
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

8

Dynamic Chunk Allocation and Migration in Cloud

Environment

Deepali R. Joshi
PG Department

MBES’s College of Engineering
Ambajogai, India, 431 517.

B. M. Patil
PG Department

MBES’s College of Engineering
Ambajogai, India, 431 517.

ABSTRACT
Cloud computing allows the all users to upload and download

the resources as per their need. For allocating the resources

cloud uses the virtualization concept. It allocates the data

center resource to users on demand and minimizes the number

of servers. If a load on server increases at that time user

cannot get the required result within a time. For that purpose

load rebalancing must be done. In this work we are applying

the concept of “skewness” to measure the unevenness in

utilization of servers. To minimizing the skewness, here we

introduce the concept of load Re-balancing in cloud

framework. It consider The CPU usage as well as memory for

migrate the data object in to the server.

Keywords

Cloud computing, Virtualization, dynamic resource allocation,

Data center, Load Re-balancing

1. INTRODUCTION
Cloud computing model allocates the resources dynamically.

It automatically scales up and down the resources according

to load variation. It optimizes the hardware cost, electricity

and other expenses in large data centers. Most of the servers

in data centers are under-utilized in cloud model due to

excessed provisioning [2] [3]. Distributed file system is the

basic building block of cloud computing. In distributed file

system large files are fragmented into chunks and allocate

each chunk to number of servers. In cloud, allocated files and

number of servers are increased then the central node creates

an obstacle. Virtual machine monitors (VMMs) like Xen

hypervisor provide a mechanism for mapping virtual

machines (VMs) to physical resources [4]. The mapping is

hidden from the users. Amazon EC2 service does not know

where their VM instances run [5]. Virtual Machine (VM)

technology is used for resource provisioning. Virtualization

reduces the average response time as well as according to the

availability of resources it performs the task [12], [13]. VM

live migration technology reduces the loads on servers and

balances the load according to cpu utilization. During the load

balancing cpu utilization is also increased and it overcomes

the threshold value. To overcome this situation here

introduces the concept of load Re-balancing which balances

the load by calculating the cpu usage as well as memory

utilization of server.

The load balancing cloud computing across the virtual

machine maximizes the throughput. It uses the concept of

skewness to measure the unevenness in server utilization.

During load balancing it will first predict the load and then

allocate the resources dynamically. The proposed load re-

balancing model introduced here is aimed at the public clouds

which divide the public cloud into number of cloud partition.

It reduces the decision time and enhances the utilization of

servers.

Our main focus on two concepts:

(a) Overload avoidance: PM should be capable to

handle the VM running on it but if it overloaded

then it degrade the performance of a system. Hence,

to avoid overload on PM migration of resources

should be takes place.

(b) Green computing: Dynamically allocated Resources

can be handled by the VM so the Number of PM

used should be minimized and Idle PM can turn off

to save energy.

For overload avoidance we should keep the utilization of PM

Low so that the resources can manage easily. To achieve

green computing we should keep the utilization of some

servers high. Here we present the resource management

system to achieve these two goals.

We uses following concept to achieve results.

 Uses the concept of “skewness” for measuring the

utilization of resources.

 Uses the load prediction for minimizing the

migrations and data lost issues.

 The load Re-balancing concept to minimize the

number of migration ie. Reduces the response time

and increases the availability of resources.

2. LITERATURE SURVEY
Chase and Anderson [7] have proposed system for data center

that perform the automatic scaling of web application for data

centers. Here the replicas of web applications are stored by

each server and hence the load of each server had increased

suddenly. Tang [8] has proposed the load dispatch algorithm

that performs the load distribution among all running

machines. While minimizes the number of servers under

utilization work uses network flow algorithm which allocate

the load of web application among all running instances.

Chen [9] has presented an integrated approach for load

dispatching and server storing technique for connection

oriented services. Dynamic provisioning that dynamically

turns on a minimum number of servers required to satisfy the

quality services of web applications. Load dispatching

distributes load on active servers. Above all work do not use

virtual machines. A VM is just like a black box technique.

