
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

26

Protection Web Applications using Real-Time Technique

to Detect Structured Query Language Injection Attacks

Nabeel Salih Ali
Information Technology Research and

Development Center
University of Kufa

Al-Najaf, Iraq

Abd Samad Shibghatullah
Faculty of Information and Communication

Technology
University Technical Malaysia Melaka

Melaka, Malaysia

ABSTRACT

At present, Web applications have been used for most of our

life activities increasingly, and they affected by Structured

Query Language Injection Attacks (SQLIAs). This attack is a

method that attackers employ to impose the database in most

of the web applications, by manipulate SQL queries, which

sent to the Relational Database Management System

(RDBMS). Hence, change the behavior of the applications. In

This paper, developing Web Application SQLI Protector

(WASP) tool in real-time web application to detect SQL

injection attacks in stored procedures. Then, evaluated and

analyze the developed tool respect to efficiency and

effectiveness in practices. The propose technique uses real-

time based on positive tainting, accurate and efficiency taint

propagation, and syntax aware evaluation of the query strings

at the application level to detect illegal queries before they

reach at the database by using Microsoft ASP.NET. The

developed tool effective due to it capable of detect and stop

all SQLI attacks in real-time environment and did not

generate any false negative, a few-false positive values in the

results and impose minimal deploy requirements.

General Terms

Security, Approaches, Web attacks, WWW, Web of Things.

Keywords

Web applications, SQL Injection, Detection, WASP,

Techniques

1. INTRODUCTION
Nowadays, the Internet is becoming a wide-spread

information infrastructure. Whereas, web applications have

become the most adequate way to offer access to online

services via the Internet [1]. Web applications are becoming a

widely pervasive in all kinds of Commercial, corporate

businesses, institutions, organizations, numerous financial

transactions and other Internet-based services [2]. They often

stored valuable and confidential information, which making

them a good target for penetration threats that may be

achieved by database injection [3]. If an unauthorized user can

gain the sensitive information by send malicious code and

caused downtime and damages for the services [4]. Thus,

security has become one of the main challenges in the recent

years because most of the Web applications have suffered

from vulnerabilities that have made them attractive targets of

security attacks [5]. However, it is importance to provide the

protection of the web applications from the targeted SQLIAs

[6]. Structured Query Language Injection attack (SQLIA) is

most common and damaging for online services via web

applications. This attack takes the benefit of trust existing

between the users and server as well as, take the feature of

absence of the input/output validation on the server to reject

malicious codes [7]. Furthermore, SQLI is a technique that

threats a database layer of the web application due to

occurring security vulnerability of an application. It is the

kind of attack that takes the advantages of incorrect coding via

an application [8]. Indeed, SQLIA categorized as one of the

top 10 web application vulnerabilities in 2013 experienced by

Web applications according to Open Web Application

Security Project (OWASP) [9]. SQLIAs is prevalent and

dominant classes of serious web application attacks. Hence,

could give crafter easily illegal access to the underlying

database in web application, Thereby, gain full control of the

system caused loss amounts to millions of dollars for

corporations. Stored procedures are sub-routines or

collections of SQL queries or statements stored within the

database that resides in the RDBMS [10]. Stored Procedures

(SP) are an important part of modern-day web applications

and stored on the server side that they can be available to all

clients [11]. Moreover, stored procedures SQL injection

attack is one of the serious attacks that posed database threats

in the underlying database that underlie web applications.

Whereas, the attack can be crafted to execute stored

procedures that provided by a particular database,

encompasses procedures that deal with the operating system

[12].

This research focuses on the analysis and resolution of the

problem SQL injection attacks to detect these attacks in real

environment via the concept of dynamic positive tainting and

syntax-aware evaluation of web application to develop a real-

time technique. The main contributions of this research study

are: develop WASP tool that has been proposed by Halfond,

2008, to detect the attacks of SQL injection in real-time web

applications, evaluate the results accuracy of the propose

technique based on the standard performance metrics (false

negative, and false positive) as well as, perform the evaluation

of the technique effectiveness in practices based on

effectiveness metrics. The rest of this paper is organized as

follows: In section2, introduces the problem statement of the

research. Section3 reviews and discuss the works that have

been done to address a particular attacks. Provide a clearly

description for the propose design in section4. Implementation

and testing of the propose tool will be presented and discussed

in section5. Section6 presents the empirical evaluation and

analysis for the propose tool. And finally, conclude and

outlines the future scope will be provided in section7.

