
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.3, September 2016

29

Aggregated Containerized Logging Solution with

Fluentd, Elasticsearch and Kibana

Kaichuang Yang
University of International Relations

Beijing, China

ABSTRACT

In the operation and maintenance of cloud production lines,

access to logs from containers in order to perform day-to-day

investigation and debugging is needed. Logs must be

accessible beyond the life of a container. Logs from across the

cluster need to be aggregated to allow log searching, backup,

and storage. As a solution, this paper present a diagram

combined with Fluentd, Elasticsearch and Kibana, that

enables the deployment and management of multiple

containers log reviewing with a creatively way. The solution

perform well efficiently on log collection and indexing. Even

though the prototype has been effectively used to deploy and

manage containers logging data, serial risks are still needed

put into consideration as important issues.

General Terms

Data and Information Systems, Software Testing

Keywords

Logging solution, Fluentd, Elasticsearch, Kibana, Proxy,

Performance testing.

1. INTRODUCTION
Log availability is currently limited to a user using the name

of a currently-existing container to retrieve the logs. Once the

container is deleted, logs are no longer accessible; there is no

mechanism for aggregating or querying logs from containers

distributed across the cluster. The current log functionality

also provides no support to retrieve historical logs once the

current node logging infrastructure adds log rotation.

Therefore, the logging system must function in a

multinational environment where users are restricted to seeing

logs for which they are granted access by an administrator.

With the following motivations, we put forward a solution

attempting to meet the developer's needs.

 Developers should be able to review any log to

which they have access.

 Developers should be able to follow and see logs

with minimal latency (e.g. < 5s).

 Developers should be able to review logs even after

the container from which it originated is deleted.

2. SOLUTION DIAGRAM
Aggregated logging updates the logging API while adding the

following main components to the system: a node agent, a log

aggregator, a log aggregator proxy, and visualization

interface. These components work together to transfer logs

from a volatile store on individual nodes in the cluster to a

central location for backup and storage. Each component is

configured and designed to operate in the cluster’s multi-

tenant environment. [1]

Fig 1: Containerized logging component diagram

2.1 Cluster Node
Containers running on a node will be configured to write logs

to disk and rotate them based on size, limited to a fixed

number of rotated files. These features should be available

with Docker. Docker document site does not seem to have

caught up but source docs show new options for rotating with

the json-file logging driver.

2.2 Node Agent - Fluentd
Fluentd is similar in that it has inputs and outputs and a

matching mechanism to route log data between destinations.

Internally, log messages are converted to JSON which

provides structure to an unstructured log message. Messages

can be tagged and then routed to different outputs.

An agent will be installed as a static container on each node

that is responsible for associating metadata with the container

logs and transferring them to the log aggregator. The agent

will utilize the log file name to retrieve additional container

information from the master for use as metadata. Container

log file names follow a naming convention that consists of:

the container’s name and the container’s pod.

The agent will add the metadata to a cache in order to

minimize the number of calls to the master. The cache will

expire entries based on a configurable time. The agent will be

configured with mutual TLS between agent and log

aggregator proxy to ensure only the agent can write logs.

2.3 Log Authentication Proxy
The log proxy is a multi-use component that provides

authorization and request transformation services. Its primary

responsibility is securing other components and controlling

access and authorization based on a user’s authorization

Fluentd

Fluentd

Fluentd Fluentd

Fluentd

Fluentd

Controllor

node

Controllor

node

Storage

node

Compute

node

Storage

node

Compute

node

Compute

node

Fluentd

Elasticsearch Elasticsearch

Kibana

Log Aggregator Proxy

Log Aggregator Proxy

Container

Security guard

Fluentd

Logging node

User

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.3, September 2016

30

token. It may be required to transform queries and responses

if other components cannot be made to scope their requests by

user as we desire. The proxy will only be responsible for

controlling access to Kibana and making a user’s

authorization token available for subsequent requests to

Elasticsearch. It is unnecessary to provide any transformation

services.

2.4 Log Aggregator - Elasticsearch
The log aggregator is deployed as a pod with multiple

containers that is accessed from the logging service. One

container is the Elasticsearch log aggregator. The second

container is the proxy mentioned previously. Multiple replicas

of the pod should be deployed as a cluster behind a kubernetes

service, which can remain internal-only for access by the

master.

Securing Elasticsearch will be accomplished using the proxy

to front the Elasticsearch log aggregator. The proxy will be

configured with mutual TLS between it and clients (e.g. node

agent) looking to write log data to the aggregator. This will

ensure only authorized agents may write logs.