Resource management is done in whole VMs. Zaharia [1] has

proposed the mapreduce technique specially preserving data

locality i.e. computations near their input data to maximize

system throughput. In this technique if the data excessed then

the threshold of the server goes increased and because of that

hotspots had increased continuously.

Singh et. al [11] have proposed VM live migration technique.

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

9

It uses VM and data migration to migrate hot spots not only

on server but also on network devices and the storage nodes.

But this system was not support the green computing concept.

Here introduced Extended Vector Product (EVP) which

indicates the variation of resource utilization among all

instances. Dhinesh et.al [12] have proposed honeybee

algorithm for load balancing in cloud computing environment.

In this method load equalization should be done among all

virtual machine to boost up the throughput. This algorithm

was updated for deciding resource allocation among all VM

based on availability of resources and load on each machine.

Dong et. al [13] have proposed load balancing technique for

parallel file system. In this framework information was

exchanged between memory and the machine. During load

balancing calculations, the heap of each server is diverse

hence workload on each server was fluctuating persistently.

Tanak and Bharati[14] have proposed "Load Balancing

Algorithm for DHT Based Structured Peer to Peer System” ,

P2P system depends upon the DHT which offers abstraction

for object storage and retrieval. The aim is to make sure even

load distribution over nodes proportional to their capacities,

and transferring virtual servers between heavily loaded nodes

and lightly loaded nodes in a proximity-aware fashion for

minimize the load-balancing cost. a proximity-aware load

balancing scheme having the two main advantages and they

are, from system viewpoint ,can reduce the bandwidth

consumption for load balancing scheme dedicated to load

movement.

3. SYSYTEM ARCHITECTURE

Figure 1. System architecture [1]

This system contains a set of servers used for running

different application. Predictor is used to predict the load on

server and future demand of VMS [1].

3.1 Skewness Algorithm
From the above architecture we introduce the concept of

skewness which helps us to measure unevenness in the

utilization of server. Generally, servers are classified in three

types: hot spot, warm spot and cold spot. Hot spot is a small

area in which there is a high temperature relative to its

surrounding. Warm spot is the area in which temperature is

always between hot and cold spot. Cold spot is also a small

area in which there is a lowest temperature relative to its

surrounding. All these spots are follows the threshold

technology to classifying them.

Our algorithm evaluates the resource allocation based on

demands of VMs. Here we define the server as a hot spot if

utilization of resources exceeds the hot threshold. This

indicates that server is overloaded and hence VMs running on

it should be migrated on any other server.

Let n be the number of resources and ri is the utilization of i-th

resource. Here we define the skewness of server p where r'' is

the average utilization of all resources for server 'p' is

represented in equation (1).

 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑝) = r− ri 𝑛
𝑟∈𝑅

2
---------- (I)

Skewness algorithm consists of two steps:

 Hotspot migration

When server is above the hot threshold or server is overloaded

at that time it is needed to migrate some running VM away

from the server. This can be done by using hot spot migration.

Our aim is to eliminate all hot spots if possible. For that it is

needed to sort the list of all hot spots in descending order of

their temperature i.e. handle the hottest one first. For each

server p, sort the list of all VM according to their temperature

and select the VM that can reduce the servers temperature

most. In case of ties, select the VM whose removal can reduce

the skewness of server. For each VM we define the

destination server. If a destination server is found, we migrate

the VM to that server and update the predicated load of

related server. Otherwise, move on to the next VM in the list

and try to find destination server for it.

 Green computing

It is recent trend towards operating system to save the energy.

When the resource utilization of active server is too low, some

of them can be turned off to save energy. This can be handling

by green computing algorithm. When average utilization of

resources on active server are below the green computing

threshold at that time this algorithm is invoked. Here the

challenging task is during low load reduce the number of

active server without sacrificing performance of a system.

For clod spot on server p, it must to check that we can migrate

all its VMs somewhere else. For that we find the destination

server who accommodate. After migration of all VM on

server p, check whether the server is below cold spot or not. If

it is then green computing algorithm turnoff that server and

save the energy. After accepting the migrated VM the

resource utilization of server must be below the warm

threshold. While we can save the energy it may create hot spot

in future hence warm spot is design to prevent the system

from this situation. We try to eliminate cold spot with lowest

cost first. We select the servers which contains the least

skewness. If we find the destination server for all VMs on

cold spot, we record the continuous migration and released

servers predicted load can be updated. Otherwise, we do not

migrate any of its VMs. Eventually we save the energy by

keeping the servers in idle states.

