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ABSTRACT 

In this paper, an attempt to model the temporal variability of 
rainfall is made by performing a time series analysis on the 

monthly rainfall data of Jorhat from 1994 to 2013 (excluding 

2003). The monthly rainfall time series showed seasonality 

with a prominent frequency of 0.083 cycles per year. A curve 

fitting technique by nonlinear regression on the original 

rainfall time series and on the resulting regular residuals of the 

subsequent fits is performed to model the seasonality of the 

rainfall. The selected model is capable of showing the same 

seasonality and frequency of rainfall variability as that of the 

original rainfall time series. The selected model has the 

potentiality to be replicated to model rainfall in places 
showing similar seasonality as that of the present case. 
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1. INTRODUCTION 
Forecasting rainfall and modeling its variability remains 

crucial for agricultural sector, water resources engineering, in 

project planning for any construction related activity, in the 
tourism sector and so forth. However, given the complexity in 

understanding and elucidating the variability of rainfall over 

time and space, different approaches of rainfall modeling and 

forecasting have emerged. The same also varies depending on 

the aim of the model to be developed, that is, on whether the 
model is developed to give an estimation of the rainfall 

amount or the rainfall probability. It is also worth noting that 

the type of model developed also depends on the amount and 

type of rainfall data (daily, monthly, yearly etc.) available. 

Although reviewing all existing approaches to forecast and 

model rainfall is beyond the scope of this paper, a wide array 
of approaches mostly used in forecasting and modeling 

rainfall is reviewed in this section with a greater emphasis on 

time series analysis.  

One of the approaches of rainfall forecasting and modeling is 

the time series analysis which basically results in a model of 

precipitation probability. Time series analysis has been 
performed widely by adopting different models. For eg., P.E. 

Naill et al. (2009) [1] performed time series analysis using the 

ARIMA model to forecast rainfall for ten years; A.R. Abdul-

Aziz et al. (2013) [2] used the SARIMA model to study the 

temporal variability of rainfall from 1994 to 2010 in Ashanti 

region in Ghana. Other stochastic methods such as 
development of Poisson Cluster models also exist for time 

series analysis of rainfall. C. Onof et al. (2000) [3] made a 

review of the developments in rainfall modeling using Poisson 

Cluster processes. Yet another approach to time series 

analysis of rainfall is the curve fitting technique. For eg., 

Suhaila and Jemain (2009) [4] used the Fourier series as the 

periodic function to fit a smooth curve to the mean rainfall per 

day to model daily rainfall amounts. Artificial Neural 
Network (ANN) approach has also been used as part of time 

series analysis of rainfall. N.Q. Hung et al. (2009) [5] 

developed an ANN model to forecast real time rainfall and 

flood management in Bangkok by four years of hourly rainfall 

data from 75 gauge stations; Hamada et al. (2013) [6] 

developed an ANN model to predict the summertime rainfall 
anomaly of Sahel etc. Additionally, Chatfield (1996) [7] in his 

book has discussed various approaches to time series analysis 

in the time and frequency domain. Shumway and Stoffer 

(2011) [8] have also been discussed similar approaches and 

models. Kedem and Fokianos (2002) [9] discussed the 
regression models in time series analysis.  

The next broad class of approach in the forecasting and 

modeling of rainfall is the use of statistical distributions. 

Different researchers have used different distributions such as 

Gumbel, Log-Gumbel, Normal, Log-Normal, Pearson, Log 

Pearson, Exponential, Gamma, Poisson, Gumbel Weibul and 

the Tweedie family of distributions to model both the 

occurrence and quantity of precipitation (e.g., Olofintoye et al, 

2009 [10]; Olumide et al, 2013 [11]; Oseni et al, 2013 [12]; 

Berthe et al, 2015 [13]; Dunn, (2014) [14]. Water Resources 

Systems Planning and Management (2005) [15] also well 

documents the use of various statistical distributions in 
modeling natural phenomena. 

Regression techniques are also used for early forecast and 

modeling of rainfall. For eg., Nikhil Sethi et al (2014) [16] 

and Tahbilder et al (2014) [17] used Multiple Linear 

Regression. M. Rajeevan et al (2006) [18] used the Multiple 

Linear Regression and Project Pursuit Regression to model 
and predict rainfall occurrences. Boochabun [19] used the 

Dynamic Harmonic Regression. 

