \(B\) are matrices of regression coefficients [26]. The cloud cover index was defined as,

\[
n_t(i,j) = \frac{\rho_t(i,j) - \rho_0(i,j)}{\rho_c - \rho_t(i,j)}
\]

where \(\rho_t\) is the measured ground albedo, \(\rho_0\) is the reference ground albedo and \(\rho_c\) is the average albedo of the top of the clouds. The reference ground albedo was calculated using Bourges model [27] and a recursive procedure which minimized the variance of the errors of the clear sky model.

Refinements to the Cano-HELIOSAT model include use of the ESRA clear sky model to correct the estimation of the terrestrial and atmospheric albedos by Rigollier et al. [28]. These corrections were subsequently used to derive the following relationship between the cloud index \(n_i\) and a clear sky index \(k_t\),

\[
k_t = \begin{cases}
 1.2 & \text{if } n_t < -0.2 \\
 1 - n_t & \text{if } -0.2 \leq n_t < 0.8 \\
 2.0667 - 3.6667n_t + 1.6667n_t^2 & \text{if } 0.8 \leq n_t < 1.1 \\
 0.05 & \text{if } n_t \geq 1
\end{cases}
\]

More recent developments of the Cano-HELIOSAT model include consideration of the three dimensional structure of cloud in the determination of the cloud index [29], modification of the previous \(k_t-n_t\) relationship to include moments of the cloud index distribution [30], corrections for non-Lambertian reflectivity and the backscattering of clouds [31] and integration of the SOLIS-RTM platform [32].
Perez Operational Model

One of the most widely used statistical satellite models is the operational model of Perez [33]. The Perez model uses a modified version of Kasten’s clear sky model which defines a Link turbidity coefficient independent of air mass [34]. The model also allows for the modification of the algorithm based on real time measurements of snow- or ice-cover as well as the correction of sun satellite angle effects for each pixel [35].

The model relates hourly global irradiance I_t and cloud index n_t through a simple regression:

$$ I_t = I_{clr} \cdot f(n_t) \cdot (aI_{clr}, t + b) \quad (10) $$

where $f(n_t)$ is a fifth order polynomial of the cloud index given by,

$$ f(n_t) = c_5 n_t^5 + c_4 n_t^4 + c_3 n_t^3 + c_2 n_t^2 + c_1 n_t + c_0 \quad (11) $$

Values of the coefficients as calculated by Perez in are given in [35]. This model was also modified by Perez and Ineichen to forecast DNI from GHI forecasts provided by the operational model as well as corrections for locations presenting complex arid terrain [36].

2.1.1.2. Total Sky Imagers

The satellite and cloud imagery based model is a physical forecasting model that analyses clouds. The satellite imagery deals with the cloudiness with high spatial resolution. The high spatial resolution satellite has the potential to derive the required information on cloud motion. The cloud motion helps in locating the position of clouds and hence solar irradiance can be forecasted. The parameters which have the most influence on solar irradiance at the surface are cloud covers and cloud optical depth. The processing of satellite and cloud imageries are done in order to characterize clouds and detect their variability and then forecast the GHI up to 6 hours ahead. This model works by determining the cloud structures during earlier recorded time steps. The structure of the clouds and their positions helps in predicting solar irradiance [2][37]. Successfully used Total Sky Imager (TSI) in predicting very short and short-term forecasting.

Both NWPs and satellite imaging techniques lack the spatial and temporal resolution to provide information regarding high frequency fluctuations of solar irradiance. An alternative is provided through ground based imaging of local meteorological conditions. One instrument which has been seen increased application lately is the Total Sky Imager (TSI) manufactured by Yankee Environmental Systems [38].

Typically the methodology for ground based images is similar to satellite based techniques. Projections of observed solar radiation conditions based on immediate measured history while the position and impact of clouds is deduced from their motion. In the case of TSIs the CCD image is digitally processed in order to detect locations of the sky covered by clouds. The cloud image is then propagated forward in time resulting in a forecast. TSI images are useful for prediction of GHI on time horizons up to 15 minutes.

TSI can be used to forecast both the Direct Normal Irradiance (DNI) [39-41] and GHI [37] [42-43]. In some researches researchers also use commercially available TSI such as TSI-800 manufactured by Yankee Environmental Systems [44], while other researchers develop their own TSIs [45].

Sky images are taken sequentially in time; cloud information can be derived from the images through image processing. Template matching algorithms [46-48] are used for computing the motion vectors describing the movement of clouds based on consecutive images. Forecast can thus be obtained through persisting the motion vectors or more sophisticatedly, by solving the advection-diffusion equation [49]. In recent reports it has been found that forecasting based on deterministic ray tracing method produces forecasts that are worse than persistence, at 5, 10, 15 min forecast horizon [50]. In terms of normalized Root Mean Square Error (nRMSE), forecast error using TSI varies from 18 to 24% for forecast horizons ranging from 30 s to 15 min [45]. Nevertheless, due to its physical-based nature and its potential, TSI-based methods are quickly adopted by many other groups in the past two years not only for irradiance forecasting [51] but also used for general atmospheric research [52].

For the purpose of determining and forecasting of local solar radiation conditions geostationary satellite images obtained from the METEOSAT satellite have been used. The basis of this method relies upon the determination of the cloud structures during the previous recorded time steps. For the forecast, cloud motion vector algorithms ([53]; [54]) can be used to obtain the cloud conditions at the next time step in [55], [56], mapping is then performed on the forecast images to obtain the future irradiance. Extrapolation of their motion leads to a forecast of cloud positions and, as a consequence, to the local radiation situation. This method has the advantage of producing a spatial analysis of an area within certain resolution capabilities. The improvement over the persistent method is small, according to the authors.

[54], [37] used satellite imagery and ground-based sky imager respectively for solar forecasting.

It should be noted that while these TSI based provide local meteorological information enabling intra-hour forecasts, their time horizon is restricted to approximately 30 minutes do to their limited range of view. One possible approach to extend the time horizon of ground based measurements is to distribute an array of imagers so that more information regarding local cloud fields is obtained. However, the relative cost associated with the TSI (~$2,000) and the dynamic nature of local cloud fields which may limit the correlation of successive images poses difficulties for current ground based imaging methodologies. In addition to an upper bound on the time horizon of the TSI, a lower band is also imposed. The lower bound is a result of circumsolar scattering of light as well as limitations introduced by the shadow-band which currently renders time horizons shorter than 2 minutes inaccessible [37, 57].

2.1.1.3. Wireless Sensor Network Systems

Satellite and NWP models typically possess time horizons on the order of 30 minutes while stochastic and AI methods have not been widely applied to time horizons less than 15 minutes. TSIs are limited by the circumsolar-scattering of light and the shadow-band to time horizons no longer than 3 minutes [37, 57]. Semiconductor point sensors are capable of very high sampling frequencies but fail to correctly characterize the distributed nature of an operational scale PV plant [58]. An alternative has been suggested by Coimbra and coworkers at the University of California, Merced [156]. A 1MW PV array was outfitted with with 40 TelosB nodes equipped with low cost solar irradiance sensors. The authors in [59] proposed a forecasting algorithm which utilized multiple readings from the spatially distributed network of sensors to compute future
values of the distributed power output. The forecasting approach utilized spatial cross-correlations between sensor nodes which provided forecasts in the range of 20-50 seconds. Calculated velocities agreed with TSI calculated cloud velocity field over 70% of the time [59]. This work demonstrates the potential of wireless sensor networks as low cost and highly accurate approaches for intra-minute solar forecasting.