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

10

4. PROPOSED WORK

Figure 2. Proposed System architecture

Figure 2 shows proposed system architecture .Each client

contains a statistical collection of files which are forwarded to

job manager where sub servers are work. Job manager

calculates the load on each node before commit on database.

Job manager creates chunks for each server according to

server load. Server load can be calculated on the basis of cpu

utilization of each server as well as memory occupied by each

server. Once it calculates the load with these two entities it

disperses the chunks over multiple servers. Data encryption

should be performed by servers with the help of DES and

MD5 encryption scheme and unique key can be send to

authorized users. Load rebalancing task can change file

allocation among VMs by adjusting their load.

Load Re-balancing schemes depending on whether the system

dynamics are important can be either static or dynamic. Static

schemes do not use the system information and are less

complex while dynamic schemes will bring additional costs

for the system but can change as the system status changes. A

dynamic scheme is used here for its flexibility. The model has

a main controller and balancers to gather and analyze the

information. Thus, the dynamic control has little influence on

the other working nodes. The system status then provides a

basis for choosing the right load balancing strategy.

The load Re-balancing model given in this article is aimed at

the public cloud which has numerous nodes with distributed

computing resources in many different geographic locations.

Thus, this model divides the public cloud into several cloud

partitions. When the environment is very large and complex,

these divisions simplify the load balancing. The cloud has a

main controller that chooses the suitable partitions for arriving
jobs while the balancer for each cloud partition chooses the

best load balancing strategy.

During load balancing each server firsts estimate weather it is

overloaded or under loaded without any global knowledge. A

server is light if the number of chunks is smaller than the

threshold. Here the nodes are randomly selected. Specifically,

each node contact to other number of randomly selected nodes

and form a vector 'V'. Vector consists of entries of each node.
Specifically, in this study, suggest offloading the load

rebalancing task to storage nodes by having the storage nodes

balance their loads spontaneously. This eliminates the

dependence on central nodes. The storage nodes are

structured as a network based on distributed hash tables

(DHT). DHTs enable nodes to self-organize and repair while

constantly offering lookup functionality in node dynamism,

simplifying the system provision and management. It also

helps for replica management.

In this system the hot spot migration depends on not only cpu

utilization but also memory utilization. During the hot spot

detection first selection of server is performed by the user.

User can select the server randomly there is no any scheduling

technique is used for it. After selection of server it predicts the

load of server and checks the status of the server those are

stated below.

 If load of node is equal to zero it means the server is

in idle state.

 If load degree is greater than zero but less than the

threshold value then it should be considered in a

normal state.

 If load of degree is exceeds the threshold value then

it considered in overloaded state.

During the execution of system if the threshold value is

below the degree of a load then chunks directly send on the

selected node but if it is exceeds the threshold value then

server first find the server which contains the least load and

send file on that node. Here the thresholds are set according to

cpu and memory utilization of servers. Here if cpu utilization

maximizes then it calculate the memory utilization if it will

below the threshold then file must be send on the selected

server. System calculates the load on cpu and memory basis

hence the number of migrations are reduced. Load

rebalancing scheme first predict the load according to cpu

utilization of resources but if it exceeds the threshold at that

time it compute the memory utilization of servers and then

rebalance the load according to it. In the previous technique if

cpu usage exceeds the threshold at that time the system

migrates the VMs on the least load servers but here it

rebalance the load with the help of memory instead of

migration. After migrations of chunks the load should be

rebalance and the load must be update.

