
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

10

Predicting the Behaviour of Open Source Software using

Object Oriented Metrics

Uttamjit Kaur
Department of Computer Science

GIMET
Amritsar

Gagandeep Singh
Department of Computer Science

GIMET
Amritsar

ABSTRACT

The aim of this thesis is to study the relationship between

maintainability and metrics like lines of code, cyclomatic

complexity of open source software. The behavior of open

source software can be predicted by calculating

maintainability index and reliability index. Prediction of

maintainability index will help in better management and

maintenance of object oriented software thus reducing the cost

of maintenance. The main objective of this thesis is to

calculate different metrics like Lines of Code, Cyclomatic

Complexity, and Maintainability Index. The study also

includes the comparison of these metrics plotted over various

open source software. This report summaries the theory about

maintainability of different software’s and the impact of these

metrics on its maintainability. Open Source Software used for

study in this thesis is SweetHome3D, FindBugs, Jacob and

Jfree. Analyst4J tool is used to calculate values of metrics

used for studying the maintainability of SweetHome3D,

FindBugs, Jacob and Jfree.The case study has shown that

applying software metrics that would measure the different

aspects of software would be useful in analyzing, studying

and improving the maintainability of software.

General Terms

Software Metrics, OSS.

Keywords

Software Metrics, Object-Oriented Software, OSS,

SweetHome3D, FindBugs, JFree and JACOB.

1. INTRODUCTION
Software metrics play an important role in Analyzing some

aspect of a Software or product generated during a software

project. In general, Software metrics can be divided into three

categories. These are product metrics, process metrics and

project metrics. Process Metrics: This Metrics used to explain

the characteristics of the software product i.e.: Size,

Complexity, performance and the level of Quality. Project

Metrics: This Metrics is used to improve the software

development process and maintenance. Example: Defect

removal during the development stage and response time to

fix the process. Project Metrics: It depicts the project

characteristics and execution. Example: No. of Software

Developers, cost, productivity and schedule.

Rapid developments of large scaled software have evolved

complexity that makes the quality difficult to control.

Software Metrics requires Software Quality over the control

of successful execution. Software applications are more

complex that leads to software failure resulting in software

damage [2]. The metrics focus on internal parts that reflect the

complexity of each individual entity, i.e. classes or Methods.

The metrics focus on external parts measure the interactions

among entities, i.e. inheritance or coupling. Software metrics

describe as: "The continuous application of measurement-

based techniques to the software development process and its

products to supply timely or meaningful techniques together

for management information (MI) "[4].

2. OBJECT-ORIENTED
According to Object Oriented approaches, concept is

important to define object. An Object is defined by a state (set

of properties) and a behaviour (set of operation).A class is the

specification of the object, it is the basic prototype from

which the object are created. The methods are the operation

that can be carried out in a class. The attribute represent the

properties of a class. Object-oriented design used to define

Well-structured software, as they easy to test and maintain.

As, Object-Oriented approaches does not ensure the quality of

software nor errors removed during development and

maintenance phases. However, different Object-oriented are

written in the literature. As they hold the Object-oriented

design properties i.e.: Coupling, Complexity, Cohesion and

Inheritance to enhance the software quality. The metrics

presented here are: method related metrics, class related

metrics, inheritance metrics, metrics measuring coupling and

metrics measuring general (system) software production

characteristics. In this paper six metrics are considered for

optimization. These metrics are: DIT (Depth of Inheritance),

CBO (Coupling Between Objects), LCOM-CK (Lack of

Cohesion of Methods) (as originally proposed by

Chidamber&Kemerer), WMC (Weighted Methods per Class),

TCC (Tight Class Cohesion), MI (Maintainability Index). The

software metrics presented here are grouped into complexity,

size and dependency metrics. The metrics are classified into

these categories as to identify the attributes the metrics can

provide insight into.