2. PROBLEM STATEMENT
SQLIAs are a threat to the security and privacy of both the

clients and the applications. Web applications are frequently

vulnerable to SQLI attacks due to poor in design,

configuration faults, or weakness written code of the web

applications [4]. Hence, these flaws can used by terrorists to

collect private data and obtain illegal access to the target [13].

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

27

Furthermore, stored procedures are a significant section of

modern era web applications [11]. Stored procedures SQL

injection attack is one of the serious attacks that posed

database threats in the underlying database that underlie web

applications. Whereas, the attack can be crafted to execute

stored procedures. Typically, system stored procedures are

written in SQL, and it stored on the server side. Hence, they

are available to all clients. So, when stored procedure is

modified, then all clients can get the new version

automatically [14].

This research work focuses on detection in SQLI attacks

includes stored procedures attacks in real time environment.

After carefully analyzing the type of the SQLI attacks in such

a scenario, and read previously proposed approaches and

techniques. noticed in a WASP tool that proposed by Halfond

et al. 2008, to prevent SQLIA's, and shown the great level of

effectiveness over the existing methods during its evaluation

using data sets at the simulation level as well as, those are not

yet tested in the real time environment. Moreover, WASP

developed by Medhane.2013 to detect SQLIAs exclude stored

procedures. Therefore, propose to develop a WASP tool in

order to detect stored procedures SQLIAs under real time

settings.

3. PREVIOUS WORKS
Web applications are becoming a widely pervasive in all

kinds of Internet-based services in the recent years [2]. Thus,

security is becoming one of the major concerns for

applications. Hence, it is importance to provide the protection

of the web applications from the targeted SQLIAs [6].

Authors have been proposed a wide range of the techniques to

address the problem of SQLIA. These techniques for

detecting and preventing SQLIA range from filtering,

information- flow analysis, penetration testing, development

best practices and defensive coding to a fully automated

framework. Some of the proposed techniques used to solve

SQLIAs required security awareness of the user, which cannot

be guaranteed. Moreover, some of the existing solutions are

unacceptably slow and can be bypassed. Some are too

restrictive, resulting in loss of functionality [12].

Wei et al.2005 [15], presented a stored procedures detection

tool that used a static analysis of the stored procedure source

as a one-time offline procedure via the form of a SQL-graph.

But, Limited in terms of developing a complete

implementation of the proposed architecture to extend the

prototype. SAFELI tool proposed by Lu et al. 2007[16],

which capable of discovering very delicate vulnerabilities by

taking advantage of source code information. The drawbacks

of this tool illustrate via the tool automatically enumerated

SQL WHERE clauses by exploring algorithms and does not

complete the implementation. As well as, Halfond et al,

2008[17], they conducted WASP tool which efficient and

effective in stopping more than 12,000 attacks without

generating any false positives. Whilst, the limitations can be

found via implemented the approach for the binary

applications and deployed web applications. On the other

hand, SQL-IDS tool presented by Kemalis and Tzouramanis,

2008[18]. The query-specific detection approached efficient

because it stopped the attacks without producing false

positives or false negatives. But, limited to identify and check

sources and sinks are subject to input validation, and flow-

sensitive. In 2009, Kie et al. [19], proposed ARDILLA tool

that stronger in Detected real attacks in SQLI and XSS.

Whilst, ARDILLA can be created only for PHP script as

inputs at a time and cannot simulate sessions are the

drawbacks for ARDILLA. In addition to, R-WASP tool that

conducted by Medhane, 2013[20]. The R-WASP capable to

stop all attacks effectively. But it required more practices in

order to mitigate stored procedures attacks efficiently.

Most of the detection tools such as: stored procedures [15],

SAFELI [16], WASP [17], SQL-IDS [18], ARDILLA [19],

were detected stored procedures SQLIAs. Whilst, only R-

WASP [20] the proposed approach that did not detect stored

procedures. On the other hand, only two detection tools,

namely, SQL-IDS [18], and Real Time-Web Application SQL

Injection Detector and Preventer (R-WASP) [20] are detected

SQLIAs in real-time environment.

