
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.12, September 2016

31

Parallel Computing to Predict Breast Cancer Recurrence

on SEER Dataset using Map-Reduce Approach

Umesh D. R.
Assistant Professor

Department of Computer
Science & Engineering

PESCE, Mandya, Karnataka, India.

B. Ramachandra, PhD
Professor

Department of Electrical &
Electronics Engineering

PESCE, Mandya, Karnataka, India.

ABSTRACT
Due to the late overpowering development rate of large scale

data, the advancement of handling faster processing

algorithms with optimal execution has turned into a critical

need of the time. In this paper, parallel Map-Reduce algorithm

is proposed, that encourages concurrent participation of

various computing hubs to develop a classifier on SEER

breast cancer data set. Our algorithm can prompt supported

models whose speculation execution is near the respective

baseline classifier. By exploiting their own parallel

architecture the algorithm increases noteworthy speedup. In

addition, the algorithm don't require singular processing hubs

to communicate with each other, to share their data or to share

the knowledge got from their data and consequently, they are

powerful in safeguarding privacy of computation also. This

paper utilized the Map-Reduce framework to implement the

algorithms and experimented onSEER breast cancer data sets

to exhibit the execution as far as classification accuracy and

speedup.

Keywords

Breast cancer; Big dataanalytics, Classification; Parallel

Computing; MapReduce, SEER.

1. INTRODUCTION
Data evolution has been quickly moving from the Terabytes

to the petabytes age as an aftereffect of the blast of data. The

potential worth and bits of knowledge which could be derived

from massive data sets have pulled in gigantic enthusiasm for

an extensive variety of business and scientific applications [1–

3]. It is turning out to be increasingly critical to arrange and

use the huge measures of data at present being created.

However, with regards to massive data, it is troublesome for

current data mining algorithms to build classification models

with serial algorithm running on single machines, also exact

models. In this way, the requirement for proficient and

powerful models of parallel computing is obvious.

Fortunately, with the assistance of the MapReduce [3–6]

infrastructure, specialists now have a basic programming

interface for parallel scaling up of numerous data mining

algorithms on larger data sets. It was indicated [7] that

algorithms which fit the Statistical Query model [8] can be

composed in a specific “summation form”. They represented

10 different algorithms that can be effectively parallelized on

multi-core personal computers applying the MapReduce

paradigm.

Despite the fact that MapReduce handles extensive scale

computation, it doesn't support iteration. Since there are no

loop steps available in Hadoop, to execute loops, an outside

driver is expected to repeatedly submit MapReduce jobs.

Since each MapReduce jobs works independently, keeping in

mind the end goal to reuse information between MapReduce

jobs, the outcomes created by a previous MapReduce jobs are

composed to the Hadoop Distributed File System (HDFS) and

the following MapReduce job which needs this data as inputs

peruses these messages from HDFS. Clearly, this operation

doesn't have the advantages that the caching system can get

for the in-memory computation. Additionally, attributable to

data replication, disk I/O, and serialization, the methodology

for making loops inside the original version of Hadoop causes

enormous overheads. The time spent in this procedure may

some of the time possess a noteworthy part in the aggregate

execution time.

Presently, there are some methodologies [9–14] which

manage the issue of lacking iterations in MapReduce. To

effectively handle such large scale data, faster processing and

optimization is turning out to be more critical. Subsequently,

it has become vital to develop new algorithms that are more

reasonable for parallel models. One straightforward

methodology could be to convey a single inherently

parallelizable data mining program to multiple data (SPMD)

on numerous personal computers. In any case, for algorithms

that are not inherently parallelizable in nature, upgrading to

accomplish parallelization is the option.

In this paper, the proposed parallel algorithms, which

accomplish parallelization in both time and space.

Parallelization in space is additionally vital as a result of the

restricting variable postured by the memory size. Large data

sets that cannot fit into the main memory are regularly

expected to swap between the main memory and the

secondary storage, presenting latency cost which sometimes

may even decrease the speedup picked up by parallelization in

time. The proposed algorithms are intended to work in cloud

environment where every hub in the computing cloud works

just on a subset of the entire data. The joined impact of all the

parallel working hubs is a supported classifier model

prompted much speedier and with a fabulous speculation

capacity.