2.1 Line of Code (Size metric)
Size metric is the most common measures used to assess the

memory requirements, the effort and the development time

that is necessary. It has been argued that poor size predication

has been a major cause for software failures. This metric is

very important in determining the cost that is correlated with

development. Additionally, it is useful in preparing schedules

and also estimation of efforts required. Complexity is a

function of size, which can greatly affect the design flaws and

hidden defects resulting in quality problems, cost overruns,

and schedule changes. Complexity shall be constantly

monitored, measured and controlled. Any impact on size

metrics can be shown in the effort performance criterion. The

effort metric predicts the effort needed to maintain a project

.As its name indicates, the notion behind Lines of code

basically is to count the number of lines of source code of a

certain software project. Even though it is a simple, it is a

strong metric suite to assess the complexity of different

software entities.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

11

2.2 McCabe Cyclomatic Complexity

(MCC)
Cyclomatic complexity gives the number of paths that may be

taken when a program is executed. Methods with a high

Cyclomatic complexity tend to be more difficult to understand

and maintain. The Cyclomatic complexity metric measures

the complexity of a module's decision structure. It can be

calculated by counting the number of linearly independent

paths through a function or set of functions [6]. It is useful in

a situation where higher Cyclomatic complexities associate

with greater testing and maintenance requirements.

Commonly Complexities measure of higher values

corresponds to higher error rates.

2.3 CBO
Coupling between Object classes is the number of classes to

which a class is couple.

CBO = Number of links

 Number of classes

Numbers of links are number of classes used associations, use

links for all the package's classes. A class used several times

by another class is only counted once. Numbers of classes are

number of classes of the package, by recursively processing

sub-packages and classes, for the UML modelling project, this

variable represents, therefore, the total number of classes of

the UML modeling project. CBO for a class is a count of the

number of other classes to which it is coupled. The theoretical

basis behind this metric is to calculate the number of the

peripheral classes whose members are called or used as types

by members of the current class. To explain it in other

words,” CBO refers to the number of coupling between

classes. When a class let’s say, class1calls the member

functions of another class, class 2; coupling will occur. The

smaller the CBO, the less the class affects other classes. This

means that the more independent the class is, the lesser the

probability that an alteration could occur to a depending class;

and therefore less maintenance effort may be needed.

Concurrently, the bigger the coupling between objects is, the

slighter the reusability may the class become. This metric is

useful in discovering a situation where excessive coupling

limits the availability of a class for reuse, and also results in

greater testing and maintenance efforts.

2.4 DIT
Depth of Inheritance Tree is the maximum inheritance path

from the class to the root class. The DIT measures the

inheritance level upon which a class was built. The value can

be achieved by calculating the maximum number of levels in

each of the class's inheritance paths. While reuse potential

goes up with the number of root programs, so does design

complexity, due to more methods and classes being involved.

Some studies have shown that higher DIT rate correspond

with larger error density and lower quality. The smaller the

DIT, the more abstract and simpler the class would become.

While the more a class inherits, the more difficult to

understood the design.

2.5 Response for a Class (RFC)
The RFC metric measures the general complexity of the

calling hierarchy of the methods. The value for RFC can be

calculated by counting the methods of a class and the methods

that they directly call. Larger RFC counts are commonly

correlated with increased testing requirements. Since it

includes methods called from outside the class, it can also be a

measure of the possible communication between the class and

other classes. If the number of methods that can be invoked in

response to a message is large, the testing and debugging

process of the class would become more difficult and time

consuming since it requires very good knowledge of how the

methods are interconnected to each other.

2.6 WMC
Weighted Methods per Class (using Cyclomatic Complexity

as method weight) is the sum of weights for the methods of a

class. It is an indicator of how much effort is required to

develop and maintain a particular class. A class with a low

WMC usually points to greater polymorphism. A class with a

high WMC, indicates that the class is complex (application

specific) and therefore harder to reuse and maintain. The

lower limit for WMC in Refractor IT is default 1 because a

class should consist of at least one function and the upper

default limit is 50.

The WMC measures some features of the scope of the

methods building a class. It computes the weight of each

method, that is, the value of WMC can be attained by

summing up the weighted methods of the class. After

obtaining WMC value, it can be used to measure the

complexity of the decision structure within the methods. It can

be helpful in a circumstance where higher WMC values

associate with enlarged development, testing and maintenance

efforts. Because of inheritance, the testing and maintenance

efforts for the derived classes could also increase as a result of

higher WMC for a parent class.

2.7 LCOM - Lack of Cohesion of Methods
Cohesion is the degree to which methods within a class are

related to one another and work together to provide well

bounded behavior. LCOM uses variable or attributes to

measure the degree of similarity between methods. We can

measure the cohesion for each data field in a class; calculate

the percentage of methods that use the data field. LCOM

measures how widely member variables are used for sharing

data between member functions. It is calculated by counting

the pairs of class methods that don't access any of the same

class variables reduced by the number of pairs that do. In

other words, the “Lack of Cohesion in Methods metric is a

measure for the number of not connected method pairs in a

class representing independent parts having no cohesion. It

represents the difference between the number of method pairs

not having instance variables in common, and the number of

method pairs having common instance variables.” A higher

LCOM indicates lower cohesion. This relates with weaker

encapsulation, and is a pointer that the class is a candidate for

disaggregation into subclasses.