Other approaches found to be used by researchers in 

forecasting and modeling rainfall are the Fuzzy Logic (e.g., 

Jimoh et al, 2013 [20]) and Neuro Fuzzy approach (e.g., 

Luenam et al, 2010 [21]). 

In this paper, the authors use a nonlinear curve fitting 

technique to model the temporal variability of rainfall of 

Jorhat, India by performing a time series analysis on the 

monthly rainfall data of Jorhat from 1994 to 2013 (excluding 

2003) sourced from the Indian Meteorological Department 
(IMD). The method employed is powerful to yield satisfactory 

results and easily replicable to be used in the study of similar 

cases.  



2. STUDY AREA 
Jorhat is a city in the northeastern state of Assam, India with 

latitude 26°44´N and longitude 94°12´E and total 

geographical area of 2859.35 km2. The place experiences 

South-West monsoons and records an average annual rainfall 

of 198.76 cm. Rainfall remains low in the month of January 

and gradually increases till the month of July-August and then 

starts to decline from the month of September. This pattern 

then repeats for the subsequent year starting from January. 
The overall pattern of variation remains the same although 

some variation occurs from year to year (Baruah, 2014

The economy of Jorhat is basically agrarian and a large 

percentage of cultivated land of Jorhat remains rain fed. Rice 

is the major crop to be grown and most of its cultivation is to 

be found in the rain fed areas (Bhowmik et al, 2001
Besides rice, tea is also cultivated in the district whose 

production is also chiefly dependent on rainfall availability. 

As such, besides many other purposes, understanding the 

temporal variability of rainfall of Jorhat remains crucial for 

the economy of Jorhat. Although the above seas

of rainfall in Jorhat is acknowledged, there exists no model, 
mathematical, statistical or otherwise that shows the variation 

in a tangible manner.  

Figure 1: Time plot of monthly rainfall time series of Jorhat of 228 months from 1994 to 2013. The data of 2003 are missed an

removed from the plot. The time plot shows seasonality in the time 

Figure 2: Periodogram of the time series generated from MATLAB ®. The periodogram shows maximum probability at 

frequency of 0.083 cycles per year, that is, t

3.2 Methodology 
The first step to understanding a time series, which is a 

collection of observations made sequentially in time, is the 

generation of the time plot. The time plot can be generated by 

plotting the observations against time. The time plot of the 

monthly rainfall data of Jorhat of 228 counts are shown in 

Figure 1. The time plot shows seasonality in the time series 

where rainfall increases from the beginning of a year reaches 

a maximum approximately in the mid year and then decreases 

either gradually or in a fluctuating manner towards the end of 

a year. A periodogram (Figure 2) of the time series, 

constructed in MATLAB ® showed that the time series is 
mostly periodic of period 12 months.  
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Jorhat is a city in the northeastern state of Assam, India with 

94°12´E and total 

. The place experiences 

West monsoons and records an average annual rainfall 

of 198.76 cm. Rainfall remains low in the month of January 

August and then 

tarts to decline from the month of September. This pattern 

then repeats for the subsequent year starting from January. 
The overall pattern of variation remains the same although 

some variation occurs from year to year (Baruah, 2014 [22]). 

rhat is basically agrarian and a large 

percentage of cultivated land of Jorhat remains rain fed. Rice 

is the major crop to be grown and most of its cultivation is to 

be found in the rain fed areas (Bhowmik et al, 2001 [23]). 
vated in the district whose 

production is also chiefly dependent on rainfall availability. 

As such, besides many other purposes, understanding the 

temporal variability of rainfall of Jorhat remains crucial for 

the economy of Jorhat. Although the above seasonal variation 

of rainfall in Jorhat is acknowledged, there exists no model, 
mathematical, statistical or otherwise that shows the variation 

3. MATERIALS AND METHODS
This section of the paper is divided into two sub sections, 

Data and Methodology. The data section gives details on the 

source and amount of data. The methodology section 

elaborates the approach used in the analysis of the rainfall 

data in the present work and elucidates the curve fitting 

procedure by nonlinear regression in OriginPro ®. 