Here we have used the amazon EC2 cloud service for creating

and running the instances. It provides facility to automatic

grow and shrink the memory of any instance after reconfigure

it. Hence if cpu and memory will exceeds the threshold at that

time we can able to reconfigure the instance and increase the

memory easily. Here chunks can be allocated according to

availability of memory on each server. In order to afford

security to data, the data is stored in the encrypted shape in

the nodes. The file that is to be uploaded in the cloud is

chosen by the client. The encryption procedure is performing

over the data with the key provided. The encrypted file is

finished in different chunks and stored in different nodes. At

the time of downloading those chunks are decrypted and

merge in one file and then send to the user.

Chunk formation depends on availability of space on each

server. It's not compulsory at every time to form a chunk in

equal size. File is fragmented according to threshold. After

sending of chunk if any server goes in hot threshold it

immediately rebalance the load with memory utilization of

that server and accept it. Because of this load rebalancing

technique most of the time all servers are normal state. Here

inputs are taken as follows.

4.1 Mathematical Module
System S = {Ts, CPUuti , WCcpu ,Tm, Um, WCm, F, A, Ds,

Bw, Nlat, WCnet}

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

11

Where

Ts = Timestamp

CPUuti = CPU Utilization

WCcpu = Weight constant of CPU

Tm = Total Memory

Um = Used Memory

WCm = Weight constant of memory

F = Finish time of user request

A = Arrival time of user request

Ds = data size of single request

Bw = Band width

Nlat = Network latency

WCnet = Weight constant of network

Here the weight constant assumption parameter into scale

between 0 and 1; divide to CPU, Memory and Network, so

that the total is currently just 1. The CPU has greater impact

on the execution of a VM comparing in memory or net. So, it

has a maximum weight constant.

Inputs:
The static parameters include the number of CPU’s, the CPU

processing speeds, the memory size, etc. Dynamic parameters

are the memory utilization ratio, the CPU utilization ratio, the

network bandwidth. T is threshold.

Process:-
1. Define a load parameter set: F= {F1,F2…Fm} with

each Fire presents the total number of the

parameters.

2. Compute the load degree as

 Load Degree(N)= Σ αiFi

 Where i= 1…m.

3. Average cloud partition degree from the node load

degree statistics as:

 Load degree avg=Σi=1..n Load

Degree(Ni)

4. Three level node status are defined

Load degree(N)=0 for Idle

 0<Load Degree(N[i])>=< T Normal

 Load_Degree(N[i]) > T Overloaded

Output :-

Idle or Normal Or Overloaded

In this structural engineering a brought together load balancer

is utilized to part the record into pieces keeping in mind the

end goal to store the information in different hubs. The

information to be put away in the cloud is scrambled before

capacity for more security. The encryption is finished by the

key created at the customer side. At that point the scrambled

information is made into lumps and put away in different

hubs. At the point when the server control performs

operations on information such as cancellation or updating

load awkwardness issue happens. This issue can be explained

by the rebalancing calculation which adjusts the heap in the

cloud after the above operations performed. Like this we can

perform the load rebalancing technique.

5. ALGORITHMS
Algorithm 1: Compute VM Load from data nodes

Input: ith Node input

Output: - Idle or Normal Or Overloaded in percent (%).

Compute Load (VM id) : weight Degree Inputs: The static

parameter comprise the number of CPU’s, the CPU

dispensation speeds, the reminiscence size, etc. active

parameters are the memory consumption ratio, the CPU

exploitation ratio, the network bandwidth.

Procedure:-

1. Characterize a load limit set: F= {F1,F2…Fm} with

each Fire present the total number of the

consideration.

2. Calculate the load capacity as weight Degree(N)= ∑

αiFi Where i= 1…m.

3. Ordinary cloud partition degree from the node

consignment degree statistics as:

 Load amount avg=∑i=1..n

4. LoadingDegree(Ni)

 Three height node position are defined

 Load_degree(N)=0 for inactive,

 Load_degree(N) <= T for normal and

 Load_degree(N)>T for overfull.

Algorithm 2: VM object Migration

Input: Input File from user f, memory size f is M, selected

server s.

Output: File store with specific server

1. User select file randomly and select the server.

2. System takes each server memory load from assign

server sm.

3. if (M>sm)

Find i to n from available server

4. Select i th server which having memory >M and

min load degree.

5. Create file chunks and encrypt the data.

6. Store the data on ith server.

7. End procedure

Algorithm 3: DES with MD5.