2.8 Maintainability Index (MI)
The MI [8] is a composite metric, based on several metrics. It

is based on following metrics:

1. Halstead Volume (HV) metric

2. Cyclomatic Complexity (CC) metric

3. Average number of lines of code per module (LOC)

4. Percentage of comment lines per module (COM).

Halstead Volume is a composite metric based on the number

of (distinct) operators and (distinct) operands in source

code.Cyclomatic Complexity is the number of linearly

independent paths through a program. Lines of code is a

software metric used to measure the size of the source code.

Comments per module are the number of comment lines in the

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

12

source code of a module. The formula for maintainability

index is:

MI = 171 - 5.2 * In(aveV) - 0.23 * aveV(g') - 16.2 *In

(aveLOC)

where

aveV = average Halstead Volume V per module

aveV(g') = average cyclomatic complexity per module

aveLOC = the average count of lines of code (LOC) per

module.

3. OPEN SOURCE SOFTWARE
Today, open source software (OSS) provides a lot of services

and products for companies, industry, governments, and

education organizations or commercial software products.

There is a lot of successful OSS, like Apache, PHP, Nginx,

MySQL, and MariaDB. OSSD is a kind of distributed

software development base using the peer-review technique,

and the development team is distributed across the world in

different time zones.This increases the difficulty of achieving

quality assurance (QA), as do the risky development practices

in open source software development (OSSD), such as unclear

requirements elicitation, the ad hoc development process, the

little attention paid to quality assurance and documentation,

and poor project and quality management. The development

must consider much more than writing the code somehow.

Every organization looks for very good architecture; reliable,

testable, and maintainable code; and methodologies to support

and maintain their software. Open source software (OSS) is a

software product with the source code made public so that

anyone can read, analyze, and change or improve the code.

The use of this software is under a license, like Apache, GNU,

MIT, Mozilla Public, and Eclipse Public License. Open

source software development (OSSD) provides high quality

assurance through user testing and peer reviews. The quality

of these products depends on the size of the product

community. The author is discussing about the stakeholders of

the OSS community, the quality assurance frameworks and

models proposed in some studies, some statistics about OSS,

the problems that affect the quality of OSSD, and the

advantages and disadvantages of OSS compared to closed

source software. This allows us to understand how we can

achieve and improve the quality assurance and quality control

of OSSD.

3.1 Structure of Developers in OSS
There are four groups of OSS developers:

1. The core developers are a small group of expert

developers who are responsible for the main core

functionality of the system by writing high-quality

code; managing and controlling the system; and

making the plans, goals, and roadmap for the

product.

2. The contributing developers are a bigger group of

developers who directly affect the software

development. They have the ability to add new

features (depending on code modularity) and to do

some other tasks, like fixing bugs and peer-

reviewing code 5 .

3. The bug reporters are responsible for testing the

system. Some of this task can be done by the core

developers and contributing developers, as well as

by the users of the system. One of the main tasks for

this group is to ensure that more people will test the

system on many different platforms (if the system

supports this).

4. The users utilize the system; some of them are the

developers. Sustainable software development

community groups can be described in a simple

onion model, as shown in

Figure 3.1: The model of software development

community

4. OBJECTIVES
1. To identify relationship between various Software

Metrics (like: LOC, CC and Maintainability Index) etc.

2. To find and compare the software metrics to search best

Maintainability Index.

5. RESEARCH METHODOLOGY
The aim of the case study is to investigate the ability of

Software metrics for analysis of complexity in open source

software. Software metrics collected directly from source

code (internal Metrics) are being used to measure the

complexity of different open source software. Following

Figure shows the model of our research.

Start

Software and

Software Metrics

Selecting Project

Cases and Tools

Running Project case

on appropriate tool

Find out various

Software Metrics and

Check

Make a Comparison

table of metrics

Result and Graphs

Stop

Figure5.1: Research Methodology

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

13

5.1 Analytical Framework
A method has been devised prior to conducting the case study.

It is composed of:-

1. choosing the set of software to analyze as a means for

collecting data

2. selection of suitable set of metrics suite

3. defining the level at which the metrics are applied and

tool selection

4. performing analysis and interpretation of data with the

use of statistical assessment

For conducting the experiment, the most popular open source

software projects that are available in source forge have been

selected. Most projects were downloaded from repositories

such as Concurrent Version System (CVS) and Subversion

(SVN). Additionally, all of the projects chosen are developed

in Java since the software tool used to obtain the metric values

provides support for the programming language. The majority

of the open source projects available in the repositories are

developed in Java. Furthermore, since some of the projects

had different releases, stable and recent versions of the

projects have been selected. The candidate projects were also

the once which were available in CVS and SVN without read

only access.