3.1 Data 
Monthly rainfall data of Jorhat for the purpose of the analysis 

was sourced from the Indian Meteorological Department 

(IMD) as available from the websites 
www.indiawaterportal.org/data and 

www.imd.gov.in/section/hydro/distrainfall/districtrain.html. 

228 months of rainfall data were collected from 1994 to 2013. 

The rainfall data of Jorhat for the year 2003 were unavailable 

and these missing data were removed from the time series 

analysis. Modeling the seasonal pattern of Jorhat rainfall 

being the prime objective and as the seasonal pattern followed 

by the rainfall is quite similar every year as evident from the 

time plot of the rainfall data (Figure 1), the missing monthly 

rainfall data of a particular year (2003) is not considered to 

hamper the analysis and its results.  

Figure 1: Time plot of monthly rainfall time series of Jorhat of 228 months from 1994 to 2013. The data of 2003 are missed an

removed from the plot. The time plot shows seasonality in the time series. Data source: Indian Meteorological Department 

(IMD) 

Figure 2: Periodogram of the time series generated from MATLAB ®. The periodogram shows maximum probability at 

frequency of 0.083 cycles per year, that is, the time series is periodic of period 12 months.

The first step to understanding a time series, which is a 

collection of observations made sequentially in time, is the 

generation of the time plot. The time plot can be generated by 

bservations against time. The time plot of the 

monthly rainfall data of Jorhat of 228 counts are shown in 

Figure 1. The time plot shows seasonality in the time series 

where rainfall increases from the beginning of a year reaches 

the mid year and then decreases 

either gradually or in a fluctuating manner towards the end of 

a year. A periodogram (Figure 2) of the time series, 

constructed in MATLAB ® showed that the time series is 

The waveform variability of the time series with a distinctive 

period indicates at its probability of being modeled as a 

periodic function of nonlinear nature by performing curve 

fitting to the time series. A sine fit was hence performed to the 

monthly rainfall time series by nonlinear regression in 
OriginPro ® and a nonlinear model of the time series was 

formulated.  

A general nonlinear model may be understood as one as 

follows: 

            � � ���, �	 
 �                              
where, � is the dependent variable; �
the independent variables; � � ��,
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parameters and � is the error. Determining a nonlinear model 

by curve fitting to a set of data points is a problem of 

nonlinear regression and requires the estimation of the 
parameters by iterative means for which the fit would 

converge (Motulsky et al, 1987 [24] and Bates and Watts, 

1988 [25]) or which best describe the data. The iterative 

process of parameter estimation consists of initial 

approximation followed by successive approximation of the 

parameter values using different algorithms (Motulsky et al, 

1987 [24]). A Newton-Raphson type algorithm may be used 

in estimating parameter values in nonlinear regression by 

iterative method (Kedem and Fokianos, 2002 [9]). As this 

iterative process of estimating the best values of the parameter 

cannot be performed infinitely, the process terminates when a 
certain criteria is fulfilled (Motulsky et al, 1987 [24]) as per 

the algorithm used in the process.  

OriginPro ® uses the Levenberg-Marquardt (LM) algorithm 

in performing curve fitting by nonlinear regression. The LM 

algorithm is a combination of the steepest descent and the 

Gauss-Newton method. It behaves as the steepest descent 

method when the current solution is far from the correct one 

and as Gauss-Newton when the current solution is close to the 

correct one (Marquardt, 1963 [26]).  The LM algorithm may 

be given by the following equation 

� �� � � 
 � ����� ��  � �	�ℎ�� � ��  � � −  "	                 �2	  

� → 0 in the above equation results in Gauss-Newton method 

and large values of � results in the gradient descent method. 

In the above equation, � is the algorithmic parameter;   is the 

measured data;  " is the curve fit function, � is the weighting 

matrix; � is the Jacobian and ℎ�� is the perturbation.  