2.1.2. Numerical Weather Prediction Models

The numerical weather predictions purely rely upon the atmospheric physics. It is the study of how current observations of the weather are used and then processed to predict the future states of the weather. This is done with the help of super computers. A process called assimilation is done so as to process the current weather states and produce outputs of temperature, wind, irradiance and other hundreds of meteorological elements. The NWP is good for one day to multi-days ahead horizons. Thus, it is a useful tool for different variety of applications, such as the scheduling of solar power plants. NWP is also helpful in predicting the transient variations in clouds, which are considered the major obstacles for solar irradiance at the ground. After the assimilation of current observations, the NWP forecasts the future conditions and then the error is corrected based on the previous performance by a statistical post processing.

NWP processes as follows: In the first step the initial states of atmosphere are collected with the help of different sources such as satellites and ground observations. The key source of the NWP error is “data-assimilation”, which is a complex process. This occurs because sources measure different quantities of current states over different volumes of a space and that creates an error in the measurement. In the second step, the main important equations of atmosphere, such as dynamics equations, Newton’s second law for fluids flow, thermodynamics equations, and radiative transfer equations are integrated and solved [60]. In solar engineering, the physical laws of motion and thermodynamics are rarely scrutinized in detail. As NWP models output hundreds of parameters in each run, irradiance is but one of them, researchers simply run NWP models [61-63] and study the outputs. As most of the NWP models are not adapted specifically for irradiance forecasting purposes, biased forecasts commonly result. Finally, the statistical post-processing step where the output of the NWP is manipulated using a trial and error after simulation, in order to compare the outputs with observations and find the statistical relation, and hence correct the error. Statistical post-processing such as the application of model output statistics and Kalman filtering are thus used to obtain useful results [64-65].

There are two models in which NWP models can be classified: Global models and Regional models. In global models, global or worldwide simulation of the behaviour of the atmosphere is carried out, where as in regional (mesoscale) models it is done on a continent or a country scale [66]. Well known NWP models include Global Forecast System (GFS), North American Mesoscale (NAM) model and Weather Research and Forecasting (WRF) model. The difference amongst the three occurs in terms of spatial resolution, input parameters and most importantly, the underlying physical models. It is therefore important to choose the forecasting domain, improve data collection and select an NWP system that uses suitable physical models when one attempts to forecast irradiance.

In their current development, NWPs does not predict the exact position and extent of cloud fields. Their relatively coarse spatial resolution (typically on the order of 1 - 20km) renders NWP models unable to resolve the micro-scale physics that are associated with cloud formation. Therefore, NWP based solar forecast shows cloud prediction in accuracy which is considered as one of the largest sources of errors in NWP. The benefits given by NWP are, it works for long time horizons (15 to 240 hours). With the help of regional and global modelling of atmospheric physics it is possible to obtain information about the propagation of large scale weather patterns. As compared to satellite based methods NWPs shows more accurate results of forecast for time horizons exceeding 4 hours [67-68]. Accordingly, NWPs provide the most attractive option for medium to long term atmospheric forecasting.

For time horizons exceeding 6 hours, up to several days ahead, it is advisable to use NWP for accurate results. NWP models predict GHI using columnar (1D) radiative transfer models. [69] Showed that the MM5 mesoscale model can predict GHI in clear skies without mean bias error (MBE). However, the bias was highly dependent on cloud conditions and becomes strong in overcast conditions.

Many scientists [68], [70-72] evaluated different NWP based GHI forecast at different locations. For all the locations various RMSE percentage are calculated.

NWP and satellite forecasts are inadequate for achieving high temporal and spatial resolution for initial forecasts. This gap can be filled by ground observation using a sky imager and delivers a sub-kilometre view of cloud shadows over a large scale PV power plant or an urban distribution feeder.

Model Output Statistics (MOS) is a post-processing technique which is used for interpreting numerical model output and producing site-specific forecasts. A statistical approach is used by MOS for relating observed weather elements with appropriate variables (predictors). These predictors can be NWP model forecast, prior observations, or geo-climatic data. Consistent error patterns allow for MOS to be used to produce a bias reduction function for future forecasts. [73] Used MOS and calculated 24.5% RMSE for averaged daily forecasts. Similarly other authors [68], [65] used MOS correction function for eliminating bias and reduced RMSE.

2.1.2.1. Global Forecast System (GFS)

One of the most well-known global NWP models is the Global Forecast System (GFS). The GFS model is run by NOAA (National Oceanic and Atmospheric Administration) every six hours and produces forecasts up to 384 hours (16 days) in advance on a 28km x 28km grid for the global domain [74]. The GFS loop time steps are 6 hours out to 180 hours (7.5 days), then change to 12-hour time steps out to 384 hours (16 days). In addition to the 28km x 28km horizontal discretization, the GFS models 64 vertical layers of the atmosphere. The RTM of the GFS accepts as inputs: predicted values of a fully three dimensional aerosol concentration field, predicted values of a two dimensional (horizontal) H₂O, O₂ and O₃ concentration field as well as a constant two dimensional (horizontal) CO₂ field. The GFS model also calculates wavelength specific attenuation of both upwelling and downwelling diffuse irradiances through a sophisticated scattering/absorbing scheme [75]. It should be noted that the radiant flux attenuation is dependent on H₂O phase, temperature and particle size which makes the GFS sensitive to temperature errors.
The European Centre for Medium-Range Weather Forecasts (ECMWF)

The ECMWF provides weather forecasts up to 15 days ahead, including solar surface irradiances and different cloud parameters as model output. ECMWF forecasts have shown their high quality as a basis for both wind and solar power forecasts. These forecasts are described here as an example of global NWP model forecasts. The evaluations of ECMWF-based irradiances in Lorenz et al. [61, 76, 77] are based on the T799 version with a spatial resolution of 25 km x 25 km. The current version T1279 was implemented in January 2010 and shows a horizontal resolution of 16 km x 16 km. Ninety-one vertical layers resolve the atmosphere up to 0.01 hPa corresponding to approximately 80 km. The temporal resolution of the forecasts is 3 h for the first 3 forecast days that are most relevant for PV power prediction. Temporally, ECMWF forecasts have a time-step size of 3 h and are published twice daily up to 10 days in advance.

2.1.2. Regional NWP Model

Unlike global NWP models, regional NWP model only a a sub-domain of the global space. Regional models in the U.S. include the Rapid Update Cycle (RUC), RAPid refresh (RAP), North American Mesoscale (NAM) model, High Resolution Rapid Refresh (HRRR) and the Weather Research and Forecasting (WRF) model [155].

Rapid Update Cycle (RUC)/ RAPid refresh (RAP) Models

The RUC was a NOAA/NCEP (National Centers for Environmental Prediction) operational NWP model until May, 2012. RUC produced hourly updated 13km x 13km horizontally resolved forecasts with 50 atmospheric layers out to a time horizon of 18 hours. The RUC loop time steps are 1 hour from time of analysis out to 18 hours. The RUC possessed a wavelength independent model for the absorption/scattering of radiation by water vapour only. Other atmospheric gases and aerosols were neglected. The RUC also assumed Rayleigh scattering which failed to capture the inversely proportional relationship between intensity of scattering and wavelength of radiation. In addition, only down welling irradiances were attenuated which sometimes lead to the underestimation of diffuse irradiance due to backscattering [78].