The demonstration of the algorithm keeps up a competitive

test exactness, which accomplishes significant speedup

contrasted with big data analytics using Map-Reduce

(BDAM), which is equipped for being fitted in a parallel

design; and demonstrated that Parallel Computing using Map-

Reduce (PCM) algorithm performs better both in terms of

prediction accuracy and speedup. For the implementation,

Map-Reduce [15] framework has been utilized, which a

straightforward model for distributed cloud computing.

This paper is organized as follows: section “Related work”

introduces work that has previously been proposed for solving

the problem in Hadoop MapReduce; section “Proposed

Algorithm" presents a new parallel framework PCM

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.12, September 2016

32

algorithm that accomplishes parallelization in both time and

space; section “Experimental Result" demonstrate

experimentally the predominance of the proposed algorithm

over BDAM as far as prediction accuracy and speedup;

section “Conclusion" concludes the paper.

2. RELATED WORK
ADABOOST is one of the most popular boosting algorithm

proposed in the mid-1990s [16]. Its straightforward natural

algorithmic flow joined with its sensational change in the

speculation execution makes it a standout among the most

intense ensemble techniques. A clear hypothetical

clarification of its execution is all around portrayed in [17],

where boosting in a two class setting is seen as an additive

logistic regression model.

LOGITBOOST is another generally utilized boosting

algorithm which is proposed using additive modeling and is

appeared to show more powerful execution particularly in the

presence of noisy data.

FILTERBOOST [18] is a recent algorithm of the same kind,

based on a modification of ADABOOST intended to

minimize the logistic loss. FILTERBOOST expect an oracle

that can deliver boundless number of labeled samples and in

each boosting iteration, the oracle creates sample points that

the base learner can either accept or reject. A small subset are

utilized to prepare the base learner.

Escudero et al. [19] proposed LAZYBOOST for accelerating

ADABOOST, which utilizes several feature selection and

ranking techniques. In each boosting iteration, it picks a fixed-

size arbitrary subset of features and the base learner is

prepared just on this subset. Another fast boosting algorithm

in this category was proposed by Busa-Fekete and Ke´gl [20],

which uses multiple-armed bandits (MAB). In the MAB-

based methodology, every arm speaks to a subset of the base

classifier set. One of these subsets is chosen inevery iteration

and after that the boosting algorithm seeks just this subset as

opposed to optimizing the base classifier over the whole

space.However, none of these works portrayed so far

investigate accelerating boosting in a parallel or distributed

setting and in this way their execution is restricted by the

resources of a solitary machine.

Wu et al. [21] proposed an ensemble of C4.5 classifiers taking

into account MapReduce called MReC4.5. By giving a

progression of serialization operations at the model level, the

classifiers based on a cluster of computers or in a cloud

environment could be utilized as a part of different situations.

PLANET [22] is another as of late proposed system for

learning classification and regression trees on enormous data

sets utilizing MapReduce. These methodologies are particular

to the weak learners, (for example, tree models) and

consequently don't show up as a general system for ensemble

techniques such as boosting.

In spite of these endeavors, there has not been any huge

examination to parallelize the boosting algorithm itself. Prior

forms of parallelized boosting [23] were basically intended for

tightly coupled shared memory frameworks and henceforth is

not appropriate in a distributed cloud environment. Fan et al.

[24] proposed boosting for adaptable also, distributed

learning, where every classifier was prepared utilizing just a

small portion of the training set. In this distributed adaptation,

the classifiers were prepared either from irregular samples (r-

sampling) or from disjoint partitions of the data set (d-

sampling). This work fundamentally centered on

parallelization in space however not in time. Henceforth,

despite the fact that this methodology can deal with

substantial data by distributing among the hubs, the objective

of faster preparing time is not accomplished by this

methodology.

Gambs et al. [25] proposed MULTBOOST algorithm which

permits participation of two or more working hubs to develop

a boosting classifier in a security safeguarding setting. In spite

of the fact that initially intended for saving protection of

algorithm, MULTBOOST's algorithmic design can fit into a

parallel setting. It can accomplish parallelism both in space

and time by requiring the hubs to have separate data and by

empowering the hubs to process without thinking about other

specialists' data.

However, the primary issue of these aforementioned

methodologies is that they are reasonable for low latency

intercomputer communication environments, for example,

conventional shared memory architecture or single machine

multiple processors frameworks and are not appropriate for a

distributed cloud environment where for the most part the

correspondence expense is higher. A huge part of the time is

used for imparting data between the registering hubs instead

of the real computation. In this proposed methodology, the

constraint by making the hubs computation independent from

each other thus minimizing these communications has been

overcome.