Starting from some initial value of the parameters, OriginPro 

® uses the LM algorithm to minimize the Chi-square value 

(χ2) with each iteration and when the difference of the χ2 value 
of two subsequent iterations is less than a tolerance value, an 

absolute minimum value of χ2 is said to have reached and the 

fit converges, that is, it is the criteria on which the iterative 

procedure terminates. The tolerance value may be given as 

follows: 

&'()*�+,) � -./01./
./02./-                                                                   �3	   

where χ2 is the chi-square value of the current iteration and 

the χ2’ is the chi-square value of the last iteration. The 

parameter values corresponding to the absolute minimum 

value of χ2 is reported. Parameter initialization to initiate the 

fitting process may be done automatically in OriginPro ® or 

user defined value may also be given as input. 

The model so formulated by curve fitting once to the monthly 
rainfall time series in OriginPro ® showed poor performance 

with its standardized residuals violating the assumptions of 

normality and constant variance unlike in the case of the 

residuals from a good model. The standardized residuals vs. 

predicted value plot (Figure 6) however inferred that the 

model could be remedied by performing the same curve 
fitting procedure to the regular residuals of the fit. This 

procedure of performing the curve fitting to the resulting 

regular or ordinary residuals was repeated until the 

standardized residuals of the consequently resulting fits were 

found to satisfy the assumptions of normality, constant 

variance and independence as in the case of residuals from a 

good model. Consequently, four curve fitting procedures were 

performed to obtain a satisfactory model for the rainfall time 

series. Thus, Fit 1 is the nonlinear sine fit done to the original 

monthly rainfall time series; Fit 2 is the nonlinear sine fit done 

to the resulting regular residuals of Fit 1; Fit 3 is the nonlinear 

sine fit done to the resulting regular residuals of Fit 2 and Fit 

4 is the nonlinear sine fit done to the resulting regular 

residuals of Fit 3 and the rainfall model is formulated as an 

assemblage of the four fits. 

The rainfall model thus formulated is presented and the 

goodness of fit corresponding to each curve fitting procedures 

performed on the original monthly rainfall time series and on 

the resulting regular residuals are presented in the next 
section.  

4.  RESULTS AND DISCUSSIONS 
This section is divided into two subsections. The first section 

presents the formulated rainfall model along with its 

parameter values and standard errors. The second section 

deals with the Goodness of Fit (GoF) of the formulated 

nonlinear model. The Goodness of Fit of the formulated 

model is analyzed by the inspection of the residuals of the 

four fits from which the rainfall model is developed.  

4.1 Formulated model and parameter 

values 
The formulated rainfall model can be written as follows: 

 �  � 
  � 
  � 
  4 
 5�6�+ 78 9� − �:�;� <=

 5�6�+ 78 9� − �:�;� <=

 5�6�+ >8 9� − �:�;� <?

 546�+ 78 9� − �:4;4 <=                       �4	 

where,  �,  �,  �,  4  are the vertical offsets, 5�, 5�, 5�, 54  are 

the amplitudes, �:�, �:�, �:�, �:4 are the phase shifts and ;�, ;�, ;�, ;4 are the periods of the curve represented by the 

model. 

Parameter values of the formulated model are presented in 

Table 1 along with the standard error of each of the 

parameters for the model.  

Table 1. Parameter values for the four fits 

PARAMETER 

VALUES 

STANDARD 

ERRORS 

 � 155.92543 9.01055 

 � 0.35119 8.29646 

 � -0.11756 4.8461 

 4 0.83438 4.4274 

5� 51.05649 12.76313 

5� 25.51195 12.59873 

5� 158.73513 6.85164 

54 -41.7205 6.27037 

�:� 0.90692 1.00783 

�:� -46.89632 2.15371 

�:� -8.42408 0.17214 

�:4 1.75791 0.59862 



;� 6.46277 0.0465 

;� 5.32655 0.06286 

;� 6.00441 0.00698 

;4 6.44451 0.02773 

4.2 Goodness of fit of the formulated 

models 
A model formulated by fitting a curve to a set of data is only a 

close approximation of the data and is never its exact 

representation. Every model has residuals or errors that 

differentiate it from the actual data set. However, how well a 

formulated model represents the set of actual data is often 

quantified by the Goodness of Fit (GoF) statistics of the 
model. For models formulated by linear regression, there exist 

various parameters such as R2 or χ2 to quantify the Goodness 

of Fit. These are also reported alongside the curve fitting 

results when performed with any standard curve fitting or 

statistical software. However, the use of the same parameters 

to quantify the goodness of a fit performed by non

regression is objected in many literatures along with the 

reasons thereof (Spiess and Neumeyer, 2010 [27] 

2010 [28]). 