On the other hand, a particular set of design metrics suite have

been selected since there are a variety of which to choose

from that could be applicable for the experiment. The choice

is performed with the study of articles of the most important

metrics that are proven significant. The case study has used

tools for obtaining metric values and for statistical

assessments. The tools were chosen after comparing them

with related software’s. Automated software complexity

analysis tools such as Code Analyzer, Analyst4j and Source

Monitor were the candidate tools. The Analyst4J was selected

as a favourite tool for this experiment since there were few

drawbacks in the others. The analyses were performed at class

level. After these considerations, the analysis and

interpretation of the data was conducted with the use of

statistical application software and automated extraction tool

for metric values.

5.2 Analysis Plan

The analysis is performed in two steps. These are:-

Step 1: analyzing how the projects react to a particular metric.

Step 2: performing correlation tests and producing pairs that

have high correlation.

The first step involves analysis of individual metric for the

OSS. At this point, the results produced after the collection of

data are put for discussion. The results are portrayed in the

form visualization charts that would give an outlook how the

projects reacted to the specified metric. In addition, since the

metric values vary from one open source to another an

interval of values has been used to know where the data lies in

the graph. The frequency interval in connection with the

number of classes in the projects will serve as a basis for

plotting the graph. The interpretation of the data will then be

followed.

In the second step, the correlation among the metrics of the

open source projects will be used to identify highly correlated

metrics. In statistics, correlation is the measure of relationship

between different variables. The scales or the types of data

used for measurement could be in the form of discrete or

interval values. A coefficient of correlation value of

0indicates that there is no relationship between the variables

(the metrics in this case), while a correlation coefficient of 1

signify strong relationship. This is particularly useful since

identifying highly correlated metrics in the open source

software’s would enable to identify outliers or the classes

which would be complex.

6. RESULTS
In this section different version of an open source software

has been taken whose program code is written in different

languages. Evaluation of these codes is done using metric

Analyst 4J. It is a tool used in eclipse. It consists of large

number of source code metrics which are used to compare the

results obtained from both the codes. The results achieved are

summarized under the various tables as shown later. This

chapter presents the analysis of data. The distribution of the

data across the selected projects will be shown in the first

section then a discussion of the chosen metrics will follow.

After that, the discussion of the correlation tests proceeds.

6.1 SweetHome3D
Sweet Home 3D is a free interior design application that helps

you draw the plan of your house, arrange furniture on it and

visit the results in 3D. Sweet Home 3D is a free interior

design application that helps you place your furniture on a

house 2D plan, with a 3D preview. This program is aimed at

people who want to design their interior quickly, whether they

are moving or they just want to redesign their existing home

[8].

Fig6.1: No. of Classes of SweetHome3D

As Shows in the above graph, the variations of the number of

classes have been analyzed. At the initial stages of the

product, the No. of Classes rises from version 0.11 to version

0.14. After then it decreases in version 0.15 and increase No.

of Classes in version 0.16. The maximum Classes is shown in

version 0.14.

 Fig6.2: Line of Code of SweetHome3D

0

50

100

0.11 0.13 0.14 0.15 0.16

No. of Classes

No. of
Classes

0

5000

10000

0.11 0.13 0.14 0.15 0.16

LOC

LOC

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

14

The trend in LOC shows a consistent increase from version

0.11 to version 0.14. However, a major decrease in LOC

observed in version 0.15 and slight increases in version

0.16.The study of first three versions shows that there has

been an increase of LOC in these versions which is very

significant. Some functionality seems to be added towards the

end by adding more LOC. Therefore, it can reasonably be

concluded that there has been significant additions in the

product.

Fig6.3: Cyclomatic Complexity of SweetHome3D

At the initial stages of the product, the Cyclomatic

Complexity rises from version 0.11 to version 0.15. After then

it slightly decreases in version 0.16. The maximum

complexity is shown in version 0.15.