3. PROPOSED ALGORITHM
In this section, the proposed PCM algorithm has been

described. Before that, big data analytics using MapReduce

framework has been described, in brief. The pseudocode for

big data analytics using Map-Reduce (BDAM) is described in

Algorithm-1. Let the data set Dn={(x1, y1), (x2, y2), ,(xm,

ym)} with label classification yi ∈ {Recurrence (R), Non-

Recurrence (NR)}; xi ∈ X is the object or instance; The

algorithm initialize all the records with weight, so that𝐷1 𝑖 =
 1

𝑚
for all the examples in Dm, where t ∈[1, T] and T is the total

number of iterations. Before starting the first iteration these

weights are uniformly initialized (line 1) and they are updated

in every consecutive iteration. At each iteration, a weak

learner function is applied to the weighted version of the data

which then returns an optimal weak hypothesis ht (line 5).

This weak hypothesis minimizes the weighted error. At each

iteration, a weight is assigned to the weak classifier (line 7).

At the end of T iterations, the algorithm returns the final

classifier H which is a weighted average of all the weak

classifiers. The sign of H is used for the final prediction.

Algorithm-1: BDAM (𝑫𝒏, T)

Input: Consider SEER dataset of n records (x1,y1), ……, (xn,

yn) with label classifications yi∈ Y = {Recurrence (R), Non-

Recurrence (NR)}; xi ∈ X is the object or instance; Base

learner B; and Number of iterations T

Output: The final classifier Hfinal(x)

1. Initialize all the records with weight, so that 𝐷1 𝑖 =
1

𝑛

2.for t ← 1 to T do

3.Create distribution 𝐷𝑡 on {1,…..,n} from the selected

training subset 𝑆𝑡

4. Call base learner B, train B with 𝑆𝑡

5. Select weak classifier with smallest error rate (𝜀𝑡) on

𝐷𝑡

 𝜀𝑡 = 𝑃𝑟𝐷𝑡
[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖]

 ℎ𝑡 : 𝑥 → {𝑅, 𝑁𝑅}

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.12, September 2016

33

6. if 𝜀𝑡 > 0.5, then set T = t – 1 and exit from loop.

7. Update distribution 𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
 𝐶(𝑥)

 C(x) =

𝜀𝑡

1−𝜀𝑡

1

: 𝑦𝑖 = ℎ𝑡 𝑥𝑖

: 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖

 αt = log1−𝜀𝑡
𝜀𝑡

> 0

 𝑍𝑡 → Normalization constant ≤ 1

8. Output: The final classifier Hfinal(x) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈ Y αt𝑡:ℎ𝑡 𝑥 =𝑦

Computational Complexity of BDAM depends on the weak

learner algorithm in line 4. Rest of the operations can be

performed in Θ(n). Let’s consider decision trees with only two

leaf nodes as weak learners. Then the cost is Θ(dn) if the data

examples are sorted in each attribute. Sorting all the attributes

will take Θ(dn log n) time and this has to be done only once

before starting the first iteration. So, the overall cost of the T

iterations is Θ(dn(T + log n)).

The pseudocode for PCM is depicted as a part of Algorithm-2,

let 𝑫𝒑
𝒏is the data set for the pth hub. The hubs compute

classifier Hp by finishing all the T iteration of Algorithm-1 on

their particular data sets (line 2). Hp is defined as follows:

{(hp
1 , αp(1)), (hp

2 , αp(2)), . . . (hp
T , αp(T))}

where hp
t is the weak classifier of pth hub at tth iteration and

αp(t) is the corresponding weight of that weak classifier. The

worker than reorders the weak classifier, hp
t, with increasing

order of αp(t) (line 3). Thus, reordering Hp
* communicated as

follows:

{(hp
*1 , αp

*
 (1)), (hp

*2 , αp
*
 (2)), . . . (hp

*T , αp
*
 (T))}.