As of May 1, 2012 the RUC was replaced with the Rapid Refresh (RAP) model as the next-generation version of the NCEP hourly cycle system. The RAP model possess the same spatial and atmospheric resolution (12km x 12km, 50 layers) but it based on a new rapid update configuration of the WRF model. As a result, the RAP benefited from the ongoing community improvements to the WRF. The domain of the RAP is also significantly larger than the previous RUC and was expanded from the Continental United States (CONUS) region to include Alaska as well.

North American Mesoscale (NAM) Model

The North American Mesoscale (NAM) model is the NCEP’s primary mesoscale environmental modelling tool. NAM produces 12km x 12km horizontally resolved forecasts with 60 atmospheric layers out to a time horizon of 96 hours over North America and is updated four times daily. The NAM model loop time steps are 6 hours from the time of analysis out to 84 hours (3.5 days). The NAM model used predicted water vapor concentrations, seasonally varying but zonally constant O3 concentrations and constant CO2 concentrations. Aerosols are not explicitly considered except for a top of the atmosphere adjustment, which is not particularly troublesome with the exception of regions with high levels of time varying aerosol concentrations. Wavelength specific attenuation of both upwelling and downwelling fluxes is accounted for.

High Resolution Rapid Refresh (HRRR) Model

The High Resolution Rapid Refresh (HRRR) model is an NOAA operated, experimental, hourly updated, 3km x 3km resolution atmospheric model. The HRRR was previously only nested over the eastern 2/3 of the continental United States, however as of June 2009 coverage was expanded to the CONUS region similar to the former RUC. The RHHI models uses the 13km resolution RUC/RAP for its initial conditions and is updated hourly. Benefits of the HRRR include the increased resolution and frequent updates which allow for shorter timescale predictions [155].

Weather Research and Forecasting (WRF) Model

Many of the NWPs discussed are based on a version of the WRF which was created thought a partnership between NOAA and the National Center for Atmospheric Research (NCAR) in 2004. The WRF has, since its introduction, seen increased applicability in both research and operational communities. WRF software is supported ongoing efforts including workshops and on-line documentation. One of the main goals of the WRF model is to advance mesoscale atmospheric prediction by promoting closer ties between research and operational forecasting communities. The WRF is flexible by design and intended for a wide variety of forecasting applications with a priority on spatial resolutions ranging from 1 to 10 km [155].

2.2. Statistical Methods

Forecasting methods based on historical data of solar irradiance are categorized into two categories: statistical and learning methods. Seasonality analysis, Box–Jenkins or Auto Regressive Integrated Moving Average (ARIMA), Multiple Regressions and Exponential Smoothing are examples of statistical methods, whilst AI paradigms include fuzzy inference systems, genetic algorithm, neural networks, machine learning, etc.

2.2.1. Time Series Models

As said earlier time series models gives the result based on the historical data. Time series can be defined as a sequence of observations measured over time, such as the hourly, daily or weekly. Since the observation could be random it is also known as stochastic process. A time series technique mainly focuses at the patterns of the data. These patterns should be identifiable and predictable for the time-series based forecast.

Table 1 Comparison of various NWP models

<table>
<thead>
<tr>
<th>Model</th>
<th>Resolution</th>
<th>No. of layers</th>
<th>Time Horizon</th>
<th>Time Step</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFS</td>
<td>28 km</td>
<td>64</td>
<td>180 hr, 384 hr</td>
<td>6 hr, 12 hr</td>
<td>NOAA</td>
</tr>
<tr>
<td>ECMWF</td>
<td>25 km</td>
<td>91</td>
<td>360 hr</td>
<td>3 hr</td>
<td>-</td>
</tr>
<tr>
<td>RUC/RAP</td>
<td>13 km</td>
<td>50</td>
<td>18 hr</td>
<td>1 hr</td>
<td>NOAA/NCEP</td>
</tr>
<tr>
<td>NAM</td>
<td>12 km</td>
<td>60</td>
<td>96 hr</td>
<td>6 hr</td>
<td>NCEP</td>
</tr>
<tr>
<td>HRRR</td>
<td>3 km</td>
<td>50</td>
<td>15 hr</td>
<td>15 min</td>
<td>NOAA</td>
</tr>
<tr>
<td>WRF</td>
<td>≥ 1 km</td>
<td>As per the user</td>
<td>As per the user</td>
<td>As per the user</td>
<td>NOAA/NCAR</td>
</tr>
</tbody>
</table>

2.2.1.1. Linear Stationary Models
Observational series that describe a changing physical phenomenon with time can be classified into two main categories: stationary and non-stationary. If the sequence of weights in Equation (12) below is finite, or infinite and convergent, the linear filter is said to be stable and the process \(z_t \) (stochastic process) to be stationary [155]. Stationary time series are static with respect to their general shape. The fluctuations may appear ordered or completely random, nonetheless the character of the series is, on the whole, the same in different segments. In this case, the parameter \(\mu \) may be interpreted as the average value about which the series fluctuates. Stationary time series find applications in many areas of the physical sciences, for instance, observational time series and series involving deviations from a trend are often stationary [79]. In fact, the stochastic portion a solar radiation data set is often framed as a stationary process [80].

\[
G(q) = \sum_{k=0}^{\infty} g_k q^k = 1 + g_1 q + g_2 q^2 \tag{12}
\]

Where \(q \) is the forward shift or advance operator and \(G(q) \) is the transfer function of the filter.

Auto-Regressive (AR) Models

The so-called auto-regressive models get their name from the fact that the current value of the process can be expressed as a finite, linear combination of the previous values of the process and a single shock \(\omega_t \). Thus, the process is said to be regressed on the previous values. If we define the stochastic portion of the time series \(z_t, z_{t-1}, z_{t-2}, \ldots \) as deviations from the mean value \(\mu \) as

\[
z_t = Z_t - \mu \tag{13}
\]

then the Auto-Regressive process of order \(m \) can be written as

\[
\omega_t = z_t + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \cdots + \phi_m z_{t-m} \tag{14}
\]

We can simplify the previous expression by defining the Auto-Regressive operator of order \(m \), \(AR(m) \), as

\[
\phi_m(q) = \sum_{k=0}^{m} \phi_k q^k = 1 + \phi_1 q + \phi_2 q^2 + \cdots + \phi_m q^m \tag{15}
\]

then the \(AR(m) \) model may be written conveniently as

\[
\phi_m(q) z_t = \omega_t \tag{16}
\]

determine the \(m+2 \) unknown parameters \(\phi_1, \phi_2, \ldots, \phi_m, \mu \) and \(\sigma_\omega^2 \). It is illustrative to note that Equation (16) implies

\[
z_t = \phi_m^1(q) \omega_t \tag{17}
\]

Therefore, it is helpful to think of the \(AR(m) \) process as the output of a linear filter with transfer function \(\phi_m^1(q) \) and white noise \(\omega_t \) as the input.

In order for the \(AR(m) \) process to be stationary a set of conditions must be satisfied. In [81] the authors point out that the general \(AR(m) \) process has the inverse transfer function

\[
\phi_m(q) = (1 - \Gamma_1 q)(1 - \Gamma_2 q) \cdots (1 - \Gamma_m q) \tag{18}
\]

which allows expansion of the process in partial fractions,

\[
\tilde{z}_t = \phi_m^1(q) \omega_t = \sum_{k=1}^{m} \frac{k_i}{(1-\Gamma_k q)} \omega_t \tag{19}
\]

where it is clear that if \(\phi_m^1(q) \) is to be a convergent series for \(|q| \leq 1 \), then we must have \(|\Gamma| < 1 \), where \(k = 1, 2, 3, \ldots, m \). This is equivalent to saying that the roots of the equation \(\phi_m(q) = 0 \) must lie outside the unit circle. For a discussion of stationary conditions of \(AR(m) \) processes see [79, 81, 82].