Basically MD5 is hashing function, its used for generating a

hash of given string instead of SHA, but DES is encryption

techniques. When we use DES with MD5 and PBE’s, so PBE

is work like secure hash function of MD5 data and DES

encrypt all the data using crypto technique within a single key

for both direction. So finally conclude, we can provide better

security instead of RSA, Elgamal encryption scheme, ECC

using combination of these three functions using the single

key which will eliminate the additional resource dependency

and time complexity as well.

Below is the procedure of DES with MD5 encryption using

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

12

PBE’s function.

Key generation mode

 Key= {byte [], random, k}

 Data encryption mode

 Cipher= {plain data, key}

 Data decryption mode

 Plain data= {cipher, key}

This part has been done using set theory. The given

algorithms complexity has measure using polynomial time.

Output: specific data node with load ratio and file transaction

success or fail.

6. RESULT AND DISCUSSION
The system is work with multiple virtual machines. One we

deploy the system on EC2 environment it will work fine. For

the proposed system performance evaluation, we calculate

matrices for accuracy. We implement the system on java 3-

tier MVC architecture framework with INTEL 2.5 GHz i3

processor and 4 GB RAM. The system is work with multiple

virtual machines. One we deploy the system on EC2

environment with four virtual machines it will work fine. The

estimated results for the system based on below tables. The

below table show how re-balancing algorithm works with

chunk creation. On the basis of below table we first given 90

KB file as input to the system, and how workload has

distributed into the different servers based on CPU load.

Here X=data size, Y= CPU load

Figure 3. Data Uploading performance

Here first we upload the 5 MB files by client that fragmented

in to chunks and send it among three virtual machines. After

increasing the size of file the load on CPU will get increased

here file distributed in to chunk and distributed according to

availability of usage in each VM. After uploading the 100 MB

file the VM1 exceeded and reached above 90 percent and we

can say that the server in hot threshold. Here we consider the

threshold ranges are given in below table.

Table1. Parameters for experiment

Thresholds Value

Hot Above 0.9

Cold Below 0.2

Warm between 0.2 to 0.9

at this point the load rebalancing works. It calculates the CPU

and memory utilization of server if it exceeds the cpu usage it

calculates the memory and if it contains a enough memory to

accept the chunk then it accept it without any migration.

During this the decision time will be calculate according to

the time required to send the file over a Virtual machines. It is

shown below.

Figure 4. Decision time

Here the time is measured in milliseconds. Once the

utilization is reached at the highest point that is in hot

threshold then system detect the hot spot here in figure 5 we

have shown the number of hot spots detected based on CPU

and memory. Here when hot spots are detected according to

CPU utilization it requires the no. of migrations within

sometime after uploading hence the hot spots detected earlier.

But when we calculate both CPU and memory utilization the

hot spots are detection is minimized and hence the hotspots

are detected but it resolves easily i.e. the chunks are send

according to memory of server. If we consider both the

parameters then the migrations will get reduced and files

reached at the destination. Here we compare both the results

against hot spot. First hot spot detected on VM1 then VM1 is

migrated on VM3.after sending the next file the load on VM2

will get increased and it detects the hotspot hence it then

migrated and load is balanced. According to this technique

load balancing is performed. This hotspot detection is shown

in below figure.

0

10

20

30

40

50

60

70

80

90

100

5 MB 10 MB 50 MB 100 MB

VM 1

VM 2

VM 3

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

13

Figure 5. Average number of hotspots

Figure 6. Average number of migrations

After detection of hotspot migration should be takes place. It

is shown in above figure. Here the chunks are distributed over

the servers based on its capacity. When VM1 get heated i.e.

when it exceeds its CPU and memory utilization it detects the

hotspot and migration begins. During the migration server

find the other server which has a capacity to accommodate the

VM1 and then it migrate it on another server. After that

regular uploading is started. Again some time elapsed hotspot

is detected on VM2 again it resolves and files are uploaded.

Here migrations are reduced as compared to previous result.

Hence this technique is more effective than previous.

