
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.2, September 2016

13

Late-Materialization using Sort-merge Join Algorithm

Nachiket Deo
Department Of

Information Technology,
Savitribai Phule
Pune University.

ABSTRACT

In this paper, we study the use of Late-materialization for

sort-merge join algorithm. We study various effects of using

this strategy and also compare it with other techniques like

pipelining.

General Terms

Databases, Query processing, Join algorithm.

Keywords

Sort-Merge Join, Materialization.

1. INTRODUCTION
Query processing is very important part in databases. Several

queries are fired on the database during an application life-

cycle. In this paper we will be dealing with Read-Only

queries. This includes queries including SELECT statement,

Aggregation queries and Joins. As the title suggests, we will

be mainly dealing with Joins. Application developer mainly

needs to understand the business goal and then create various

queries to satisfy the various that goal. From developer’s

perspective the joins that are used are INNER, OUTER joins

and there sub-types. The aim of this paper is not to study these

joins. The internal mechanisms that query processor uses are

as follows:

1) Nested-Loop Join.

2) Hash-Join.

3) Sort-Merge Join.

2. LATE MATERIALIZATION
In a particular query plan, various tables are accessed. The

process of accessing several columns to create a record is

known as tuple creation. Creation of tuples based on the

information present in the query plan is known as

materialization. In a query plan tuple is created if the join

condition is satisfied. The process where the tuples (where

join condition is satisfied) are stitched together as soon as

possible during a query plan is known as Early

materialization. The process where the tuples aren’t created

until some part of the query plan is processed (apart from the

checking of the join condition) is termed as Late-

materialization [1]. It generally is the operation specified in

the WHERE condition of a query. This process is useful

because it saves the CPU from performing operation of

joining the unnecessary tuples [3].

.

Figure 1: Column-Store

The underlying database system which is under consideration

is column-store. As shown in above figure for a particular

relation data is stored in form of columns in contrast to row-

store. So here the information about a particular attribute is

placed in single column and hence, any query that needs to

access specific column only needs to access that particular

column rather than whole table [2][4].

3. SORT-MERGE JOIN

3.1 Normal Sort-Merge Join Algorithm
Let R and S be the join attributes. Let’s assume that the

attributes are sorted in ascending order.

Let pr be the address of the first tuple of r.

Let ps be the address of the first tuple of s.

WHILE (ps!= NULL AND pr != NULL) do

BEGIN
ts be the tuple to which ps points .

WHILE (ps!= null)

Let ts’ points to the next tuple of s.

IF ts[attribute]=ts’[attribute] then

BEGIN
S:-(S U ts’)

Let ts point to tuple next to ts’

END END.

Let tr point to the tuple which pr points.

WHILE (pr = null and tr [JoinAttrs] < ts [JoinAttrs])

DO

BEGIN
set pr to point to next tuple of r;

tr := tuple to which pr points;

END

WHILE (pr = null and tr [JoinAttrs] = ts [JoinAttrs])

DO

BEGIN

FOR EACH ts IN Ss

DO

BEGIN

add ts _ tr to result;

END

set pr to point to next tuple of r;

tr := tuple to which pr points;

END

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.2, September 2016

14

3.2 Partial Late Materialization
Executing the following query which includes two table T,R

Query 1:SELECT T.A,T.B,R.B’

FROM T JOIN R ON (T.A=R.A’)

WHERE A>5 AND B<50 AND C’<35

Figure 2 Query Tree for LM-Join (Query 1)

In Query 1, the query first applies the predicates to the

columns as specified in the query plan.(Refer to figure 2) In

the first leaf of the left sub tree the predicate is applied on the

A columns of the T table. Similarly other predicates are

applied to B. Similarly the same procedure is performed for

the right sub tree. On upper level of the sub tree values are

projected. As T.A is our join attribute and also required by the

user in final output it is projected. Similarly B is projected.

However the T.A’ is also projected along with C’ in the right

sub tree, because it is the join attribute for the R table. In the

next step the T.A and T.B columns in left sub tree are joined.