Fig6.4: Maintainability Index of SweetHome3D

Software is considered maintainable if its maintainability

index is in a higher range. The graph shows the variations of

MI. In version 0.11 MI is at level 112.86.Then it slightly

decreases in version 0.11 to version 0.14. After that value of

MI gets increases in version 0.15. Again it decreases in

version 0.16. Maximum value of MI shown in version 0.11

which shows that version 0.11 is more maintainable as

compared to other versions.

Fig6.5: Coupling between Objects of SweetHome3D

As shown in above graph, CBO is at level 7.59 in version

0.11. After that a huge increases observed in version 0.13.

Then it slightly decreases in version 0.14. Then again

increases in version 0.15. After that slightly decreases in

version 0.16.Maximum CBO in version 0.15. Higher CBO

indicates classes that may be difficult to understand and more

difficult to maintain.

Fig6.6: Weighted Method per Class of SweetHome3D

The above graph of WMC reveals that, all the classes have a

WMC less than 10. WMC is at level 4.21 in version 0.11.

Then slightly decreases in version 0.13. Again increases from

version 0.14 to version 0.15. After that huge decreases in

version 0.16. Maximum WMC is in version 0.15. Higher

WMC indicates classes that may be difficult to understand

and more difficult to maintain.

Fig6.7: Response for a class of SweetHome3D

The trend in RFC shows a consistent increase from version

0.11 to version 0.14. However, a major increase in RFC

observed in version 0.15 and slight decreases in version

0.16.The study of first four versions shows that there has been

an increase of RFC in these versions which is very significant.

0

1

2

3

0.11 0.13 0.14 0.15 0.16

CC

CC

100

105

110

115

0.11 0.13 0.14 0.15 0.16

MI

MI

6.5

7

7.5

8

8.5

9

0.11 0.13 0.14 0.15 0.16

CBO

CBO

0

5

10

0.11 0.13 0.14 0.15 0.16

WMC

WMC

0

20

40

60

0.11 0.13 0.14 0.15 0.16

RFC

RFC

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

15

Some functionality seems to be added towards the end by

adding more classes. Therefore, it can reasonably be

concluded that there has been significant additions in the

product.

Fig6.8: Depth of inheritance tree of SweetHome3D

As shown in above graph, DIT is at level 1.63 in version 0.11.

After that a slightly decreases observed in version 0.13. Then

it slightly increases from version 0.14 to version 0.15. Then

again decreases in version 0.16. Maximum DIT in version

0.15. Higher DIT indicates greater design complexity.

Fig6.9: Lack of Cohesion of SweetHome3D

As the above graph shows, that LCOM is at level 0.46.

However, LCOM increases from version 0.11 to version 0.13.

Then slightly decreases in version 0.14. Again increases in

version 0.15 and decreases in version 0.16. Maximum LCOM

in version 0.15. As, high cohesion indicates good class

subdivision.

Fig6.10: Number of Children of SweetHome3D

In the above graph, NOC is at level o.27. However, slightly

decreases from version 0.11 to version 0.13.Then increases in

version 0.14 to version 0.15. Again decreases in version 0.16.

Minimum NOC in version 0.13. Higher NOC indicates

improper abstraction of the parent and misuse of sub classing..

The above table shows, five versions of SweetHome3D and

their relationship between metrics. The result shows that the

increases in No. of Classes, Lines of Code, Cyclomatic

Complexity, Response of a Class, Lack of Cohesion,

Coupling Between Object, Depth of Inheritance will decreases

Maintainability Index, Weighted Method per Class and

Number of Children from version 0.11 to version 0.13. Then

increases in No. of Classes, LOC, CC, WMC, RFC, and NOC

will decreases in LCOM, CBO, DIT and MI from version

0.13 to version 0.14. However, decreases in No. of Classes,

LOC, DIT, and NOC will increases in CC, WMC, RFC,

LCOM, CBO and MI from version 0.14 to version 0.15.

Again increases in Classes, LOC, DIT, NOC will decreases in

CC, WMC, RFC, LCOM, CBO and MI from version 0.15 to

version 0.16.Therefore, by looking at the trends change in No.

of Classes, LOC, CC, RFC, LCOM and CBO, it is concluded

that as the Classes increases, the LOC also increases, CC

increases, RFC also increases and CBO increases, LCOM also

increases. Classes, RFC, LCOM in this case are in direct

relationship with LOC, CC and CBO.