Furthermore, stored procedures [15], WASP [17], were based

on combined static and dynamic analysis. The combination,

which is considered highly proficient against SQLIAs, but

very complicated. Whereas, SAFELI [16], and SQL-IDS [18]

are two of the proposed approaches based on static analysis

that analyses the code for vulnerability without actually

executing the code. But, only ARDILLA [19] based on

systematically dynamic taint analysis. The destination from

this research paper, to develop a WASP tool in real-time

settings in order to detect the attacks of SQLIAs includes

stored procedures via the concept of dynamic positive tainting

and syntax-aware evaluation of web application.

4. PROPOSE TECHNIQUE

DEVELOPMENT (MATERIALS AND

METHODS)
In this section, present and describe the proposing system or

technique design, design requirements, and methods in order

to, develop technique or Real-Time Web Application SQLI

Protector (RT-WASP) tool to detect and stop SQLIAs include

stored procedures attack.

4.1 Propose System or Technique Design

(Modeling)
After identified, the various obstacles and factors for the

studies and works (approaches or techniques) that have been

done in related works that mentioned in Section3 that would

be encountered will lead to be build more successful

technique in many aspects of proposed develop technique to

address the problem of SQLIAs. To evaluate the performance

of the existing methods or techniques that have been

proposed, select two of the existent techniques that closed to

my technique and the existing work that tried to solve more

than one type of SQL injection attacks. These are some

limitations in their proposed systems as shown in Table 1.

Table 1. Performance of The Existing Techniques

Author,

Year
Tool

Stored

procedur

es

SQLIAs

Rest of

SQLIAs
Real-Time

Halfond et

al, 2008
WASP

Medhane

,2013
R-WASP

Propose

Technique
RT-

WASP

According to Halfond et al. 2008, proposed an approach in

order to mitigate and encounter from the attacks of SQL

injection web applications that depending on positive tainting

via WASP tool at runtime. On the other hand, Medhane, 2013,

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

28

presented a technique to detect SQL injection attacks in real

time web application. Therefore, the propose method to detect

the danger of SQLIAs is to develop WASP tool in real-time

environment.

4.2 Propose Design Requirements
In this section, describes clearly all the requirements that

necessary for the system development to detect SQLIAs. It

deals with explain in details about Software and Hardware

requirements.

4.2.1 User Interface
User Interface (UI) that required for the interaction between

the user and the system.

4.2.2 Hardware Requirements
Processor: - P-IV– 0.5 GHz to 3.0 GHz

RAM: - 1GB

Disk: - 20 GB

Monitor: - SVGA

Mouse: - Two or three bottom Mouse

Keyboard: - Standard Windows Keyboard.

4.2.3 Software Requirements
Operating System: - Windows 7/XP

Development End: - ASP.NET (with C#

Programming language)

Web Technology: - HTML, ASP.NET, and CSS

IDE: - Microsoft ASP.NET

Database Server: - SQL Server 2008 R2

4.3 Propose Method to Develop Technique
The first goal of the planned system was to extend.

Furthermore, to develop an extremely automated technique

against SQL injection attacks that is ready to stop access, and

report injection attacks before queries reach the database and

performing any damage for sensitive information. Figure1

provides an overview of the propose technique. The propose

tool would automatically transform the web application into

web application that is semantically equivalent to protect from

SQL injection attacks. Likewise, require to evaluate the

propose tool under the real time environment. The proposed

technique or tool is called a Real Time Web Application SQLI

Protector (RT-WASP).

Fig 1: Propose RT-WASP Tool

The RT-WASP tool aims to check if the web pages or

websites and web applications have any in danger to the

SQLIAs via scanning the web page by URL based on SQLI

error queries and SQLI keywords to find out if a site is

vulnerable to SQLI. Furthermore, the site can be injected by

using the SQLI keywords.

5. IMPLEMENTATION AND TESTING
In this section, describes the methods, and implementation of

the proposed technique or RT-WASP tool, and presents the

testing results of the RT-WASP tool with set of websites or

web applications online.