Considering the incompetency of the R2 and χ2 to quantify the 

goodness of a fit performed by nonlinear regression, the 
authors resorted to check the goodness of the formulated 

model by the inspection of the residuals resulting from each of 

the four curve fitting operations. Many literatures suggest the 

analysis or the inspection of residuals to determine the 

Goodness of Fit of a model (Motulsky, 1987 

2010 [28] and Tsai et al, 1998 [29] etc.). The assumptions in 

the residual analysis being that the residuals of a good model 

are independent, normally distributed and has mean, µ = 0 and 

constant variance, σ, that is, homoscedastic.  

Residual Lag Plots of the standardized residuals (Figure 3) 

resulting from each curve fitting operation are constructed to 

check for the independence of the residuals. Kolmogorov
Smirnov normality test was performed on those standardiz

residuals at 0.05 significance level. Test results (Table 2) 

shows for the first two curve fitting procedures (Fit 1 and Fit 

2), the residuals were not drawn from a Normal distribution at 

0.05 significance level. However, for the last two curve fitting 

procedures (Fit 3 and Fit 4), the residuals were drawn from a 

Normal distribution at 0.05 significance level. Histogram and 

Q-Q plots (Figure 4 and Figure 5) of the standardized 

residuals corresponding to each of the four curve fitting 

procedures are also constructed to have a visual representation 

on the normality of the residuals. Scatter plots of the 

standardized residuals vs. fitted value (Figure 6) are 
constructed to check if the residuals of the models are 

homoscedastic.  

Table 2. Normality test on the residuals and mean and 

variance of the residuals 

MODELS 

KOLMOGOROV-SMIRNOV 

NORMALITY TEST AT

0.05 SIGNIFICANCE LEVEL

FIT 1 
Residuals are not from a normal 

distribution 

FIT 2 Residuals are not from a normal 
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From Figure 3 it follows that the assumption of the 

independence of the residuals is satisfied for the standardized 

residuals of the third and forth curve fitting procedures (Fit 3 
and Fit 4) where the Residual Lag plots show randomness and 

no definite pattern. The residuals of the first two fits (Fit 1 and 

Fit 2) violate the assumption of independence of residuals as a 

certain pattern is evident from their Residual Lag plots. The 

histogram of the residuals (Figure 4) for the first two fits (Fit 

1 and Fit 2), do not follow a bell shape; however, the 

histograms of the third and forth fit (Fit 3 and Fit 4) follow a 

bell shape indicating that the residuals of those fit follow a 

normal distribution. The Q-Q plots of the residuals in Figure 5 

also show that the assumption of normality of the residuals is 

violated in the case of the first two fits (Fit 1 and Fit 2) but 

satisfied in the case of the other two fits (Fit 3 and Fit 4). 
These are also consistent with the K-S normality test on the 

residuals (Table 2). Scatter plots of the standardized residuals 

vs. the fitted or predicted values of the models

random only in the case of  Fit 4 which implies that the 

assumption of constant variance is violated by all the three 

curve fits (Fit 1, Fit 2 and Fit 3) except the last fit, that is, Fit 
4. That is, the residuals of the first three fits are 

heteroscedastic while only the residuals of the last curve fit is 

homoscedastic.  
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Figure 3: Residual Lag Plots for the four fits. Randomness 

in the plots is seen in case of Fit 3 and Fit 4 which satisfies 

the assumption of independence of the residuals
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seen in case of Fit 3 and Fit 4 which satisfies 

the assumption of independence of the residuals. 