If, αp(k) = min { αp(t)) | t ∈ {1, 2, . . . , T}} then αp
*
 (1) = αp(k)

and hp
*1 = hp

k. Now, the reordered hp
*t s are considered for

converging in the T number of iterations for the final

classifier. ℎ𝑡 𝑥 is formed by converging {(ℎ1(𝑡), ..., ℎ𝑀(𝑡)}

(line 6) where, these weak classifiers does not necessarily

come from the tthiteration of the hubs. This converged

classifier, ℎ𝑡 𝑥 is a ternary classifier, a variant of weak

classifier proposed by Schapire and Singer [26] which

alongside "+1" and "−1" may likewise return "0" as a method

for going without replying. It takes a straightforward

dominant part vote among the worker’s weak classifiers. The

ternary classifier will reply "0" if equal number of positive

and negative expectations is made by the worker’s weak

classifiers. Else, it will answer the majority expectation. In

line 7, the weights of the comparing classifiers are averaged to

get the weight of the ternary classifier. After all the ternary

classifiers for T rounds are created, the algorithm gives back

their weighted combination as the final classifier.

Algorithm-2: PCM (𝑫𝟏
𝒏, … , 𝑫𝑴

𝒏 , T)

Input: The training set of M hubs 𝑫𝟏
𝒏, … , 𝑫𝑴

𝒏 and

Number of iterations T

Output: The final classifier {Hfinal(x) = 𝛼𝑡ℎ𝑡(𝑥))𝑡

1.for p ← 1 to M do

2. Hubs compute classifier Hp by completing all the T

iteration of Algorithm_1 (𝑫𝒑
𝒏, T)

3. Hp
*← Select weak classifiers of pth hub sorted

corresponding to αp(t) of tth iteration.

4. end for

5. for t ← 1 to T do

6. Hypothesis h(t) is formed by converging {(ℎ1(𝑡), ...,

ℎ𝑀(𝑡)}

7. αt=

M

p

p
M 1

(t)
1

8. end for

9. Output: The final classifier {Hfinal(x) = 𝛼𝑡ℎ𝑡(𝑥))𝑡

In an parallel computing environment, where M hubs

participates parallelly and the data is distributed uniformly

among the hubs, the Computational Complexity of Algorithm-

2 is Θ(𝑑𝑛
𝑀

𝑙𝑜𝑔 𝑛
𝑀

 +
𝑇𝑑𝑛
𝑀

) which relies on upon the number of

iterations T, the number of instances n, the number of

attributes D and number of hubs M. The sorting of the T weak

classifiers (line 3) will have an additional cost of Θ(T log T)

time, which becomes a constant term if T is fixed.

4. EXPERIMENTAL RESULT
In this segment, the proposed algorithms exhibit in terms of

certain performance metrics, for example, classification

accuracy and speedup. The algorithm outcomes contrasted

with big data analytics using MapReduce framework. All the

tests were performed on Amazon EC2 distributed computing

environment and the computing hubs used were of type M3

instance designed with Latest Intel Xeon Processor and SSD-

backed instance storage that conveys higher I/O execution.

The algorithm applied stratified examining on SEER breast

cancer dataset keeping in mind the end goal to form training,

validation and test segments. The accuracy results are 10-fold

cross validation results. In the analyses, the quantity of

mappers in the training procedure is dictated by the quantity

of splits of the training data. To uniformly appropriate the

classes, the training data is split equally among the mappers

utilizing the stratification method. The base learning

algorithm is utilized as a part of Algoritm-1 is decision trees

with standout non-leaf node as weak learners.

For the accuracy experiments, 2,20,811 instances and 17

attributes of the SEER breast cancer data set are utilized. The

details of the 17 attributes can be found in Table 1. The error

rate of parallel computing utilizing MapReduce (PCM)

framework when the number of computing hubs changes from

1 to 20 are shown in Table 2 andgraphical representation in

Figure 1. It can be seen from this table contrasted with the one

mapper case the PCM calculation has lower or equal error

rates.

Table 1: Variables Used For Breast Cancer Recurrance

Modeling

Sl. No. Variable Name

1. Race

2. Marital Status

3. Primary site code

4. Histological type

5. Behavior code

6. Grade

7. Extension of Tumor

8. Lymph node involvement

9. Site specific surgery code

10. Radiation

11. Stage of cancer

12. Age

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.12, September 2016

34

13. Tumor size

14. Number of positive nodes

15. Number of nodes

16. Number of primaries

17. Menopause

Table 2: Pcm Error Rates For Different Number Of Hubs

Number of Computing Hubs for SEER

dataset in PCM

No. of Hubs 1 5 10 15 20

Error rates 0.1140 0.1102 0.1016 0.0976 0.0860

Figure 1: Graphical Representation Of Pcm Error Rates

For Different Number Of Hubs

Further, we compared the error rates acquired by theparallel

computing utilizing MapReduce with Big data analytics

utilizing MapReduce framework algorithm. The correlation

results are appeared in Table 3 and graphical representation in

Figure 2. It can be seen that the PCM algorithm has the most

reduced error rates in SEER breast cancer datasets.