6.2 FindBugs
FindBugs is an Open Source Software created by Bill Pugh

and David Haveever, which looks for bugs in java code. It

was static analysis to identify hundreds of different potential

types of errors in java programs. FingBugs operates on java

byte code rather than source code.The change made from one

version to another are as follows:

Fig6.11: No.of Classes of FindBugs

As Shows in the above graph, the variations of the number of

classes have been analyzed. At the initial stages of the

product, the No. of Classes rises from version 1.2 to version

1.2.1. After then it decreases in version 1.3 and increase No.

of Classes in version 1.4. Then increase in version 1.5. The

maximum Classes are shown in version 1.2.1.

Fig6.12: Lines of Code of FindBugs

1.55

1.6

1.65

1.7

0.11 0.13 0.14 0.15 0.16

DIT

DIT

0

0.2

0.4

0.6

0.11 0.13 0.14 0.15 0.16

LCOM

LCOM

0

0.2

0.4

0.6

0.8

0.11 0.13 0.14 0.15 0.16

NOC

NOC

0
20
40
60

No.of Classes

No.of
Classes

0

1000

2000

3000

4000

1.2 1.2.1 1.3 1.4 1.5

LOC

LOC

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

16

The trend in LOC shows a consistent increase from version

1.2 to version 1.2.1. However, a major decrease in LOC

observed in version 1.3 and slight increases in version 1.4.

Again decreases on version 1.5. The study of first five

versions shows that there has been an increase in LOC, also

increases in Classes. Some functionality seems to be added

towards the end by adding more LOC. Therefore, it can

reasonably be concluded that there has been significant

additions in the product. Minimum LOC is shown in version

1.5.

Fig6.13: Cyclomatic Complexity of FindBugs

At the initial stages of the product, the Cyclomatic

Complexity rises from version 1.2 to version 1.2.1. After then

it slightly decreases in version 1.3. Then increases in version

1.4 and decreases in version 1.5. The minimum complexity is

shown in version 1.5.

Fig6.14: Maintability Index of FindBugs

Software is considered maintainable if its maintainability

index is in a higher range. The graph shows the variations of

MI. In version 1.2 MI is at level 93.9. Then it decreases from

version 1.2.1 to version 1.5.. Maximum value of MI shown in

version 1.2 which shows that version 1.2 is more maintainable

as compared to other versions.

Fig6.15: Weighted Method per class of FindBugs

The above graph of WMC reveals that, all the classes have a

WMC less than 10. WMC is at level 7.65 in version 1.2. Then

decreases from version 1.2.1 to version 1.4. Again increases

in version 1.5. Higher WMC indicates classes that may

bedifficult to understand and more difficult to maintain.

Minimum WMC is shown in version 1.4.

Fig6.16: Response for a class of FindBugs

The above graph shows, RFC is at level 28.29. However, a

major decreases in RFC observed in version 1.2.1 to version

1.3. The trend in RFC shows a consistent decrease from

version 1.3 to version 1.5.Minimum RFC is shown in version

1.4.

Fig6.17: Lack of Cohesion of FindBugs

As the above graph shows, that LCOM is at level 0.53 in

version 1.2. However, LCOM decreases from version 1.2 to

version 1.2.1. Then slightly increases in version 1.2.1 to

version 1.4. Again decreases in version 1.5. Maximum LCOM

in version 1.2. As, high cohesion indicates good class

subdivision.

Fig6.18: Coupling between Object of FindBugs

0

1

2

3

1.2 1.2.1 1.3 1.4 1.5

CC

CC

0

50

100

150

1.2 1.2.1 1.3 1.4 1.5

MI

MI

0

5

10

WMC

WMC

0

10

20

30

RFC

RFC

0

0.2

0.4

0.6

1.2 1.2.1 1.3 1.4 1.5

LCOM

LCOM

0

5

10

1.2 1.2.1 1.3 1.4 1.5

CBO

CBO

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

17

As shown in above graph, CBO is at level 8.45 in version 1.2.

After that a huge decreases observed in version 1.2 to version

1.3. Then it slightly increases in version 1.4. Then again

decreases in version 1.5. Minimum CBO in version 1.5.

Higher CBO indicates classes that may be difficult to

understand and more difficult to maintain.

Fig6.19: Depth of Inheritance of FindBugz

As shown in above graph, DIT is at level 1.17 in version 1.2.

After that a slightly increases observed from version 1.2.1 to

version 1.3. Then it slightly decreases from version 1.4 to

version 1.5. Minimum DIT in version 1.5. Higher DIT

indicates greater design complexity.