 

 

Figure 4: Histogram of the residuals for the four fits. The 

histogram of the residuals of Fit 3 and Fit 4 follow a bell 

shape which suggests that those residuals follow a normal 

distribution. Same is not true for Fit 1 and Fit 2 as seen 

from the plots. 
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histogram of the residuals of Fit 3 and Fit 4 follow a bell 
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Figure 5: Quantile – Quantile (Q-Q) Plots for the residuals 

of the Fits. The Q-Q plots of the residuals of Fit 3 and Fit 4 

follow a straight line which suggests that those residuals 

follow a normal distribution. The same is not true for 

residuals of Fit 1 and Fit 2 as seen from the plots.
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Q plots of the residuals of Fit 3 and Fit 4 

line which suggests that those residuals 

follow a normal distribution. The same is not true for 

residuals of Fit 1 and Fit 2 as seen from the plots. 

 

 

Figure 6: Residual vs. Fitted value plots for the fits. Only 

the plot of Standard residuals vs. Predicted value for Fit 4 

shows randomness and hence satisfies the assumption of 

constant variance of residuals. All other fits violate this 

assumption as implied by the plots.

It thus follows from the analysis of the residual plots that the 

model formulated by nonlinear curve fitting on the monthly 

rainfall time series once, that is, Fit 1 is not a satisfactory 

interpretation of the rainfall time series as it violates the 

assumption of normality and constant variance of the 

residuals. The residual vs. predicted value plot for Fit 1 

(Figure 6) possesses a waveform (nonlinear) pattern and 
hence a second nonlinear sine fit (Fit 2) was performed to the 

regular residuals of Fit 1 in order to improvise the model. The 

same observations were made for the residuals of

thus another nonlinear sine fit (Fit 3) was performed to the 

regular residuals of Fit 2 in order to further improvise the 

model. The residuals of Fit 3 however satisfied the 

assumption of independence and normality but violated the 

assumption of constant variance. The wedge shaped pattern of 

the residuals vs. predicted value plot showed that the variance 

of the residuals of Fit 3 increases with the mean. Repeating 

the same nonlinear curve fitting procedure to the regular 

residuals of Fit 3 resulted in Fit 4. The residuals of Fit 4 
satisfied all the assumptions of independence, normality and 

constant variance as can be seen from the residual plots. 

Further fitting to the resulting regular residuals was thus 

terminated and the model of the rainfall 

consequently established is given in equation 

plot of the original and modeled rainfall time series is shown 

in Figure 7 and the periodogram of the modeled rainfall time 

series is shown in Figure 8. It can be seen from Figure 7 th

the plot of the modeled monthly rainfall time series gives a 

good approximation of the original rainfall time series with a 

smooth curve and shows the same trend of temporal 
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consequently established is given in equation �3	. The time 

plot of the original and modeled rainfall time series is shown 

in Figure 7 and the periodogram of the modeled rainfall time 

series is shown in Figure 8. It can be seen from Figure 7 that 

the plot of the modeled monthly rainfall time series gives a 

good approximation of the original rainfall time series with a 

smooth curve and shows the same trend of temporal 



variability in the rainfall. From Figure 8 and on comparing it 

with Figure 2, it is further evident that the model shows the 

Figure 7: Time Plot of Original vs. Fitted Monthly Rainfall Time series. The model fits well to

Figure 8: Periodogram of modeled monthly rainfall time series. The periodogram shows 

frequency of 0.083 cycles per year as in the case of the original monthly rainfall time series.

5. CONCLUSION 
Nonlinear regression is a robust method for analysis of data 

which although is difficult to be performed manualy can be 

performed with comparative ease by the use of computer 
programs. It requires a clear perception of the eq

used in the regression and the physical model it represents. 

The results of the nonlinear regression should be carefully 

analyzed and visualized graphically (Motulsky, 1987

this paper, the seasonality in the monthly rainfall time ser

of Jorhat is observed and the same is hence modeled by 
performing sine fits by nonlinear regression in OriginPro ®. 

The goodness of fits is scrutinized by the analysis of residuals 

of the fits graphically and also by KS normality tests. The 

formulated model is an assemblage of four nonlinear sine fits 

(Fit 1, Fit 2, Fit 3 and Fit 4). The formulated model is found to 

show the same seasonality and frequency of rainfall 
variability as that of the original monthly rainfall time series. 

The model or the method followed in this paper might find 

utility in modeling monthly rainfall for places having a similar 

rainfall pattern as in the case of Jorhat. 
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