Table 3: Error Rates Comparison Between Pcm And Data

Analytics Using Mapreduce Framework Algorithm

BDAM PCM (10 hubs) PCM (20 hubs)

0.1146 0.1016 0.086

Figure 2: Graphical Representation Of Error Rates

Comparison Between Pcm And Data Analytics Using

Mapreduce Framework Algorithm

To show the adequacy speedup execution of the PCM with

Big data analytics utilizing MapReduce framework algorithm,

we ascertain speedup as the proportion of the training time for

a single computing node over that of a number of computing

hubs handling in parallel (we vary this number from 5, 10, 15

to 20). The itemized aftereffects of speedup are appeared in

Table 4 and graphical representation in Figure 3. As can be

seen from this table, the number of computing hubs increases,

the higher speed up the algorithm accomplishes.

Table 4: Speedup Results For Different Computing Hubs

Number of Computing Hubs for SEER

dataset in PCM

No. of Hubs 5 10 15 20

Speedup 4.9508 8.4430 11.8850 13.2450

Figure 3: Graphical Representation Of Speedup Results

For Different Computing Hubs

5. CONCLUSION AND FUTURE WORK
We proposed our parallel algorithms executed with

MapReduce that have fantastic speculation execution.

Because of the algorithms’ parallel structure, the models can

be prompted much quicker. We contrasted the execution of

our algorithm with the big data analytics utilizing MapReduce

framework as a part of a parallel distributed setting. The tests

were performed with the Map-Reduce framework. Our

outcomes show that the prediction accuracy of our algorithm

is aggressive to the respective baseline and is far and away

superior sometimes. We gain significant speedup while

building exact models in a parallel domain. The scale up

execution of our algorithms demonstrates that they can

proficiently use extraresources when the problem size is

scaled up.

For the PCM algorithm, since the base learners which handle

part of the original datasets work in one single machine

successively, in the following step, we plan to parallelize this

progression and distribute the computation to additional

computing hubs for expanding the computational efficiency.

Also, we utilized the same algorithm: BDAM for all the

computing hubs in this work. We plan to utilize distinctive

algorithms on various computing hubs to build the accuracy

further. The reason is that PCM algorithm belongs to the

ensemble learning paradigm of machine learning and the more

various the base learners are, the higher accuracy could be

expected. Further, for the trails, our present adaptation of the

algorithms isolates the data using random stratification. We

plan to investigate other data partitioning algorithms that can

enhance the classification execution significantly further.

6. REFERENCES
[1] Bacardit J, Llorà X (2013) Large-scale data mining using

genetics-based machine learning. Wiley Interdiscip Rev

Data Min Knowl Disc 3(1):37–61.

0.114 0.1102
0.1016 0.0976

0.086

0

0.05

0.1

0.15

1 5 10 15 20

0.1146
0.1016

0.086

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

BDAM PCM (10 hubs) PCM (20 hubs)

4.9508

8.443

11.885
13.245

0

2

4

6

8

10

12

14

16

5 10 15 20

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.12, September 2016

35

[2] Chang EY, Bai H, Zhu K (2009) Parallel algorithms for

mining large-scale rich-media data. In: Proceedings of

the 17th ACM International Conference on Multimedia.

ACM, New York, NY, USA. pp 917–918.

[3] Dean J, Ghemawat S (2008) Mapreduce: simplified data

processing on large clusters. Commun ACM 51(1):107–

113.

[4] White T (2012) Hadoop: The Definitive Guide. "

O’Reilly Media, Inc.", California.

[5] Venner J, Cyrus S (2009) Pro Hadoop. vol. 1. Springer,

New York.

[6] Lam C (2010) Hadoop in Action. Manning Publications

Co., New York.

[7] Chu C, Kim SK, Lin YA, Yu Y, Bradski G, Ng AY,

Olukotun K (2007) Map-reduce for machine learning on

multicore. Advance neural Info processing systems

19:281.

[8] Kearns M (1998) efficient noise-tolerant learning from

statistical queries. J ACM (JACM) 45(6):983–1006.