2.5 Log Visualization Tool - Kibana
A log visualization tool (e.g. Kibana) could be accessed from

the web console by a link that navigates to the tool. A user

will return to the web console via a link in the tool that

navigates them back to the web console.

Log visualization is deployed separately, linked from the web

console, and configured to retrieve data from the logging

service. Kibana will need modifications to accept a token

from the web UI, persist it in a session appropriately, correctly

indicate an expired token, and provide a link back to the web

UI. It will also need modifications to remove configuration

items from its UI that aren’t appropriate for a single user in a

multitenant tool.

Kibana has no concept of user at this time and does not have a

mechanism for scoping the Kibana profile which including

saved queries, visualizations, dashboards to the user.

3. PERFORMANCE TESTING
In order to create performance tests to verify and measure

assumption about the solution’s resource intensive, we push

10.000 messages via Fluentd to Elasticsearch [2]. There are

the CPU consumptions per PID. The Fluentd process is

picking up 10.000 messages waiting in the queue and pushing

it into Elasticsearch.

Table 1. High CPU load time (sec) performance

Table 2.Max CPU (%) performance

Table 3. Memory performance

4. RISKS
There are serial risks currently faced by logging solutions in

the following areas [3].

4.1 Docker logs
Docker can probably only log to a single destination. If we

want to support use cases requiring local logs as a backup to

aggregated logs, we probably need to write logs locally and

have the agent use that as a source, which is the current

design.

4.2 Securing Elasticsearch and Kibana
Currently it is uncertain how to secure the Kibana integration

since the current design would require it to pass along a user’s

token in order to retrieve information from a secure

Elasticsearch. Investigation into Kibana plugins has shown the

project advises against writing them. Kibana appears to

support basic authority for use with Shield; there may be some

way to shoehorn our token in there.

4.3 Latency
It is not known how long it will take for logs to be retrievable

from Elasticsearch once generated. A few seconds is probably

acceptable, a few minutes not so much. If latency is too long,

then having local logs as a backup becomes far more

important.

5. CONCLUSION
This solution could bring developer’s much more convenience

on containerized environment, but more research and

development still needed. If the aggregator client can be

added to Kibana by way of plugin or fork, or whether it can be

simulated with a transformation by the proxy in front of

Elasticsearch. Clients that wish to retrieve data from the

aggregator will present an authorization token to the proxy

along with their search query. The proxy will utilize the token

to determine the client’s read access to containers. The plugin

1000 3000 4000 5000 10000 30000

Fluentd Ruby2.0 16 30 40 46 75 215

Fluentd Ruby2.2 14 28 38 48 85 225

0

50

100

150

200

250

High CPU load time (sec)

1000 3000 4000 5000 10000 30000

Fluentd Ruby2.0 100 100 100 100 100 100

Fluentd Ruby2.2 100 100 100 100 100 100

0

20

40

60

80

100

120

Max CPU (%)

1000 3000 4000 5000 10000 30000

Fluentd Ruby2.0 140 196 190 242 263 286

Fluentd Ruby2.2 149 208 185 236 241 329

0

50

100

150

200

250

300

350

Mem (MB)

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.3, September 2016

31

could provide secure communication, via mutual TLS,

between Elasticsearch instances that are part of a cluster.

Therefore, the solution’s performance would make an obvious

promotion. In the future research, serial risks are still needed

put into consideration as important issues.

6. REFERENCES
[1] T. Prakash, M. Kakkar and K. Patel, "Geo-identification

of web users through logs using ELK stack," 2016 6th

International Conference - Cloud System and Big Data

Engineering (Confluence), Noida, 2016, pp. 606-610.

[2] P. P. I. Langi, Widyawan, W. Najib and T. B. Aji, "An

evaluation of Twitter river and Logstash performances as

elasticsearch inputs for social media analysis of Twitter,"

Information & Communication Technology and Systems

(ICTS), 2015 International Conference on, Surabaya,

2015, pp. 181-186.

[3] W. Wongthai, F. Rocha and A. v. Moorsel, "Logging

Solutions to Mitigate Risks Associated with Threats in

Infrastructure as a Service Cloud," Cloud Computing and

Big Data (CloudCom-Asia), 2013 International

Conference on, Fuzhou, 2013, pp. 163-170.

[4] Logging Evaluation of the Ordovician Carbonate

Reservoir Beds in the Lungudong Region, Tarim Basin

[J]. Acta Geologica Sinica (English Edition), 2010,

05:1141-1156.

[5] Effects of electric-acoustic and acoustic-electric

conversions of transducers on acoustic logging signal [J].

Chinese Science Bulletin, 2012, 11:1246-1260.

IJCATM : www.ijcaonline.org