5.1 Implementation
The RT-WASP aims to check if the web pages or websites

and web applications have any vulnerable to the SQLIAs via

scanning the web page by URL based on SQLI error queries

and SQLI keywords to find out if the site in danger to SQLI as

well as, the site can be injected by using the SQLI keywords.

Fig 2: RT-WASP Implementation

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

29

Figure 2, shown the detection technique that used for server-

side script manipulation via sending queries to the database

source RDBMS. The injection process can be done by

manipulating client-side data that sent are encompassed

changing the SQL values and concatenations of the SQL

statement to the web server embedded in HTTP requests. The

scanning process or scanning steps to implement RT-WASP

tool to detect the attacks of SQLI are included: first step to

check HTTP request that sent from set of online websites or

web applications by checking the page extension for each

URL page, next step will be conducted to check whether, SQL

statement or query has any vulnerable to the injection attack

that can be done by SQLIA detector that encompasses two

mechanisms of checking to perform the detection of SQLIA

for each query. These mechanisms are: checking the injection

point if any that achieved by SQL lexical analyzer or SQL

parser to check the syntax aware evaluation of the query string

before sent to DBMS. The next checking will perform

checking probability of the injection by literal validator that

perform to check whether, the web applications or web sites

are possible to inject data keywords. After SQLIA detector

decide whether, the query is benign or malicious, legitimate

query will transfer data to DBMS. Finally, the tool reported

the come out from the scanning process as a report presents

all the information regarding to the web page such as: page

URL, injection point, injection probability, and the time taken

to complete the scan process.

5.2 User Interface (Application)

Fig 3: RT-WASP User Interface (UI)

The user interface of the RT-WASP tool contains one User

Interface (UI) page with several parts can explain

respectively: In the top of the UI has the name of the tool and

close, and minimize buttons. “Website address” is the next

part in UI that is a text box to insert or put URL of a page to

do scanning or checking to the particular page when put URL

in “select website”. There are two buttons in the top right of

the tool UI that is: “Start Scan” to implement the process of

scanning and “Exit” to close the UI of the tool. Last part

regarding to scan report that present in a grid view all

information of the scanned page results. These results

included: injection point if any and weakness in sensitive

information as well, the probability injection of the page. In

addition to, displayed the completing state of the scanning

process and the time taken in the scan process. From the

“Scan Report” part, can get two values that are “True” and

“False” that are denoted to weakness in sensitive information

as a result from the checking of the injection point if any, as

well as, the probability of the injection that referred to the

vulnerability point of the particular page in the web site and

the possibility of the injection. As we shown have in Figure 3.

5.3 Testing
In order to, evaluate the efficiency and the effectiveness of the

propose technique or (RT-WASP) tool using several different

criteria. Firstly test RT-WASP tool with twenty cases

(websites pages) in order to, evaluate the RT-WASP tool by

test each website page via put the page URL in the “website

address” text box and click on “start scan” button in the UI of

the tool as shown in Figure 3, to list the real results that came

out from the proposed attack detection tool. On the other

hand, examines all the website pages by send error query to

check the predicated or expected results from the attacks, and

then, compared with the actual results that came out from the

tool end that can be shown in scan report grid view in the UI

for the RT-WASP tool.

From the purpose of the testing, divided the tool testing table

into two groups: expected result and the actual result. Each

group have two subgroups: weakness in sensitive information

and injection probability. From the perspective of expected or

predicated result, weakness in sensitive information in the

web pages URL, and the injection probability of the web page

URL can be examined by, send error query keywords. From

the perspective of actual result, weakness in sensitive

information in the web page URL can be checked by the

injection point if any by RT-WASP tool. Furthermore,

checking the probability of the injection also by using

proposed tool, and listed the time cost of the technique testing.

Used different types of markings to indicate the come out

from the tool or the technique in the actual result. The symbol

“T” denotes that the technique or tool has one of the

weaknesses in the sensitive information, conversely. The

symbol “F” denotes that the technique or tool does not have

any weakness in the sensitive information and so on so forth.

As we see in Table 2.

Table 2. Testing of RT-WASP Tool

T
est C

a
se N

o
.