7. CONCLUSION AND FUTURE SCOPE
The load balancing is a very important task in a Cloud

Computing environment to achieve maximum utilization of

resources. We discussed various load balancing schemes such

as existing system and proposed, each having some pros and

cons. On one hand existing load balancing scheme provide

easiest simulation and monitoring of environment, but

difficult to model the heterogeneous nature of clouds. On the

other hand, dynamic load re-balancing algorithms are difficult

to simulate but are best suited in a heterogeneous environment

of cloud. Load should be balanced over various hubs to

enhance framework execution; response time and crypto

system security mechanism are also applied over the

rebalancing task.

For the future enhancement we can focus on multi cloud load

balancing, such concept of load balancing is a little different

between different research areas by different researchers.

There is no description for load balancing in future internet.

For the additional feature enhancement we also focus

memory, bandwidth, and network virtualization using Xen

hypervisor. Basically Virtualization technology can be used

either on its own or in the cloud. Our software is readily used

in either situation. In order to facilitate its use in the cloud, we

include the Xen Project API (XAPI). This is the power

behind cloud solutions like Xen Server and the (now

deprecated) XCP.

8. REFERENCES
[1] Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi

Chen "dynamic resource allocation using virtual

machine for cloud computing environment", in ieee

transaction on parallel and distributed systems year 2013.

[2] L. Siegele, “Let it rise: A special report on corporate IT,”

in The Economist, Oct. 2008.

[3] M.Armbrust et al., “Above the clouds: A berkeley view

of cloud computing,” University of California, Berkeley,

Tech. Rep., Feb 2009.

[4] P.Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and

the art of virtualization,” in Proc. of the ACM

Symposium on Operating Systems Principles (SOSP’03),

Oct. 2003.

[5] "Amazon elastic compute cloud (Amazon EC2),

http://aws.amazon.com/ec2/.”

[6] TPC-W: Transaction processing performance council,

http://www.tpc.org/tpcw/.”

[7] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

and R. P. Doyle, “Managing energy and server resources

in hosting centers,” in Proc. of the ACM Symposium on

Operating System Principles (SOSP’01), Oct. 2001.

[8] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A

scalable application placement controller for enterprise

data centers,” in Proc. of the International World Wide

Web Conference (WWW’07), May 2007.

[9] G. Chen, H. Wenbo, J. Liu, S. Nath, L. Rigas, L. Xiao,

and F. Zhao, “Energy-aware server provisioning and load

dispatching for connection-intensive internet services,”

in Proc. of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI’08), Apr.

2008.

[10] M.Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and

I. Stoica, “Improving MapReduce performance in

heterogeneous environments,” in Proc. of the Symposium

on Operating Systems Design and Implementation

(OSDI’08), 2008.

[11] A.Singh, M. Korupolu, and D. Mohapatra, “Server-

storage virtualization: integration and load balancing in

data centers,” in Proc. of the ACM/IEEE conference on

Supercomputing, 2008.

[12] DhineshBabu L.D, P. Venkat, "Honey bee behavior

inspired load balancing o aKrishnaf tasks incloud

computing environments", Applied Soft Computing 13

(2013) 22922303.

[13] Bin Dong, Xiuqiao Li, QimengWu, Limin Xiao, Li

Ruan, A dynamic and adaptive load balancingstrategy

for parallel file system with large-scale I/O servers, J.

Parallel Distribution Computing.

[14] ChahitaTanak, Rajesh Bharati “Load Balancing

Algorithm for DHT Based Structured Peer to

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.10, September 2016

14

PeerSystem”International Journal of Emerging

Technology and Advanced Engineering (ISSN 2250-

2459, ISO9001:2008 Certified Journal, Volume 3, Issue

1, January 2013).

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.

Limpach, I. Pratt, and A. Warfield, “Live migration of

virtual machines,” in Proc. of the Symposium on

Networked Systems Design and Implementation

(NSDI’05), May 2005.

[16] M. Nelson, B.-H. Lim, and G. Hutchins, “Fast

transparent migration for virtual machines,” in Proc. of

the USENIX Annual Technical Conference, 2005.

IJCATM : www.ijcaonline.org