Moving Average (MA) Models

While the AR techniques model the stochastic portion of the time series \(z_t \) as a weighted sum of previous values \(z_{t-1}, z_{t-2}, \ldots z_{t-m} \), Moving Average (MA) methods model \(\tilde{z}_t \) as a finite sum of \(n \) previous shocks \(\omega_t, \omega_{t-1}, \omega_{t-2}, \ldots \omega_{t-n} \). The Moving Average process of order \(n \), \(MA(n) \), is defined as

\[
\tilde{z}_t = \omega_t + \theta_1 \omega_{t-1} + \theta_2 \omega_{t-2} + \cdots + \theta_n \omega_{t-n} \tag{20}
\]

Let us pause here and note that the terminology moving average can be a bit misleading due to the fact that the weights in Equation (20) do not, in general, need to be positive nor does their average can be a bit mis

\[
\Theta_n(q) = \sum_{k=0}^{n} \theta_k q^k = 1 + \theta_1 q + \theta_2 q^2 + \cdots + \theta_n q^n \tag{21}
\]

and as a result we can write the MA model in an economic fashion...
\[\hat{z}_t = \Theta(q)\omega_t \quad (22) \]

Hence, the MA process can be thought of as the output \(\hat{z}_t \) of a linear filter whose transfer function is \(\Theta(q) \), with white noise \(\omega_t \) as the input.

Like its counterpart, the MA model contains \(n + 2 \) undetermined parameters \(\theta_1, \ldots, \theta_n, \mu, \sigma^2 \), which must be determined from the data using the techniques described in the next section. Unlike AR (m) processes, MA(n) processes do not have a stability condition and, as a result, are unconditionally stable [79].

Mixed Auto-Regressive Moving Average (ARMA) Models

Linear processes represented by an infinite or an extraneous number of parameters are clearly not practical. However, it is possible to introduce parsimony and still obtain useful models. A well-known result in time series analysis is the relationship between the \(\Theta \) weights and the \(\Phi \) weights [81]. Operating on both sides of Equation (16) by \(\Theta(q) \) and making use of Equation (22), yield

\[\Theta(q)\phi(q)\hat{z}_t = \Theta(q)\omega_t = \hat{z}_t \quad (23) \]

which implies

\[\Theta(q)\phi(q) = 1 \quad (24) \]

that is

\[\phi^{-1}(q) = \Theta(q) \quad (25) \]

Equation (25) indicates that the \(\Phi \) weights may be arrived at from knowledge of the \(\Theta \) weights, and vice-versa. Thus the finite MA process \(\hat{z}_t = \Theta(q)\omega_t \) can be written as an infinite AR process

\[\hat{z}_t = -\theta_1\hat{z}_{t-1} - \theta_2\hat{z}_{t-2} - \cdots + \omega_t \quad (26) \]

However, if the process were really MA(n), we would arrive at a non-parsimonious representation in terms of an AR(m) method. By the same reasoning, an AR(m) method could not be parsimoniously represented using a MA(n) process. Therefore, in practice, in order to realize a parameterization which is parsimonious, both AR and MA terms are often used in the model development. Hence,

\[\hat{z}_t + \phi_1\hat{z}_{t-1} + \cdots + \phi_m\hat{z}_{t-m} = \omega_t + \theta_1\omega_{t-1} + \cdots + \theta_n\omega_{t-n} \quad (27) \]

or

\[\phi_m(q)\hat{z}_t = \Theta(q)\omega_t \quad (28) \]

Equation (28) is referred to as the mixed Auto-Regressive Moving Average (ARMA) process of order \((m, n) \). It is illustrative to note that the ARMA\((m, n)\) process can be written

\[\hat{z}_t = \frac{\Theta(q)}{\phi_m(q)}\omega_t = \frac{1 + \phi_1q + \cdots + \phi_mq^m}{1 + \theta_1q + \cdots + \theta_nq^n}\omega_t \quad (29) \]

and as a result can be thought of as the output \(\hat{z}_t \) from a linear filter, whose transfer function is the ratio of two polynomials \(\Theta(q) \) and \(\phi_m(q) \), with white noise \(\omega_t \) as the input.

In practice, it is frequently true that adequate representation of actually occurring stationary time series can be obtained from models in which \(n \) and \(m \) are not greater than two and often less than two [81, 80]. The order of the model, that is the values of \(m \) and \(n \), is determined using the sample auto-correlation function and partial auto-correlation function of the time series [83]. The model parameters are estimated by least squares methods and the resulting model is said to adequately contain the series in a parsimonious manner.

Mixed Auto-Regressive Moving Average Models with Exogenous Variables (ARMAX)

All of the linear stationary stochastic techniques discussed so far have been univariate; meaning the technique uses previous values of only the time series it is attempting to model. However, the accuracy of ARMAX\((m, n)\) models may be improved by including information external to the time series under analysis. For example, in the case of solar forecasting, the error of a forecasting model may be reduced by including information about the evolution of the local temperature, relative humidity, cloud cover, wind speed, wind direction, etc. Variables such as these, which are independent of the models but affect its value, are referred to as exogenous variables. We can include into the ARMAX\((m, n)\) models \(p \) exogenous input terms which allows us to write the ARMAX\((m, n, p)\) process as

\[\hat{z}_t + \phi_1\hat{z}_{t-1} + \cdots + \phi_m\hat{z}_{t-m} = \omega_t + \theta_1\omega_{t-1} + \cdots + \theta_n\omega_{t-n} + \lambda_1e_{t-1} + \cdots + \lambda_pe_{t-p} \quad (30) \]

The above model contains AR(m) and MA(n) models as well as the last \(p \) values of an exogenous time series \(e_t \). Defining the exogenous input operator of order \(p \) as

\[\lambda_p(q) = \sum_{k=0}^{p} \lambda_kq^k = 1 + \lambda_1q + \lambda_2q^2 + \cdots + \lambda_pq^p \quad (31) \]

The ARMAX\((m, n, p)\) model conveniently be written as

\[\phi_m(q)\hat{z}_t = \Theta(q)\omega_t + \lambda_p(q)e_t \quad (32) \]

The careful reader might already be aware of the fact that all of the linear stationary models discussed so far have a similar structure. In fact, many models in linear system analysis can be considered a special case of the general discrete time model structure

\[\phi(q)\hat{z}_t = \Theta(q)\omega_t + \lambda(q)e_t \quad (33) \]

where \(\phi(q), \Theta(q), \lambda(q) \) and \(\Xi(q) \) are polynomials of the shift operator \(q \) [82, 84].