Expected Result Actual Result

Protocol

Overhead Injection

point

Injection

probabili

ty

Injection

point
Injection

probability

TC1 T T T T 25004 Ms

TC 2 T T T T 11969 Ms

TC 3 T T T T 7267 Ms

TC 4 T T T T 25003 Ms

TC 5 T T T T 25005 Ms

TC 6 T T T T 25003 Ms

TC 7 T T T T 25004 Ms

TC 8 F F F F 49999 Ms

TC 9 T F T F 3631 Ms

TC 10 T T T T 50006 Ms

TC 11 F F T T 25004 Ms

TC 12 F F F F 13817 Ms

TC 13 T T T T 5367 Ms

TC 14 F F F F 24461 Ms

TC 15 F F F F 25004 Ms

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

30

TC 16 T T T T 3041 Ms

TC 17 F F F F 4768 Ms

TC 18 T T T T 25004 Ms

TC 19 T F T F 10764 Ms

TC 20 F F T F 25014 Ms

Several points can be addressed from the testing results of the

proposed RT-WASP tool via real time settings. Most of the

tested websites have weaknesses in their sensitive information

and the probability of the injection in their results. Whereas,

fifteen sites that have lack with their sensitive data or injection

point can be found in TC1-TC7, TC9-TC11, TC13, TC16, and

TC18-TC20. Whilst, twelve sites have weaknesses in their

injection probability results such as, TC1-TC7, TC10, TC11,

TC13, TC16, and TC18. On the contrary, a few tested sites

did not have weaknesses in their sensitive data or injection

points for instance, TC8, TC12, TC14, TC15, and TC17.

Furthermore, eight sites that tested were did not have lacks in

their injection probability results such as,TC8, TC9, TC12,

TC14, TC15, TC17, TC19, TC20. Whilst, five only of the

websites tested did not have any weakness in the sensitive

information and the injection probability are, TC8, TC12,

TC14, TC15, and TC17.

6. EVALUATION AND ANALYSIS
In this section, evaluate the efficiency and effectiveness of the

technique or (RT-WASP) tool using several different criteria.

First, consider the technique efficient by evaluating with

performance metrics (false negative, and false positive). Then,

evaluate the effectiveness of the technique by examine the

proposed technique based on capable the technique detected

the attacks and can check the probability of the SQLIA.

6.1 Evaluation Based on Performance

Metrics
To evaluate the efficiency of the detection technique or tool,

two standard performance metrics can be used to examine

RT-WASP detection technique against SQLIAs. These

metrics are: False Negative: How many SQLIAs can go

undetected by this technique? False-Positive: How many

legitimate SQL queries are assessed as SQLIA and blocked?.

Both the false negative and false positive metrics are very

important in measuring the effectiveness of the security

mitigation for the detection technique. Evaluate proposed

technique to assess whether, the technique or tool is efficient

via comparing of the performance technique based on the

standard performance metrics (false negative, and false

positive) and on the empirical evaluations in practices

between the predicated or expected and actual results. From

the expected result, the author examined each website page

for weakness in sensitive information (injection point) and

injection probability by send error query keywords. On the

other hand, from the actual result standpoint, the result will be

gotten from testing the proposed tool to the same purpose.

For the comparison point, divides the comparison table into

two groups: expected result and actual result. Expected result

has two subgroups: false negative, and false positive. Table 3

summarizes the performance metrics evaluation of the

precision in practices. Moreover, use two different types of

markings to indicate the technique performance. The symbol

“” denotes that the web application or website has one of the

metrics of that type of result. Conversely, the symbol “”

denotes that a web application or website does not have any

metrics of performance.

From the accuracy standpoint, Intent to assess each of the

websites with respect to their precision (accuracy) results

based on the performance metrics (false negative and false

positive) for the predicated and actual results. Each of the web

application or website had different results, to evaluate the

precision of the results for each website based on predicated

and actual results. Then, evaluates each web application or

websites with respect to the criteria.(1) Does the website have

any false negative in the testing result when comparing with

their predicated or actual results? (2) Does the technique have

any false positive in the result and throughput when

comparing with the predicated results? The answers for these

questions are summarized in Table 3.

Table 3. Comparison of The Results Based on

Performance Metrics

Test

case(TC)

No.

