Abstract

Worldwide Interoperability for Microwave Access (WiMAX) is the fourth generation (4G) core technology based on the IEEE 802.16 family. The challenge in the coming years for mobile networks will be to offer high bitrates data services to customers in mobility. Future mobile architectures are being standardized to offer mobility between heterogeneous access technologies. The design of these architectures does not take into account the scalability requirement since they are centralized with many network levels and dependency. Existing and future generations of wireless technologies are competition for providing seamless computing solutions using mobility management. To perform fast and seamless handovers for efficient data transfer there is a need for good mobility and session management framework. The high latency and high cost are the major drawback of a centralized high speed 3G/4G network. On the other hand, flat architecture of 3G/4G does not support high speed mobility even though it provides less latency. This paper proposes a novel architectural design using the entity, namely adaptive convergence router (ACR) for both low latency and seamless mobility which is introduced in the existing WiMAX flat architecture. It stores information and simultaneously...
checks for resource availability and handoff control for every second and maintains the
database, and adaptively controls the session handoff with better QoS. The mobile station
sends resource request message to the ACR and it grants resources according to the available
bandwidth. So according to the proposed novel architecture, users can share three
simultaneous paths according to their needs. The real time users can use centralized path, non
real time users can share flat architecture path and combined hybrid path can be used for
multimedia users. This mechanism provides load sharing and reduces the congestion so that
less latency with seamless mobility can be achieved. The performance of the proposed
architecture is evaluated through simulation by using OPNET modeler considering the metrics
like throughput and delay

References

1. IEEE 802.16e-2005: IEEE Standard for Local and Metropolitan Area Networks-Part 16:
 Air Interface for Fixed and Mobile Broadband Wireless Access Systems
2. Ed Agis et. Global, Interoperable Broadband Wireless Networks: Extending WiMAX
4. Sayan Kumar Ray and Harsha Sirisena."Handover in Mobile WiMAX Networks"The State
 WiMAX." In Proc. IEEE Mobile WiMAX Symposium, pages 144-149, Florida, USA, 25-29 March
 2007.
 Mobile WiMAX Networks"Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd.
7. K. Daoud, P. Herbelin, K. Guillouard, and N. Crespi, “Performance and Implementation of
 UFA: a SIP-based Ultra Flat Mobile Network Architecture,” in Proceedings of PIMRC 2009,
 Tokyo, Japan, September 13–16, 2009, pp. 1–6
8. Zong-Hua Liu and Jyh-Cheng Chen, “Design and Analysis of the Gateway Relocation and
 Admissionthe is Control Algorithm in Mobile WiMAX Networks", IEEE Transactions on Mobile
 Computing, vol. 11, no. 1, pp. 5-18, January 2012.
 Delay by Location Management in Mobile WiMAX Multicast and Broadcast Services", IEEE
 802.16e-Based WMAN, AccessNets, Chonggang Wang,Ed.: Springer Berlin Heidelberg, 2009,
 vol. 6, pp. 102-117
 Handover Load Balancing Trends, The 9thInternational Conference on Informatics and Systems
 (INFOS2014), December 2014,pp. CNs-25-31
 flows in WiMAX, International Journal of Advanced Research in Computer Science and

Index Terms

Computer Science

Information Sciences

Keywords

MWiMAX, mobility, scalability, flat architecture, QoS