Fig6.20: Number of Children of FindBugs

In the above graph, NOC is at level 0.27. However, slightly

decreases from version 1.2 to version 1.2.1.Then increases in

version 1.3 to version 1.4. Again decreases in version 1.5.

Minimum NOC in version 1.2.1. Higher NOC indicates

improper abstraction of the parent and misuse of sub classing.

The above table shows, five versions of FindBugs and their

relationship between metrics. The result shows that the

increases in No. of Classes, Lines of Code, Cyclomatic

Complexity, Depth of Inheritance, and MI will decrease

Weighted Method per Class, RFC, LCOM, CBO and Number

of Children from version 1.2 to version 1.2.1. Then decreases

in No. of Classes, LOC, CC, WMC, RFC, CBO and MI will

increases in LCOM, DIT and NOC from version 1.2.1 to

version 1.3. However, increase in No. of Classes, LOC, CC,

LCOM, CBO will decreases in WMC, RFC, DIT, MI and

NOC from version 1.3 to version 1.4. Again decreases in

Classes, LOC, CC, LCOM, CBO, DIT, MI will increases in

WMC, RFC, and NOC from version 1.4 to version

1.5.Therefore, by looking at the trends change in No. of

Classes, LOC, CC, RFC, WMC, it is concluded that as the

Classes increases, the LOC and CC also increases, WMC

increases, RFC also increases. Classes in this case are in direct

relationship with LOC and CC, WMC also direct relationship

with RFC.

6.3 JACOB
JACOB is a JAVA-COM Bridge that allows you to call COM

Automation components from java. It uses JNI to make native

calls to the COM libraries. JACOB runs on x86 and x64

environments supporting 32 bit and 64 bit JVMs.As of

versions 1.8,the following things are true about JACOB: The

project license changes from the LGPL to BSD, JACOB is

now complied with java 1.4.2

Fig6.21: No. of Classes of Jacob

As Shows in the above graph, the variations of the number of

classes have been analyzed. At the initial stages of the

product, the No. of Classes decrease from version 1.9.1 to

version 1.10. After then it shows a consistent increase from

version 1.10.1 to version 1.11.1.. The maximum Classes are

shown in version 1.9.1, 1.10.1, 1.11 and 1.11.1.

Fig6.22: Lines of Code of Jacob

The trend in LOC shows a consistent increase from version

1.9.1 to version 1.10. However, a major decrease in LOC

observed in version 1.10.1 and slight increases in version 1.11

to version 1.11.1.Minimum LOC observed in version

1.10.1.Higher LOC increase the complexity of code.

0

0.5

1

1.5

1.2 1.2.1 1.3 1.4 1.5

DIT

DIT

0

0.2

0.4

0.6

0.8

1.2 1.2.1 1.3 1.4 1.5

NOC

NOC

51
52
53
54
55

No.of Classes

No.of
Classes

3200
3400
3600
3800
4000
4200

LOC

LOC

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

18

Fig6.23: Cyclomatic Complexity of Jacob

At the initial stages of the product, the Cyclomatic

Complexity increases from version 1.9.1 to version 1.10.

After then it slightly decreases in version 1.10.1 and

consistent in version 1.11. Then again increases in version

1.11.1. The minimum complexity is shown in version 1.9.1.

Fig6.24: Weighted Method per Class of Jacob

The above graph of WMC reveals that, all the classes have a

WMC more than 10. WMC is at level 12.35 in version 1.9.1.

Then increases from version 1.9.1 to version 1.10. Then

decreases in version 1.10.1 and consistent in version 1.11.

Again increases in version 1.11.1 Higher WMC indicates

classes that may be difficult to understand and more difficult

to maintain. Minimum WMC is shown in version 1.10.1 and

1.11.

Fig6.25: Response for a Class of Jacob

The trend in RFC shows a consistent increase from version

1.9.1 to version 1.10. However, a major decrease in RFC

observed in version 1.10.1 and slight increases in version 1.11

to version 1.11.1.Minimum RFC observed in version 1.10.1.

Fig6.26: Lack of Cohesion of Jacob

As the above graph shows, that LCOM is at level 0.31.

However, LCOM increases from version 1.9.1to version 1.10.

Then slightly decreases in version 1.10.1 and consistent in

version 1.11. Again increases in version 1.11.1. Maximum

LCOM in version 1.10. As, high cohesion indicates good class

subdivision.