Expected Results Actual Results

False

Negative

False

positive
False

Negative
False

positive

TC1

TC2

TC3

TC4

TC5

TC6

TC7

TC8

TC9

TC10

TC11

TC12

TC13

TC14

TC15

TC16

TC17

TC18

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

31

TC19

TC20

The technique or RT-WASP tool has only two false-positive

values in the results, which are: TC11 and TC20. On the

contrary, the technique did not have any false-negative values

in the results. The technique can detect all the SQLIAs in the

websites. The technique has all most of the websites that are

remarkable accuracy, which means that these do not have any

false negative and false positive values in the implementation

and testing.

The evaluation results for the efficiency measurement (result

precision) based on the comparison results between the

technique results and the practical results for the standard

performance metrics (false negative and false positive) can

illustrate the technique have a few false positive, none of the

false negative values, and can be protected all the websites or

web applications against the SQLIAs in the implementation.

However, the effectiveness of the technique needs to be

measured via comparison based on other criteria prior to the

conduct of the technique effectiveness evaluations.

6.2 Evaluation Based on Effectiveness

Metrics
The technique or RT-WASP tool has different characteristics

in relation to the effectiveness metrics. To determine the

effectiveness metrics that required in technique. First,

evaluate the technique with respect to the following criteria,

(1) can the technique detect the SQLIA? (2) Can the technique

examine the probability of the SQLIA if any?. The answers to

these questions are summarized in Table 2, and Table 3.

From the detection standpoint, the technique or tool could

effectively detect all the websites or web applications of the

SQLIA. As shown in Table 3. Furthermore, the technique

could effectively have examined or checked all the web

applications or websites in terms of the probability of the SQL

injection. As had shown in Table 3.

Finally, can conclude that the technique is capable to detect

the attacks of the SQLI in all websites or web applications

effectively. Additionally, the technique is capable of

examined or checked the probability of the injection in all

websites effectively.

7. RESULTS AND DISCUSSION
From the perspective of RT-WASP tool evaluation results.

Based on the evaluation results of the technique or tool that

evaluated in evaluation section (section6) in order to, identify

the efficiency and effectiveness of the proposed technique, the

proposed technique can be efficient and effective respectively.

For the efficient standpoint, because the proposed technique

has few false positive and did not have any false negative

values in their testing results, and incurs a negligible

performance overhead. Whilst, from the effective standpoint,

because the technique can detect the attacks and checked

whether, the websites or web applications are vulnerable to

the injection attacks.

8. CONCLUSION AND FUTURE WORK
Recently, web applications have been used for most of our

activities in our life. Web applications are affected by the

attacks of SQL injection. Stored procedures SQL injection

attack is one of the serious attacks that posed database threats

in the underlying database that underlie web applications.

Whereas, the attack can be crafted to execute stored

procedures that provided by a particular database,

encompasses procedures that deal with the operating system.

In This paper, developed WASP tool in order to, build a

suitable real-time web application (RT-WASP) tool to detect

SQL injection attacks in stored procedures. Then, evaluated

and analyzed the developed tool respect to, efficiency and

effectiveness of the technique in practices.

In the evaluation, Firstly, evaluated the proposed technique

respect to the efficiency based on false negative, and false

positive values in the results, whereas, the evaluation metrics

for the effectiveness of the proposed technique is the

capabilities to detect the serious of the attacks and can

examined or checked the injection probability or checked the

websites vulnerabilities. From the proposed technique

evaluation end, the technique can be efficient and effective

respectively.

As a part of the future study, intend to focus on two

immediate goals for future scope. The first goal is, to further

improve the performance of RT-WASP tool or technique. To

this end, plan to extend proposed tool (RT-EASP) to

encompass both of SQLI and XSS attacks in the web

applications. The second goal is, to ensure the effectiveness of

our technique. To this end, plan to develop proposed tool to

perform the detection and prevention of SQLI and XSS stored

procedures.

9. REFERENCES
[1] R. Shrivastava, J. Bhattacharyji, and R. Soni, “Sql

Injection Attacks In Database Using Web Service :

Detection And Prevention – Review,” vol. 6, pp. 162–

165, 2012.