[9] Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I,

Leiser N, Czajkowski G (2010) Pregel: a system for

large-scale graph processing. In: Proceedings of the 2010

ACM SIGMOD International Conference on

Management of Data. ACM, New York, NY, USA. pp

135–146.

[10] Bu Y, Howe B, Balazinska M, Ernst MD (2010) Haloop:

Efficient iterative data processing on large clusters. Proc

of the VLDB Endowment 3(1-2):285–296.

[11] Ekanayake J, Li H, Zhang B, Gunarathne T, Bae SH, Qiu

J, Fox G (2010) Twister: a runtime for iterative

mapreduce. In: Proceedings of the 19th ACM

International Symposium on High Performance

Distributed Computing. ACM, New York, NY, USA. pp

810–818.

[12] Agarwal A, Chapelle O, Dudík M, Langford J (2014) A

reliable effective terascale linear learning system. J Mach

Learn Res 15:1111–1133.

[13] Zaharia M, Chowdhury M, Das T, Dave A, Ma J,

McCauley M, Franklin MJ, Shenker S, Stoica I (2012)

Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In: Proceedings of the

9th USENIX Conference on Networked Systems Design

and Implementation. USENIX Association, Berkeley,

CA, USA. pp 2–2.

[14] Rosen J, Polyzotis N, Borkar V, Bu Y, Carey MJ,

Weimer M, Condie T, Ramakrishnan R (2013) Iterative

mapreduce for large scale machine learning. arXiv

preprint arXiv:1303.3517.

[15] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Commun. ACM, vol. 51,

no. 1, pp. 107–113, 2008.

[16] Y. Freund and R.E. Schapire, “A Decision-Theoretic

Generalization of On-Line Learning and an Application

to Boosting,” J. Computer and System Science, vol. 55,

no. 1, pp. 119-139, 1997.

[17] J. Friedman, T. Hastie, and R. Tibshirani, “Additive

Logistic Regression: A Statistical View of Boosting,”

The Annals of Statistics, vol. 38, no. 2, pp. 337-407,

2000.

[18] J. K. Bradley and R. E. Schapire, “Filterboost:

Regressionand classification on large datasets,” in NIPS,

2007.

[19] G. Escudero, L. M`arquez, and G. Rigau, “Boosting

applied toe word sense disambiguation,” in ECML, 2000,

pp. 129–141.

[20] R. Busa-Fekete and B. K´egl, “Bandit-aided boosting,”

in Proceedings of 2nd NIPS Workshop on Optimization

for Machine Learning, 2009.

[21] G. Wu, H. Li, X. Hu, Y. Bi, J. Zhang, and X. Wu,

“Mrec4.5: C4.5 ensemble classification with map-

reduce,” in ChinaGrid, Annual Conference, 2009, pp.

249–255.

[22] B. Panda, J. Herbach, S. Basu, and R. J. Bayardo,

“Planet: Massively parallel learning of tree ensembles

with mapreduce,” PVLDB, vol. 2, no. 2, pp. 1426–1437,

2009.

[23] A. Lazarevic and Z. Obradovic, “Boosting algorithms for

parallel and distributed learning,” Distributed and

Parallel Databases, vol. 11, no. 2, pp. 203–229, 2002.

[24] W. Fan, S. J. Stolfo, and J. Zhang, “The application of

adaboost for distributed, scalable and on-line learning,”

in KDD, 1999, pp. 362–366.

[25] S. Gambs, B. K´egl, and E. A¨ımeur, “Privacy-

preserving boosting,” Data Min. Knowl. Discov., vol. 14,

no. 1, pp. 131–170, 2007.

[26] R. E. Schapire and Y. Singer, “Improved boosting

algorithms using confidence-rated predictions,” Machine

Learning, vol. 37, no. 3, pp. 297–336, 1999.

7. AUTHOR PROFILE
Umesh D R completed his Engineering from PES College of

Engineering Mandya, Masters from NIE Mysore, presently

pursuing Ph.D. from University of Mysore, Mysore. Working

in PES College of Engineering Mandya from 2005.

Dr.B.Ramachandra working as Professor and Head in

Department of Electrical & Electronics, PES College of

Engineering Mandya. He had his Ph.D. From Indian Institute

of Science, Bangalore, Master’s from Indian Institute of

Technology, Bombay.

IJCATM : www.ijcaonline.org