For right sub tree something different happens. The R.B’

column is not joined similar fashion. As you can see that

R.A’ column is projected after applying the condition c<35.So

for the tuples which satisfy that conditions the respective

values of R.B’ column are retrieved. This process is called

anti-projection or tuple reconstruction. Above process is

partially late-materialized because the tuples are formed

before the joining the two tables but these intermediate tuples

are formed after we have applied the predicates. This is a

technique is where we can employ Late-materialization

without any re access of columns and also the internal join

algorithm that can be used is sort-merge join. Now, as you can

see that when the join over T.A and T.B columns is performed

the value of T.A is also projected. This T.A column is used as

a join attribute for sort-merge join algorithm. Using this

technique there are lesser number of tuples or only the

relevant tuples are joined during the final join operation. In

the figure 2 at first level of the query tree (that is the position

where join over T.A attribute is performed) there are tuples

which satisfy the predicates. This is helpful when joining the

two tables on the upper level because only relevant tuples are

joined and the cost involving the unnecessary joining of tuples

is avoided. If the memory is big enough to hold relations

while performing the join the disk access is avoided. This

makes usage of sort-merge join a good choice.

3.3 Normal SELECT queries
In above section the query under consideration includes

joining two tables. This section there’s query that involves

only single table. Similar to above section, the query will be

SELECT statement and won’t involve Insertion or updating

the records. Table under consideration is Order which has

order_id as primary key.

Query 2:

SELECT amount, ship date,item FROM Order WHERE

Amount>5000 AND ship date <CONST.

In above query ship date is some constant. The underlying

system is column-store so it will contain four columns,

Amount, ship date, order_id ,item which are necessary for this

particular query. Other columns might be there but as they are

unnecessary for this query so column-store avoids the access

to these columns.

Figure 3 Query plan for Query 2

In column-store, relations contain many different columns

which are stored at separate memory locations and that too

contiguously. So for a particular query, it has to access more

than one column in a table. The above query has to apply

predicate on two columns and then project the third column.

Here primary key also plays crucial part. For each record there

will be order_id and it can be used to point to a particular

record. So after applying predicate the order_id is projected as

well. Using order_id sort-merge join is performed and result is

the relation which satisfies both predicates. After that step

query needs item column. So again anti-projection is

performed and for the tuples that satisfy the predicates we

query the respective values from item column. Due to

column-store structure it’s possible to join various columns

from a table internally [2] [3].

3.4 Full Late Materialization
The most widely used way to implement late-materialization

is by using position list. It’s highly compressible data

structure which stores the positions of the records which

satisfy the predicates. Furthermore, position lists are created

for other columns as well. The bitwise AND (or any other

Boolean operation specified in the Query plan) is performed

on the position lists. The final position list which satisfies all

the predicates in used to re access the original columns and

the final joining operation is performed. Once such algorithm

is invisible join [2]. In this type the intermediate tuples are not

formed because the predicates are applied on the position-lists

rather than actual columns [1].

3.5 Applications in Row-Store
The above mentioned approaches are designed for column-

store. Late-Materialization can have significant benefits for

row-store in few cases. During a Join operation partial late-

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.2, September 2016

15

materialization can be useful because fewer tuples will be

joined during the final join operation. However, late

materialization cannot be implemented for normal SELECT

queries due to the internal layout of row-store.

4. CONCLUSION
1. Partial Late Materialization can be used to avoid re

accessing the columns.

2. If columns need to be accessed from the disk sort-

merge join algorithm is better because it only

accesses the columns once.

3. Partial late-materialization can increase the number

of join operation performed in a query plan.

4. For column-store late-materialization can give

better performance for SELECT queries

5. FUTURE SCOPE
There’s need to develop a query processor that provides the

functionality of late-materialization. Test the use of late-

materialization for Row-store. Testing whether Late-

materialization is useful for all types of queries.

6. ACKNOWLEDGMENTS
We thank Mr. Prashant Patil for helping in editing work.

7. REFERENCES
[1] Daniel J. Abadi ,Daniel S. Myers, David J. DeWitt,

Samuel R. Madden. Materialization Strategies in a

Column-Oriented DBMS. Proceedings of ICDE 2007,

Istanbul, Turkey.

[2] Daniel J. Abadi, Samuel R. Madden, Nabil hachem.

Column-Store vs Row-store How different are they

really? SIGMOD’08, June 9–12, 2008, Vancouver, BC,

Canada

[3] Daniel Abadi,PeterBoncz,Stavros Harizopoulos, Stratos

Idreos, Samuel Madden The Design and implementation

of modern column-oriented database.

[4] A Common Database Approach for OLTP and OLAP

Using an In-Memory Column Database Hasso Plattner

Hasso Plattner Institute for IT Systems

EngineeringUniversity of Potsdam

IJCATM : www.ijcaonline.org