2.2.1.2. Non-Linear Stationary Models

So far we have only considered general classes of linear stationary models. However, non-linear methods would enable powerful structures with the ability to accurately describe complex nonlinear behaviour such as: chaos, hysteresis and saturation effects or a combination of several non-linear problems [84]. A step towards nonlinear modelling is made by introducing the Non-linear AR-exogenous (NARX) model as

\[\hat{z}_t = f(\hat{z}_{t-1}, \hat{z}_{t-2}, \ldots, \hat{z}_{t-m}, e_{t-1}, e_{t-2}, \ldots, e_{t-n}, \omega_{t-1}, \omega_{t-2}, \ldots, \omega_{t-p}) + \omega_t \quad (34) \]

In much the same way one can also convert the ARMAX model into a Non-linear ARMAX model (NARMAX) as follows

\[\hat{z}_t = f(\hat{z}_{t-1}, \hat{z}_{t-2}, \ldots, \hat{z}_{t-m}, e_{t-1}, e_{t-2}, \ldots, e_{t-n}, \omega_{t-1}, \omega_{t-2}, \ldots, \omega_{t-p}) + \omega_t \quad (35) \]

These non-linear input-output models find many applications in the field of engineering, especially in the parameterization of Artificial Networks.

2.2.1.3. Linear Non-Stationary Models

If the sequence of weights in Equation (12) is infinite but not convergent, the linear filter’s transfer function \(G(q) \) is said to be unstable and the process \(z_t \) to be non-stationary. In this case, \(\mu \) has no physical meaning except as a reference to the level of the process. Non-stationary processes are different in one or more respects throughout the time series due to the
time dependent nature of the level. As a result, in the analysis of non-stationary time series, time must play a fundamental role, for example, as the independent variable in a progression function, or as a normalization factor in the analysis of the evolution of a phenomenon from an initial state [79]. Several observed time series behave as if they have no specified mean about which they fluctuate, for example, daily stock prices or hourly readings from a chemical process [81].

Auto-Regressive Integrated Moving Average Models (ARIMA)

While non-stationary processes do not fluctuate about a static mean, they still display some level of homogeneity to the extent that, besides a difference in local level or trend, different sections of the time series behave in a quite similar way. These non-stationary processes may be modelled by particularizing an appropriate difference, for example, the value of the level or slope, as stationary. What follows is a description of an important class of models for which it is assumed that the difference is a stationary ARMA(m, n) process.

We have seen that the stationary condition of an ARMA(m, n) process is that all roots of \(Φ_m(q) = 0 \) lie outside the unit circle, and when the roots lie inside the unit circle, the model exhibits non-stationary behaviour. However, we have not discussed the situation for which the roots of \(Φ_m(q) = 0 \) lie on the unit circle.

Let us examine the following ARMA (m, n) model

\[
Φ_m(q)Z_t = Θ_n(q)ω_t
\]

and specify that d of the roots of \(Φ_m(q) = 0 \) lie on the unit circle and the remainder lie outside. We can then express the model as

\[
Φ_m(q)Z_t = Θ_n(q)(1 - q)^dZ_t = Θ_n(q)ω_t
\]

where \(Φ_m(q) \) is a stationary and invertible AR(m) operator.

Seeing that \((1 - q)^dZ_t = \nabla^dZ_t \) when \(d \geq 1 \), we can write

\[
Φ_m(q)\nabla^dZ_t = Θ_n(q)ω_t
\]

Defining \(y_t = \nabla^dZ_t \) allows one to express the model in a more illustrative way

\[
Φ_m(q)y_t = Θ_n(q)ω_t
\]

Where it is clear that the model is in agreement with the assumption that the \(d \)th difference of the time series can be regarded as a stationary ARMA \((p, q)\) process. If we not invert Equation (39) we see that

\[
z_t = S^d y_t
\]

Which implies that the process can be arrived at by summing, or integrating, the stationary process \(d \) times. Thus, we refer to (38) as the Auto-Regressive Integrated Moving Average (ARIMA) process. Because the AR operator \(Φ_m(q) \) is of order \(m \), the \(d \)th difference is taken and the MA operator \(Θ_n(q) \) is of order \(n \) in (38) we refer to the process as ARIMA \((m, d, n)\). In practice, \(d \) is typically 0, 1 or at most 2 [81]. As mentioned above, the ARIMA \((m, d, n)\) model is equivalent to representing the process \(x_t \) as the output of a linear filter with transfer function \(Φ_m(1 - \theta)^d \Theta_n \) and takes white noise \(ω_t \) as an input.

Auto-Regressive Integrated Moving Average Models with Exogenous Variables (ARIMAX)

In a similar way to the ARMAX\((m, d, n)\) model, the previous \(p \) values of an exogenous time series \(e_t \) may also be included into the ARIMA\((m, d, n)\) model to yield the ARIMAX process of order \((m, d, n, p)\)

\[
\tilde{z}_t = \phi_1 \nabla^d z_{t-1} + \cdots + \phi_m \nabla^d z_{t-m} + \omega_t + \theta_1 \omega_{t-1} + \cdots + \theta_n \omega_{t-n} + \lambda_1 e_{t-1} + \cdots + \lambda_p e_{t-p}
\]

As we did before, defining \(y_t = \nabla^d z_t \) in terms of the backwards shift operator allows us to express the model in a more compact form

\[
Φ_m(q)y_t = Θ_n(q)ω_t + A_p(q)e_t
\]

which again looks very similar to Equation (33).

2.2.2. Persistence Model

The persistence model is considered as one of the simplest way for forecasting. It basically predicts the future value, assuming it is same as the previous value.

\[
X_{t+1} = X_t
\]

It is also known as the naive predictor. It can be used to give a clue to compare with other methods. The persistence model gives good results when the changes in the weather patterns are very little. These models give high error results for forecasting more than one hour.

2.2.3. Artificial Neural Networks

The artificial neural network (ANN) is a sub-domain of artificial intelligence (AI). There are many architectures in ANN including multilayer perceptron (MLP), radial basis network, self-organized map, support vector machine and Hopfield networks, and others [149]. These architectures differ from one another greatly. ANNs are however used to perform two types of tasks, which are, regression and pattern recognition. Both these are applied in solar irradiance forecasting.

To define the regression applications, in this inputs are mapped to outputs in a non-linear manner. In this the historical data are used as ANN inputs and irradiance of the immediate past steps is outputs. Therefore, ANN takes two steps, the training and the forecast. In the training phase the weights of the artificial neurons are determined and the forecasts are computed based on the trained weights. Same as regression applications, pattern recognition applications involve training and testing. In this instead of outputting the forecast irradiance, the ANN gives a natural number as output which represents the object classification.

The irradiance forecasting accuracy is improved by meteorological and climatological inputs such as temperature and humidity. [85] used climatological variables as inputs to an ANN to predict monthly values of global horizontal irradiance (GHI) over a year. Other examples include [86, 87, 88].
ANN also showed some developments in its fields so as to predict solar irradiance forecasting. Some examples are [89] applied time delayed neural network; [90] applied wavelet neural network. Other similar work includes [69][91-96]. Many researchers publish forecasting results with new data from various regions in the world for archive purpose [97] used MLPs for forecasts for six cities in Iran [98]. Forecast solar irradiance of a grid connected PV plants in Italy. [99] Forecast global radiation in Australia and compared to a few other techniques. Some work by [100-103] and [98] developed ANN using training data to reduce relative RMSE (rRMSE) of daily average GHI.

2.3. Hybrid Methods
Hybrid models are the combination of two or more forecasting techniques so as to improve the accuracy of the forecast. Therefore, they are also known as combined models. The idea behind using the hybrid models is to overcome the deficiencies of the individual models and to utilize the advantages of individual models, merge them together and provide a new hybrid model to reduce forecast errors. For instance, the NWP model can be combined with the ANN by feeding the outputs from the NWP as input to the ANN models. Hybrid models can combine linear models, nonlinear models, or both linear and nonlinear models. Many studies have showed that integrated forecast methods outperform individual forecast [2].