[2] M.Prabakar, M.KarthiKeyan, and K. Marimuthu, “An

Efficient Technique For Preventing Sql Injection Attack

Using Pattern,” 2013 IEEE Int. Conf. Emerg. Trends

Comput. Commun. Nanotechnol. (ICECCN 2013) AN,

vol. 978–1–4673, no. Iceccn, pp. 503–506, 2013.

[3] W. G. J. Halfond, S. R. Choudhary, and A. Orso,

“Improving penetration testing through static and

dynamic analysis,” Softw. Testing, Verif. Reliab, vol. 21,

no. 3, pp. 195–214, Sep. 2011.

[4] D. A. Kindy and A. K. Pathan, “A Detailed Survey on

Various Aspects of SQL Injection in Web Applications :

Vulnerabilities, Innovative Attacks, and Remedies,” pp.

1–13, 2012.

[5] N. S. Ali, A. S. Shibghatullah, and M. H. A. L. Attar,

“Review Of The Defensive Approaches For Structured

Query Language Injection,” vol. 76, no. 2, 2015.

[6] E. Athanasopoulos, A. Krithinakis, and E. P. Markatos,

“An Architecture for Enforcing JavaScript

Randomization in Web2. 0 Applications,” Springer-

Verlag Berlin Heidelb. 2011, vol. M. Burmest, no. ISC

2010, LNCS 6531, pp. 203–209, 2011, pp. 203–209,

2011.

[7] A. K. Baranwal, “Approaches to detect SQL injection

and XSS in web applications,” EECE 571B, TERM

Surv. Pap. April 2012, no. April, 2012.

[8] S. Srivastava, “A Survey On : Attacks due to SQL

injection and their prevention method for web

application,” vol. 3, no. 1, pp. 3225–3228, 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.6, September 2016

32

[9] OWASP Foundation. Top Ten Risks, 2013. [Online].

From:http://www.owasp.org/index.php/Top_10_2013_T

op_10.[Accessed on 24 November 2013].

[10] P. Kumar and R. K. Pateriya, “A Survey on SQL

Injection Attacks, Detection and Prevention

Techniques,” no. July, 2012.

[11] D. R. Rani, B. S. Kumar, L. T. R. Rao, V. T. S. Jagadish,

andM. Pradeep, “Web Security by Preventing SQL

Injection Using Encryption in Stored Procedures,” vol. 3,

no. 2, pp. 3689–3692, 2012.

[12] W. G. J. Halfond, J. Viegas, and A. Orso, “A

Classification of SQL Injection Attacks and

Countermeasures,” 2006.

[13] T. Abaas, A. S. Shibghatullah, R. Yusof, and A.

Alaameri, “Importance and Significance of Information

Sharing in,” Int. Symp. Res. Innov. Sustain. 2014, vol.

2014, no. October, pp. 1719–1725, 2014.

[14] J. Clarke and R. M. Alvarez, SQL Injection Attacks and

Defense. 2009.

[15] K. Wei and M. Muthuprasanna, “Preventing SQL

injection attacks in stored procedures,” Aust. Softw. Eng.

Conf., p. 8 pp.–198, 2006.

[16] X. Lu, B. Peltsverger, S. Chen, G. Southwestern, K.

Qian, and S. Polytechnic, “A Static Analysis Framework

For Detecting SQL Injection Vulnerabilities,” pp. 1–8.

[17] W. G. J. Halfond, A. Orso, and I. C. Society, “WASP :

Protecting Web Applications Using Positive Tainting and

Syntax-Aware Evaluation,” vol. 34, no. 1, pp. 65–81,

2008.

[18] K. Kemalis and T. Tzouramanis, “SQL-IDS : A

Specification-based Approach for SQL-Injection

Detection,” pp. 2153–2158, 2008.

[19] A. Kie, P. J. Guo, and M. D. Ernst, “Automatic Creation

of SQL Injection and Cross-Site Scripting Attacks,” pp.

199–209, 2009.

[20] M. H. A. S. P. Medhane, “R-WASP : Real Time-Web

Application SQL Injection Detector and Preventer,” no.

5, pp. 327–330, 2013.

IJCATM : www.ijcaonline.org

