Agricultural research is aimed towards increasing the productivity and food quality at reduced expenditure and with increased profit. One of the main challenges of this approach is to equip farmers with adequate and affordable information and control technology; as for higher crop yields, they need advanced expert knowledge to take proper decisions during land preparation, sowing, fertilizer management, irrigation management, integrated pest management, storage etc. In an effort to provide a methodology for better assessment on the functional outcome of this research area, an online fuzzy logic based agricultural decision support system is developed and presented in this paper. The aim of this system is to assist farmers in taking proper decisions for having a better crop production with less cost, despite the adverse nature of the soil on their farming area. Our proposed system focuses on utilizing abundant surface ground water available at the end of the wet season while benefiting from timely access to shallow groundwater from the process of capillary rises so that the farmers can have a better crop yield with or even without the expensive irrigations. The experiment was carried out in the northern and southern (coastal areas) regions of Bangladesh. Fuzzy logic is used in this case to
handle uncertain or ambiguous data and knowledge of the input data. Experimental results
presented in this paper also show that despite diverse climate nature, farmers can produce a
hefty amount dry season crops in the coastal areas by utilizing shallow ground water, which was
thought as impossible before. Though the experiment is carried out in Bangladesh only, if
successfully implemented, this finding is believed to bring a groundbreaking agricultural
advancements for the coastal area farmers in all over the world. Especially in the coastal areas
of India, Myanmar, Nepal, Indonesia and Vietnam as their nature of the soil is almost same as
Bangladesh.

References

1. "CIA - The World Factbook". Central Intelligence Agency. Archived from the original on 29
3. Johansson-Stenman, O., et al., Trust, trust games and stated trust: Evidence from rural
and Feed Annual 2009.
shallow water tables for smallholder farmers during the Rabi season in southern Bangladesh.
Proceedings of the 11th European Society of Agronomy Congress, August 28 – September
2010, Montpellier, France.
dynamics and arsenic contamination in Bangladesh, Chemical Geology, Volume 228, Issues
1-3, Controls on Arsenic Transport in NearSurface Aquatic Systems, 16 April 2006, Pages
112-136, ISSN 0009-2541
7. Saifuzzaman, M., et al. "project Expanding the area for Rabi-season cropping in southern
8. K. Adhikari, B. Chakraborty, A. Gangopadhyay. Assessment of Irrigation Potential of
Ground Water Using Water Quality Index Tool. Asian Journal of Water, Environment and
Pollution. IOS Press. 2013
hotspots. Earth Perspect. 1, 6.
10. Landschoot, S., Waegeman, W., Audenaert, K., Van Damme, P., Vandepitte, J., De
Baets, B., and Haesaert, G. 2013. A field-specific web tool for the prediction of Fusarium head
Agriculture. International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307,
Volume-2, Issue-6, January 2013
12. Rajeshwar G Joshi, Parag Bhalchandra, Dr.S.D.Khaitkark. Predicting Suitability of Crop
and Advanced Engineering. ISSN 2250-2459 (Online), An ISO 9001:2008 Certified
Journal,Volume 3, Special Issue 2, January 2013
Production in Agriculture”, Preprint submitted to Environmental Modelling and Software on 10

Index Terms

Computer Science Fuzzy Systems

Keywords

Agriculture, online Decision Support System, fuzzy Logic, flexible querying, shallow groundwater, Bangladesh