In some studies it is founded that ANN is combined with wavelet to develop a new forecasting method. Cao and Cao [104-108] they all combined wavelet with ANN. Other authors like [109-123] used other soft computing techniques like GA, fuzzy logic, Quantum based GA, adaptive neuro-fuzzy, etc. to develop hybrid models. In all these models combinations like (fuzzy + ANN), (adaptive neuro fuzzy + ANN), (fuzzy + adaptive neuro-fuzzy + ANN + GNN), (wavelet + fuzzy), etc. are developed. Time series methods are also combined with ANN like in [89] [124-129]. Some other hybrid models include [130] which combined self organized map with exponential smoothing. [131] combined MLP with model output statistics for improving NWP model.

3. SOLAR FORECASTING EVALUATION METRICS
For evaluating the performance of a forecast model, the error needs to be calculated. Understanding the forecast error tells us how much to trust the forecast, and re-evaluate the forecasting methods in case of a high error forecast. Solar power metrics can be broadly classified into four categories: [132]

3.1 Statistical Metrics
Statistical error measurement differs on the fact whether solar irradiance or solar power forecast is done on daylight hours or on all hours of a day.
Pearson’s correlation coefficient

Pearson’s correlation coefficient is a measure of the correlation between two variables (or sets of data). The Pearson’s correlation coefficient, \(\rho \), is defined as the covariance of actual and forecast solar power variables divided by the product of their standard deviations, which is mathematically expressed as:

\[
\rho = \frac{\text{cov}(p, \hat{p})}{\sigma_p \sigma_{\hat{p}}}
\]

where \(p \) and \(\hat{p} \) represents the actual and forecast solar power output, respectively. A larger value of Pearson’s correlation coefficient indicates an improved solar forecasting skill.

Root mean squared error (RMSE) and normalized root mean squared error (nRMSE)

The RMSE also provides a global error measure during the entire forecasting period, which is given by:

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{p}_i - p_i)^2}
\]

where \(p_i \) represents the actual solar power generation at the \(i \)th time step, \(\hat{p}_i \) is the corresponding solar power generation estimated by a forecasting model, and \(N \) is the number of points estimated in the forecasting period. To compare the results from different spatial and temporal scales of forecast errors, we normalized the RMSE using the capacity value of the analyzed solar plants.

Maximum absolute error (MaxAE), Mean absolute error (MAE), mean absolute percentage error (MAPE), and mean bias error (MBE)

The MaxAE is an indicative of local deviations of forecast errors, which is given by:

\[
\text{MaxAE} = \max_{i=1, 2, \ldots, N} |\hat{p}_i - p_i|
\]

The MaxAE metric is useful to evaluate the forecasting of short-term extreme events in the power system.

The MAE has been widely used in regression problems and by the renewable energy industry to evaluate forecast performance, which is given by:

\[
\text{MAE} = \frac{1}{N} \sum_{i=1}^{N} |\hat{p}_i - p_i|
\]

The MAE metric is also a global error measure metric, which, unlike the RMSE metric, does not excessively account for extreme forecast events.

The MAPE and MBE are expressed as:

\[
\text{MAPE} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\hat{p}_i - p_i}{p_i \text{ capacity}} \right|
\]

\[
\text{MBE} = \frac{1}{N} \sum_{i=1}^{N} (\hat{p}_i - p_i)
\]

The MBE metric intends to indicate average forecast bias. Understanding the overall forecast bias (over- or under-forecasting) would allow power system operators to better allocate resources for compensating forecast errors in the dispatch process.

Kolmogorov–Smirnov test integral (KSI) and OVER metrics

The KSI and OVER metrics were proposed by [133]. The Kolmogorov–Smirnov (KS) test is a nonparametric test to determine if two data sets are significantly different. The KS statistic \(D \) is defined as the maximum value of the absolute difference between two cumulative distribution functions (CDFs), expressed as:

\[
D = \max \{|F(p_i) - \hat{F}(\hat{p}_i)| \}
\]

where \(F \) and \(\hat{F} \) represents the CDFs of actual and forecast solar power generation data sets, respectively. The associated null hypothesis is elaborated as follows: if the \(D \) statistic characterizing the difference between one distribution and the reference distribution is lower than the threshold value \(V \), the two data sets have a very similar distribution and could statistically be the same. The critical value \(V \) depends on the number of points in the forecast time series, which is calculated for a 99% level of confidence [133].

\[
V_c = \frac{1.63}{\sqrt{N}} \quad N \geq 35
\]

The difference between the CDFs of actual and forecast power is defined for each interval as

\[
D_j = \max \{|F(p_i) - \hat{F}(\hat{p}_i)| \}, \quad j = 1, 2, 3, m
\]

where \(p_i \in [p_{\text{min}} + (j - 1)d, p_{\text{min}} + jd] \)

Here the value of \(m \) is chosen as 100, and the interval distance \(d \) is defined as

\[
d = \frac{p_{\text{max}} - p_{\text{min}}}{m}
\]

Where \(p_{\text{max}} \) and \(p_{\text{min}} \) are the maximum and minimum values of the solar power generation, respectively. The KSI parameter is defined as the integrated difference between the two CDFs, expressed as

\[
\text{KSI} = \int_{p_{\text{min}}}^{p_{\text{max}}} D_n dp
\]

A smaller value of KSI indicates a better performance of solar power forecasting. A zero KSI index means that the CDFs of two sets are equal. A relative value of KSI is calculated by normalizing the KSI value by

\[
a_c = V_c \times (p_{\text{max}} - p_{\text{min}})
\]

\[
\text{KSIPer} = \frac{\text{KSI}}{a_c} \times 100
\]

The OVER metric also characterizes the integrated difference between the CDFs of actual and forecast solar power. The
OVER metric considers only the points at which the critical value V_c is exceeded. The OVER metric and its relative value are given by

\[
OVER = \int_{p_{\min}}^{p_{\max}} t \, dp
\]

\[
OVERPer(\%) = \frac{OVER}{a_c} \times 100
\]

The parameter t is defined by

\[
t = \begin{cases}
D_j - V_c & \text{if } D_j > V_c \\
0 & \text{if } D_j \leq V_c
\end{cases}
\]

As with the KSIPer metric, a smaller value of $OVERPer$ indicates a better performance of the solar power forecasting.

Skewness and Kurtosis

Skewness is a measure of the asymmetry of the probability distribution, and is the third standardized moment, given by:

\[
\gamma = E \left(\frac{e - \mu_e}{\sigma_e} \right)^2
\]

Where γ is the skewness; e is the solar power forecast error, which is equal to the forecast minus the actual solar power value; and μ_e and σ_e are the mean and standard deviation of forecast errors, respectively. Assuming that forecast errors are equal to forecast power minus actual power, a positive skewness of the forecast errors leads to an over-forecasting tail, and a negative skewness leads to an under-forecasting tail.

Kurtosis is a measure of the magnitude of the peak of the distribution, or, conversely, how fat-tailed the distribution is, and is the fourth standardized moment, expressed as:

\[
K = \frac{\mu_4}{\sigma_e^4} - 3
\]

Where K is the kurtosis, μ_4 is the fourth moment about the mean, and σ_e is the standard deviation of forecast errors. The difference between the kurtosis of a sample distribution and that of the normal distribution is known as the excess kurtosis.

