
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.11, September 2016

27

Implementation PDO Parameterized Query to Prevent

SQL Injection

Maksy Sendiang
Information Technology Dept

Manado State Polytechnic
North Sulawesi - Indonesia

Ottopianus Mellolo
Information Technology Dept

Manado State Polytechnic
North Sulawesi - Indonesia

Maureen Langie
Electrical Engineering Dept
Manado State Polytechnic
North Sulawesi - Indonesia

ABSTRACT

SQL injection is one of threat to the application connected to

the database. By implementing SQL injection attacker can

gain full access to the application or database so that it can

remove even significant data irresponsibly. Applications that

do not validate the user‟s input appropriately make them

vulnerable against SQL injection. Various methods have been

developed to prevent SQL injection each with advantages and

disadvantages. Implementation of PDO Parameterized Query

properly can prevent SQL injection. . PDO not only provides

a method to facilitate the implementation of parameterized

queries but also makes the code is portable because the PDO

can be used on multiple databases. This paper describes the

results of research on the use of PDO Parameterized Query on

scheduling application. By using PDO Parameterized Query

on this application, making it is not vulnerable to attack that

caused by SQL injection.

General Terms

Internet security, web technology, object oriented

programming

Keywords

PDO, parameterized query, SQL injection

1. INTRODUCTION
Data and information has become a very important asset in

both government and private organizations nowadays. Every

day large amounts of data stored using hardware or software .

Usage and rapid progress of the Internet infrastructure , has

spurred the increasing amount of data stored in a database

lately . Increasing the number of users and the heavy reliance

on digital information is one barometer of the importance of

securing data or information [1].

Web applications have become the interface is widely used in

presenting data and information. Most web applications using

multitier design that consists of a presentation tier (front end)

, application tier (middle tier) and a data tier (backend) [2].

Presentation tier is the leading layer that presents information

regarding to services presented by the web application.

Application layer is a layer that implements software

functionality by performing the process in detail. . The data

tier is a layer that stores data and provides a response to a

request from the application tier and consists of a database

server. These tiers shaping the architecture of client – server

developed as separate modules that are generally known as a

user interface module, functional process logic module and

data storage module.

The software includes web applications vulnerable to security

threats. The web application with a database that stores

important information such as financial information , health

information , personal information to be very sensitive and is

one of the targets of the Structured Query Language (SQL)

injection. According to the Open Web Application Security

Project (OWASP) [3] SQL Injection ranks first in the list of

web application security threats in 2013. In terms of avoiding

from the threat of SQL Injection then access to the database

should be monitored by setting a parameterized query using

PHP Data object (PDO)

2. LITERATURE REVIEW

2.1 Definition of SQL Injection
SQL injection is a type of security exploit in which the

attacker adds Structured Query Language (SQL) code to a

web form input box, to access the gain resources or make

changes to data [4]. SQL injection is done by attacker with

transmit a particular code into a SQL query so a SQL code is

formed. In this way , the attacker can gain access to the

databases that store important and crucial data. This matter is

very risky because it can cause data loss or misuse of data by

parties who are not responsible.

According to [5] SQL injection can be implemented in

several ways including by tautology attacks , union attacks ,

logically incorrect query attacks and piggy back attacks.

Tautology attacks carried out by inserting a conditional

statement into the query to create the conditions are always

right. Union attacks carried out by adding the UNION

keyword in the query to perform operations is undesirable in a

database . Piggy back attacks carried out by adding a query

that has been injected into the original query.

2.2 SQL Injection Prevention Methods
SQL injection is implemented by tautology can be prevented

by input validation e.g to check the type , size , format and

range of data entered and the data entered should not be to

pass the authentication process .

Setting the field of the length to limit the number of characters

that can be used and to encrypt information can prevent SQL

injection is implemented by way of UNION attacks..

2.3 PHP Data Object
PDO extension has become one of the trends in developing

dynamic web applications and connect to the database . PDO

is the PHP5 extensions written in C / C ++ and has several

advantages including the system supports a number of

databases supported by PHP , faster because it is written with

a compiled language , and easy installation . In short PDO

needed when we needed a portable application that supports a

number of database systems and faster execution .

PDO provides database abstraction layer that can use the

same functions to execute SQL commands on any database

[6] . The main reason to use PDO is security and flexibility

when connected to the system database. Through the use of

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.11, September 2016

28

prepared statements (utility not in php_mysql *) then the

PDO can prevent SQL Injection [7] .

3. .METHODOLOGY
This study uses research and development method that

includes four phases: analysis, design, implementation and

testing. Implementation PDO parameterized query to prevent

SQL Injection in this paper is applied to the scheduling

application for vocational high school in North Sulawesi

Province of Indonesia. This object -oriented applications in

development using Rational Unified Process (RUP) . This

method is used because the time needed in application

development is relatively short and this application will

undergo repairs during the development process

Rational Unified Process (RUP) is a software development

approach that is done iteratively, focusing on architecture

(architecture- centric) and is directed by use cases. RUP is a

software engineering process of good defining and

structuring . RUP provides a good structure for defining

workflow software project life [8] .

