Abstract

In 1970’s, Gordon Moore perceived that the number of transistors in a processor would double after every 18 months. With the addition of more transistors on a single-chip, a processor’s energy consumption increases exponentially. The solution to this problem is heterogeneous processors and machines. Heterogeneous machine is the combination of CPU and GPU platforms. Computer architecture is shifting from multi-core to heterogeneous era. Generally, computer architects practice of software simulation to model and analyze their ideas. Today, computer architects are using cycle-level simulators to discover and analyze new processor designs. To search the heterogeneous system design-space, we review and practically analyze heterogeneous simulators and their performance. In this study, we present a detailed comparative analysis of gem5-gpu, gem5, and multi2sim simulators.
2. N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
2011.
4. J. V. Quiroga Esparza, "Heterogeneous CPU/GPU Memory Hierarchy Analysis and
5. Y. Ukidave, "Architectural and Runtime Enhancements for Dynamically Controlled
Multi-Level Concurrency on GPUs," Northeastern University Boston, 2015.
6. P. R. Panda, N. D. Dutt, A. Nicolau, "On-chip vs. off-chip memory: the data partitioning
problem in embedded processor-based systems," ACM Transactions on Design Automation of
International Conference on Parallel Architectures and Compilation Techniques, pp. 335--344,
19-23 September 2012.
DVFS-management in a full-system simulator," Modeling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS), 2013 IEEE 21st International Symposium on,
pp. 535--545, 14-16 August 2013.
10. A. Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C. Sudanthi, C. Emmons, and N.
Paver, "Sources of error in full-system simulation," Performance Analysis of Systems and
and out-of-order ARM microprocessors with gem5," Embedded Computer Systems:
266--273, 14-17 July 2014.
core heterogeneity with gem5 and McPAT," Proceedings of the 2015 Workshop on Rapid
Simulation and Performance Evaluation, Proceedings of the 2015 Workshop on Rapid
13. J. Yin, O. Kayiran, M. Poremba, N. E. Jerger, "Efficient synthetic traffic models for large,
complex SoCs," 2016 IEEE International Symposium on High Performance Computer
on heterogeneous system architectures via parallel cache emulation," Proceedings of the 2015
Conference on research in adaptive and convergent systems, pp. 418--423, 9-12 October 2015.
15. H. Wang, V. Sathish, R. Singh, M. J. Schulte, N. S. Kim, "Workload and power budget
partitioning for single-chip heterogeneous processors," Proceedings of the 21st international
conference on Parallel architectures and compilation techniques, pp. 401--410, 19-23
September 2012.
[Accessed 21 June 2016].

Index Terms

Computer Science
Information Sciences

Keywords

Heterogeneous simulators, gem5-gpu, gem5, multi2sim.