3.2 Metrics for Uncertainty Quantification and Propagation

Two metrics are proposed to quantify the uncertainty in solar forecasting, which are: (i) standard deviation of solar power forecast errors; and (ii) Rényi entropy of solar power forecast errors.

Information entropy of forecast errors

An information entropy approach based on Rényi entropy is adopted here to quantify the uncertainty in solar forecasting. The Rényi entropy is defined as:

\[
H_\alpha(X) = \frac{1}{1-\alpha} \log_2 \sum_{i=1}^{n} p_i^\alpha
\]

where α is a parameter that allows the creation of a spectrum of Rényi entropies, and p_i is the probability density of the i^{th} discrete section of the distribution. Large values of α favor higher probability events; whereas smaller values of α weight all of the instances more evenly. A larger value of Rényi entropy indicates a high uncertainty in the forecasting.

3.3 Metrics for Ramps Characterization

One of the biggest concerns associated with integrating a large amount of solar power into the grid is the ability to handle large ramps in solar power output, often caused by cloud events and extreme weather events [136]. Different time and geographic scales influence solar ramps, and they can be either up-ramps or down-ramps, with varying levels of severity. The forecasting of solar power can help reduce the uncertainty involved with the power supply.

Swinging door algorithm signal compression

The swinging door algorithm extracts ramp periods in a series of power signals, by identifying the start and end points of each ramp. The algorithm allows for consideration of a threshold parameter influencing its sensitivity to ramp variations.

Heat Maps

In addition to the ramp periods identified by the swinging door algorithm, heat maps are adopted to illustrate variations of solar power forecast errors. Heat maps allow for power system operators to observe the timing, duration, and magnitude of ramps together.

3.4 Economic and Reliability Metrics

Flexibility reserves have been proposed as a way to compensate for the variability and short-term uncertainty of solar output. Flexibility reserves are the amount of power (in MW) needed to compensate for most hourly or intra-hourly deviations between solar forecasts and actual solar generation values. Improving solar forecasting accuracy is expected to decrease the amount of flexibility reserves that need to be procured with a high penetration of solar power in the system. Flexibility reserves are primarily determined by net load forecast error characteristics [137].