RUP has four stages or phases that can be done iteratively. In

this methodology, there are four stages of software

development, eg:

1. Inception is a stage model the business processes required

and defines the need for the system to be created

2. Elaboration is more focused on planning the system

architecture. This stage can also be made to determine

whether the desired system architecture can be made or

not. This stage also gives emphasis on the analysis of the

system design and system implementation and expected

results of this phase is to fulfill the Lifecycle Architecture

Milestone

3. Construction, this stage is more focused on the

development of a component or system features

4. Transition, this stage is the deployment or installation of

the system in order to be understood by the user.

Activities at this stage includes user training, maintenance

and testing of the system to meet user expectations

4. RESULT AND DISCUSSION
This paper describes how to implement the PDO

Parameterized Query to prevent SQL injection . According to

[4] vulnerabilities on web applications that can lead to SQL

injection is as follows :

1. SQL Injection is based on a 1 = 1 is always true. Look at

SQL query in Figure 1 below

Fig 1: Query Example

SQL code above is used to select user based on name,

passwords and levels of the following form (see Figure 2) :

Fig 2: Login Form

If no validation, the user can enter any input, including input

that can exploit security as in the following query

(Figure 3):

Fig 3: SQL Query with 1 = 1

2. SQL Injection based on batched SQL Statements. Most

databases that supports batched SQL statements separated

by a semicolon, as shown in Figure 4 below

Fig 4: Batched SQL Statements

SQL code above will display the user table and then delete

the table .

3. SQL injection based on commenting password. For

example user adds username and password like picture

below;

Fig 5: SQL injection with commenting password

If the query in Figure 5 above is executed , the query will

check alias and password will not be checked because the '--'

symbol is used as a comment on SQL .

PDO Parameterized Queries can prevent SQL Injection . With

a parameterized query the database will be able to distinguish

between SQL commands and data entered by the user . If the

SQL commands entered by the attacker , parameterized query

would treat it as an input that is not trusted (untrusted input)

and SQL commands that are SQL injection will never be

executed . The following example shows the syntax of PHP

snippet that contains loopholes SQL Injection

<?php

if (isset($_GET['id'])){

 $id = $_GET['id'];

 $mysqli = new mysqli('localhost', 'dbuser', 'dbpasswd',

'hibah');

 if ($mysqli->connect_errno) {

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.11, September 2016

29

 printf("Connect failed: %s\n", $mysqli->connect_error);

 exit();

 }

 /* SQL query contains SQL injection */

 $sql = "SELECT username FROM users WHERE id =

$id";

 if ($result = $mysqli->query($sql)) {

 while($obj = $result->fetch_object()){

 print($obj->username); } }

In order to prevent SQL Injection then Parameterized Query

PDQ implemented as in the following code snippet

try{ //

 $dbh = new PDO('mysql:host=localhost; dbname

=hibah', 'dbuser', 'dbpasswd');

 /**

 * Use PDO::ERRMODE_EXCEPTION, to catch

errors and write it to a log file for the future

 */

 $dbh->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

 /**

 * Before executing SQL statements,we need to set

binding parameters. The following syntax fix the SQL

injection vulnerability

 */

 $q = "SELECT username FROM users WHERE id =

:id";

 $sth = $dbh->prepare($q);

 $sth->bindParam(':id', $id);

 $sth->execute();

indexed by column name

 $sth->setFetchMode(PDO::FETCH_ASSOC);

 $result = $sth->fetchColumn();

 print(htmlentities($result));

 $dbh = null;

 }

 catch(PDOException $e)

{

 error_log('PDOException - ' . $e->getMessage(), 0);

 http_response_code(500);

 die('Error establishing connection with database');

 }

 } else{

 http_response_code(400);

 die('Error processing bad or malformed request');

 }

}

Scheduling application for vocational high school in North

Sulawesi Province of Indonesia applied PDO Parameterized

Query to create applications capable of counteracting SQL

Injection attacks. There are some reason using PDO instead of

mysql_* in this application, as shown in table 1.

Table 1. Comparison between mysql_* and PDO

No Mysql_* PDO

1

It doesn‟t support modern SQL

database concept such as

prepared statements, stored

procedures, transactions, etc

It supports modern

SQL database

2
It concatenates escaped strings

into SQL

Using bind

parameters which is

an easier and cleaner

way of securing

queries

3

It lacks consistent error

handling or no handling at all

Using exception

mode in error

handling

4

It is not being maintained

(security vulnerabilities are not

getting fixed)

It is being maintain

and much more

secure

Prevention of SQL injection starts from use the following

syntax to create a connection to a mysql database:

Fig 6 : PDO – mysql Connection

Compared with traditional syntax to connect php mysql, the

above syntax is much more secure against SQL injection.

Traditional syntax relies on die() to handle errors but in fact

php application cannot handle die(), as it will just end the

script abruptly and then echo the error to the screen and allow

nasty hackers discover the schema and do the SQL injection.

On the other hand, PDO has three error handling modes e.g :

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.11, September 2016

30

1. PDO::ERRMODE_SILENT acts like mysql_*

where it will check each result and then look at

$dbh->errorInfo (); to get the error details.