<table>
<thead>
<tr>
<th>Author</th>
<th>Method</th>
<th>Horizon</th>
<th>Performance Metric</th>
<th>Location</th>
<th>Variables</th>
<th>Data Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perez et al. (2007)</td>
<td>Physical (Satellite Based Model)</td>
<td>Less than 4 hr, 4-8 hr, 8-26 hr, 26-</td>
<td>Relative Mean Bias Error, Relative Mean Square</td>
<td>Albany, New York</td>
<td>Ambient Temp., dew point temp., precipitation, weather</td>
<td>National Digital Forecast Database</td>
</tr>
<tr>
<td>Authors</td>
<td>Type/Model</td>
<td>Frequency</td>
<td>Metric(s)</td>
<td>Location</td>
<td>Data Source</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lorenz et al. (2007)</td>
<td>Physical</td>
<td>76 hr</td>
<td>Error</td>
<td>type, sky cover, wind speed and direction, wave height, snow amount</td>
<td>Germany – ECMWF</td>
<td></td>
</tr>
<tr>
<td>Cao and Lin (2008)</td>
<td>Statistical (ANN)</td>
<td>3 days ahead</td>
<td>Root Mean Square Error, BIAS</td>
<td>Shanghai and Macau</td>
<td>Cloud cover – Data from Baoshan Meteorological Observatory, Shanghai</td>
<td></td>
</tr>
<tr>
<td>Hacaoglu et al. (2008)</td>
<td>Statistical (ANN)</td>
<td>Hourly</td>
<td>Root Mean Square Error</td>
<td>Eylul, Turkey</td>
<td>– 1 yr data from Iki Eylul, Turkey</td>
<td></td>
</tr>
<tr>
<td>Remund et al. (2008)</td>
<td>Physical</td>
<td>3 hours</td>
<td>Mean Bias Error and Root Mean Square Error</td>
<td>USA, Germany, Switzerland</td>
<td>– National Digital Forecast Database</td>
<td></td>
</tr>
<tr>
<td>Bacher et al. (2009)</td>
<td>Statistical (Time Series Model)</td>
<td>Hourly</td>
<td>Root Mean Square Error</td>
<td>Denmark</td>
<td>– Danish Meteorological Institute</td>
<td></td>
</tr>
<tr>
<td>Lorenz et al. (2009)</td>
<td>Physical</td>
<td>1 hr to 3 days</td>
<td>Relative Root Mean Square Error</td>
<td>Germany</td>
<td>– ECMWF</td>
<td></td>
</tr>
<tr>
<td>Reikard (2009)</td>
<td>Hybrid (Time Series + ANN)</td>
<td>5, 15, 30 min and 1-4 hr</td>
<td>USA</td>
<td>Humidity, cloud cover, atmospheric turbulence</td>
<td>National Solar Radiation Database, Solar Radiation Research Laboratory, National Wind Technology Laboratory</td>
<td></td>
</tr>
<tr>
<td>Azadeh et al. (2009)</td>
<td>Statistical (ANN)</td>
<td>–</td>
<td>Mean Absolute Percentage Error</td>
<td>Iran</td>
<td>Wind speed, vapour pressure, humidity, temp., location, month</td>
<td>Data from six cities in Iran</td>
</tr>
<tr>
<td>Mellit and Pavan (2010)</td>
<td>Statistical (ANN)</td>
<td>24 hr</td>
<td>Mean Bias Error, Root Mean Square Error</td>
<td>Trieste, Italy</td>
<td>– Data from municipality of Trieste</td>
<td></td>
</tr>
<tr>
<td>Perez et al. (2010)</td>
<td>Physical</td>
<td>1-6 hr and 1-7 -days</td>
<td>KSI, OVER, Mean Bias Error, Root Mean Square Error</td>
<td>USA</td>
<td>Cloud cover 1 yr of hourly data from the SURFRAD network</td>
<td></td>
</tr>
<tr>
<td>Martin et al. (2010)</td>
<td>Statistical (AR, ANN, Fuzzy)</td>
<td>Out to 3 days</td>
<td>Relative Root Mean Square Deviation</td>
<td>Spain</td>
<td>– Spanish National Weather Service, Spain</td>
<td></td>
</tr>
<tr>
<td>Mellit et al. (2010)</td>
<td>Statistical (AR and ANN)</td>
<td>Hourly</td>
<td>Correlation coefficient, Mean Bias Error</td>
<td>Saudi Arabia</td>
<td>Sunshine duration, air temp., humidity 5yr data from Jeddah site, Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>Paoli et al. (2010)</td>
<td>Hybrid (kNN, ANN, AR, Markov Chain, Bayesian Inference)</td>
<td>1 day</td>
<td>Root Mean Square Error, normalized Root Mean Square Error</td>
<td>France</td>
<td>– 19 yrs of data from meteorological station of Ajaccio, France</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Methodology</td>
<td>Time Period</td>
<td>Metrics</td>
<td>Location</td>
<td>Data Source</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Marquez and Coimbra (2011)</td>
<td>Statistical (ANN)</td>
<td>1 hr</td>
<td>Mean Bias Error, Root Mean Square Error</td>
<td>US</td>
<td>Sky cover, precipitation, temperatures</td>
<td></td>
</tr>
<tr>
<td>Chen et al. (2011) [127]</td>
<td>Hybrid (NWP+ANN)</td>
<td>24 hr</td>
<td>Mean Absolute Percentage Error,</td>
<td>China</td>
<td>Relative humidity, temperature, wind speed, wind direction, cloud, sunshine duration, air pressure</td>
<td></td>
</tr>
<tr>
<td>Chen et al. (2011) [127]</td>
<td>Hybrid (NWP+ANN)</td>
<td>24 hr</td>
<td>Mean Absolute Percentage Error,</td>
<td>China</td>
<td>Relative humidity, temperature, wind speed, wind direction, cloud, sunshine duration, air pressure</td>
<td></td>
</tr>
<tr>
<td>Chow et al. (2011) [37]</td>
<td>Physical</td>
<td>30 sec to 5 min</td>
<td>Mean, Standard Deviation</td>
<td>San Diego</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Mathiesen and Kleissl (2011)</td>
<td>Physical</td>
<td>1 hr to 1 day</td>
<td>Mean Bias Error, Root Mean Square Error</td>
<td>USA</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Voyant et al. (2011) [126]</td>
<td>Hybrid (Time Series + ANN)</td>
<td>1 day</td>
<td>Normalized Root Mean Square Error</td>
<td>France</td>
<td>Pressure, nebulosity, humidity, wind speed</td>
<td></td>
</tr>
<tr>
<td>Wu and Chee (2011) [89]</td>
<td>Hybrid (ARMA+ANN)</td>
<td>1 hour</td>
<td>Normalized Root Mean Square Error, Root Mean Square Error</td>
<td>Singapore</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Capizzi et al. (2012) [86]</td>
<td>Statistical (ANN)</td>
<td>1 day</td>
<td>Mean Square Error, Root Mean Square Error</td>
<td>Italy</td>
<td>Wind speed, humidity and temp.</td>
<td></td>
</tr>
<tr>
<td>Boata and Gravila (2012)</td>
<td>Statistical (Fuzzy)</td>
<td>Daily</td>
<td>Mean Absolute Error, Root Mean Square Error, Mean Bias Error</td>
<td>Europe</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Mandal et al. (2012) [106]</td>
<td>Hybrid (Wavelet+ANN)</td>
<td>1 hour</td>
<td>Mean Absolute Percentage Error, Mean Absolute Error, Root Mean Square Error</td>
<td>USA</td>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>Yap and Karri (2012) [99]</td>
<td>Statistical</td>
<td>1 month</td>
<td>Root Mean Square Error</td>
<td>Australia</td>
<td>Temperature, Rainfall, evaporation, sunshine hours</td>
<td></td>
</tr>
<tr>
<td>Pedro and Coimbra (2012)</td>
<td>Hybrid</td>
<td>1 and 2 hr</td>
<td>Mean Absolute Error, Mean Bias Error, Coefficient of correlation</td>
<td>USA</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Voyant et al. (2012) [144]</td>
<td>Hybrid (ARMA+ANN)</td>
<td>1 hr</td>
<td>Normalized Root Mean Square Error</td>
<td>France</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Methodology</td>
<td>Time Period</td>
<td>Metrics</td>
<td>Data Source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquez et al. (2013)</td>
<td>Hybrid (Satellite+ANN)</td>
<td>30, 60, 90, 120 min</td>
<td>Root Mean Square Error, Mean Bias Error</td>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 yr data for Davis and Merced and hourly NOAA’s GOES West satellite images, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquez et al. (2013)</td>
<td>Hybrid (Satellite+Sky images)</td>
<td>1 hr</td>
<td>Mean Bias Error, Root Mean Square Error</td>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cloud cover, infrared radiation, sky-images</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquez and Coimbra</td>
<td>Physical</td>
<td>3-15 min</td>
<td>Root Mean Square Error</td>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2013)</td>
<td></td>
<td></td>
<td></td>
<td>Cloud cover, Several days sky-images data for Merced, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosch et al. (2013)</td>
<td>Statistical (Sensor Network)</td>
<td>–</td>
<td>–</td>
<td>USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Several days data for San Diego, USA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voyant et al. (2013)</td>
<td>Hybrid (ANN+ARMA)</td>
<td>1 hr</td>
<td>Normalized Root Mean Square Error</td>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nebulosity, pressure, precipitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathiesen et al. (2013)</td>
<td>Physical</td>
<td>Hourly</td>
<td>Relative Mean Bias Error, Relative Mean Absolute Error, Relative Root Mean Square Error, Relative Standard Error</td>
<td>San Diego</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 min</td>
<td>Root Mean Square Error</td>
<td>Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cloud speed, 15 days data collected in Kitzingen, Bavaria, Germany</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chu et al. (2014)</td>
<td>Hybrid (Sky Imagery+ ANN)</td>
<td>5, 10, 15 min</td>
<td>Mean Bias Error, Root Mean Square Error</td>
<td>US</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cloud cover, Satellite images from National Oceanic and Atmospheric Administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cros et al. (2014)</td>
<td>Physical</td>
<td>4 hr</td>
<td>Relative Root Mean Square Error</td>
<td>France, Spain</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cloudiness, Satellite images from European Organisation for the Exploitation of Meteorological Satellites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amrouche and Pivert</td>
<td>Statistical (ANN)</td>
<td>1 day</td>
<td>Mean Square Error, Root Mean Square Error</td>
<td>France</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaturvedi (2015)</td>
<td>Hybrid (Quantum+ GA)</td>
<td>1 min</td>
<td>Root Mean Square Error</td>
<td>India</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data from Faculty of Engineering,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. CONCLUSION

Various solar forecasting methods and evaluation metrics are discussed in this work. From the study it is found that a variety of work has been performed by various authors for a number of different spatial and temporal resolutions.

The study here is done according to various forecasting methods. In case of physical methods different cloud imagery and satellite based models are studied. Apart from these two total sky imagers and NWP models are also the part of physical methods. Satellite imaging based methods is used as alternatives to expensive ground based pyrometer networks. These are best for forecasting of irradiance in environments where no other data is available. The only disadvantage of these methods is that they suffer from temporal and spatial limitations due to satellite sampling frequency and limits on spatial resolution of the satellite images. NWP is also used for locations without extensive ground networks. These are best option for long term forecasting with horizon from few hours to couple of days or more.

In case of statistical methods different time series and learning methods are studied. In time series methods sequence of observations are measured over time. These methods have models like AR, MA, ARMA, ARMAX, ARIMA etc. And in learning methods various artificial techniques are considered like neural networks, genetic algorithm etc. Artificial Neural Network is discussed which provides good performance for irradiance data when enough historical data is available. These are used for forecasting intra-hour to yearly time horizons. ANNs are generic non-linear approximators that deliver compact solutions for several non-linear, stochastic and multivariate problems.

Nowadays, the most used method is the hybrid method which incorporates two or more techniques and produces a new forecasting method with improved accuracy. In this method the deficiencies of the individual model are overcome and advantages of individual models are utilized. These methods also reduce the forecast errors. For evaluating the forecast errors solar forecasting evaluation metrics are also studied. Forecasting evaluation metrics allow to understand how much to trust the forecast and re-evaluate it in case of high errors.
5. REFERENCES

[29] M Girodo, R W Mueller and D. Heinemann, “Influence of three dimensional cloud effects on satellite derived solar irradiance estimation First approaches to improve

[87] S K Chow, E W Lee and D.H. Li., “Short term prediction of photovoltaic energy generation by