2. PDO::ERRMODE_SILENT throws PHP warnings

3. PDO::ERRMODE_EXCEPTION throws

PDOException. This mode is used in this

scheduling application, it acts very much like die

(mysql_error(); when it isn‟t caught but unlike die(

) the PDOException can be caught and handled

gracefully

In this scheduling application, fetching data based on key

supplied by a form. The user input is automatically quoted, so

there is no risk of a SQL injection attack (see fig 7).

Fig 7 : Fetching data

PDO Parameterized Query is used to perform filtering on any

data entered by the user and it proved able to cope SQL

Injection, as shown in one of the following function below

function addTeacher($nip,$nama,$alamat,$telp)

{ $log = new CekLogin();

 try

 {

 $sth = $log->getDatabase()->prepare ("INSERT

 INTO teacher (nip,nama,alamat,telp)VALUES

 (?,?,?,?)");

 # use bindValue() to bind data values

 $sth->bindValue (1,$nip);

 $sth->bindValue (2,$nama);

 $sth->bindValue (3,$alamat);

 $sth->bindValue (4,$telp);

 $sth->execute ();

 //echo "Data success to be added";

 }

 catch(PDOException $e)

 { echo $e->getMessage();}}

In the above code SQL statement that is passed to the method

prepare () will be parsed and compiled by the database server.

By declaring parameters in the form of "?" will be signaled to

the database server where the screening process will be

conducted. When the method execute () is called, the

statements contained in the method prepare () will be

aggregated with the value of the parameter that has been

determined. It should be emphasized that the values of the

parameters, coupled with the SQL statement that was

compiled not by SQL as a string. SQL injection works by

adding malicious code as a parameter to the SQL statement.

Because the SQL statement and parameters is executed

separately, it will reduce the impact of things that are not

desirable. Each parameter is sent through methods prepare ()

will be treated as a string.

In addition, by using a parameterized query through the

application of methods prepare () can improve system

performance because the SQL statement is compiled only

once and used repeatedly with different parameter values.

All PDO parameterized query techniques mentioned above

apply to this scheduling application that consists of several

modules. The result of applying PDO parameterized query on

login module can be seen in the following table :

Table 2. The Results of the implementation of the PDO on

the login module

Username Password Level Status

„‟ OR 1=1 „‟ OR 1=1 „‟ OR 1=1 Prevented

„admin‟-- Random student Prevented

admin
SQL

statement
teacher Prevented

admin; pass teacher Prevented

admin admin teacher
Login

granted

admin
wrong

password
teacher Invalid entry

5. CONCLUSION
Use of PDO Parameterized Queries can prevent SQL Injection

and also can improve system performance through the use of

methods prepare () and the application of object-oriented php.

Application of PDO parameterized query in the development

of web-based applications will soon replace the mysql_*

function. Therefore, the web application developers should

have the knowledge to use PDO parameterized query. The

features of PDO continues to grow because it supported by the

PHP developers worldwide. Application of PDO

Parameterized Query on scheduling applications in North

Sulawesi Province - Indonesia makes this application is not

vulnerable to SQL Injection threat .

6. REFERENCES
[1] Yash Tiwari, Mallika Tiwari, “A study of SQL of

injection techniques and their prevention methods”,

International Journal of Computer Applications (0975-

8887), vol 114, no. 17, March 2015.

[2] Bojken Shehu, Aleksander Xhuvani, “A literature review

and comparative analyses on SQL injection :

vulnerabilities, attcks and their preventation and detection

techniques”, IJCSI International Journal of Computer

Science Issues, vol 11, issue 4, no. 1, July 2014

[3] The Open Web Application Security Project, “OWASP

TOP Project”, https://www.owasp.org/SQL_Injection

[4] Bharti Nagpal, Naresh Chauhan, Nanhay Singh, “A viable

solution to prevent SQL injection attack using SQL

injection”, i-manager‟s Journal on Computer Science,

vol.3, no.3, September – November 2015

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.11, September 2016

31

[5] Yogesh Bansal, Jin Park, “Multi-hashing for protecting

web applications from SQL injection attacks”,

International Journal of Computer and Communication

Engineering,vol.4,no.3, May 2015

[6] Mandalika G, “Developing MySQL database application

with PHP Part 3 : using the PDO extension with MySQL

driver”, Maret 2009. URL : http://www.oracle.com

/technetwork/systems/articles/mysql-php3-140148.html,

diakses tanggal 28 Desember 2015.

[7] Utami E, Raharjo S,”Database Security Model in the

Academic Information System”, International Journal of

Security and Its Applications. 8:170. 2014

[8] Chen Q, “Compare and study about owing to the three

kinds important softwaresdevelop process”, Proceeding of

the International Conference on Education Technology

and Economic Management (ICETEM). 450-451. 2015

IJCATM : www.ijcaonline.org

http://www.oracle.com/technetwork/systems/articles/mysql-php3-140148.html
http://www.oracle.com/technetwork/systems/articles/mysql-php3-140148.html
http://www.oracle.com/technetwork/systems/articles/mysql-php3-140148.html