Fig6.27: Coupling between Object of Jacob

As shown in above graph, CBO is at level 4.33 in version

1.9.1. After that a huge increases observed in version 1.10 to

version 1.11.1.Minimum CBO in version 1.9.1. Higher CBO

indicates classes that may be difficult to understand and more

difficult to maintain.

Fig6.28: Depth of Inheritance of Jacob

As shown in above graph, DIT is at level 1.55 in version

1.9.1. Then increases in version 1.10. After that a slightly

decreases observed in version 1.10.1. Then it slightly

increases from version 1.11. Then again decreases in version

1.11.1. Minimum DIT in version 1.9.1. Higher DIT indicates

greater design complexity.

1.3

1.4

1.5

1.6

cc

cc

0

5

10

15

WMC

WMC

22
24
26
28
30

RFC

RFC

0.28
0.3

0.32
0.34
0.36
0.38

LCOM

LCOM

4.2

4.3

4.4

4.5

4.6

CBO

CBO

1.4

1.5

1.6

1.7

1.8

DIT

DIT

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

19

Fig6.29: Maintainability Index of Jacob

Software is considered maintainable if its maintainability

index is in a higher range. The graph shows the variations of

MI. In version 1.9.1 MI is at level 104.97.Then it increases

from version 1.9.1 to version 1.11. After that value of MI gets

decreases in version 1.11.1. Maximum value of MI shown in

version 1.11 which shows that version 1.11 is more

maintainable as compared to other versions.

Fig6.30: Number of Children of Jacob

In the above graph, NOC is at level 0.29. However, slightly

increases from version 1.9.1 to version 1.10.Then decreases in

version 1.10.1 and remain consistent in version 1.11. Again

increases in version 1.11.1. Minimum NOC in version 1.9.1.

Higher NOC indicates improper abstraction of the parent and

misuse of sub classing.

The above table shows, five versions of Jacob and their

relationship between metrics. The result shows that the

decreases in No. of Classes, Lines of Code will increases CC,

Weighted Method per Class, RFC, LCOM, CBO , DIT, MI

and Number of Children from version 1.9.1 to version 1.10.

Then increases in No. of Classes, CBO and MI will decreases

in LOC, CC,WMC, RFC, LCOM, DIT and NOC from version

1.10 to version 1.10.1. However, increase in No. of Classes,

LOC, RFC, CBO and MI will decreases in CC,WMC,

LCOM, DIT, MI and NOC from version 1.10.1to version

1.11. Again increases in Classes, LOC, CC, WMC, RFC,

LCOM, CBO, DIT, and NOC will decreases MI from version

1.11to version 1.11.1.Therefore, by looking at the trends

change in CC, WMC, LCOM, DIT, NOC. It is concluded that

as the CC increases, the WMC, LCOM, DIT and NOC also

increases. CC in this case is in direct relationship with WMC,

LCOM, DIT and NOC.

6.4 JFree
JFreeChart is a free Java chart library that makes it easy for

developers to display professional quality charts in their

applications [7]. It supports bar charts, pie charts, line charts,

time series charts, scatter plots, histograms, simple Gantt

charts, Pareto charts, bubble plots, dials, thermometers and

more. The JFreeChart project was founded thirteen years ago,

in February 2000, by David Gilbert.

Fig6.31: No. of Classes of Jfree

As Shows in the above graph, the variations of the number of

classes have been analyzed. At the initial stages of the

product, the No. of Classes increase from version 0.5.6 to

version 0.6.0. After then it shows decrease from version 0.7.0

to version 0.7.1 and increases in version 0.7.2. The maximum

Classes are shown in version 0.7.0.

Fig6.32: lines of Code of jFree

The trend in LOC shows a consistent increase from version

0.5.6 to version 0.7.0. However, a major decrease in LOC

observed in version 0.7.1 and slight increases in version

0.7.2.The study of first three versions shows that there has

been an increase of LOC in these versions which is very

significant. Some functionality seems to be added towards the

end by adding more LOC. Therefore, it can reasonably be

concluded that there has been significant additions in the

product.

Fig6.33: Cyclomatic Complexity of jFree

102
104
106
108
110

MI

MI

0
0.1
0.2
0.3
0.4

NOC

NOC

38
40
42
44
46

No.of Classes

No.of
Classes

0

2000

4000

6000

8000

0.5.60.6.00.7.00.7.10.7.2

LOC

LOC

1.6

1.8

2

2.2

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

cc

cc

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

20

At the initial stages of the product, the Cyclomatic

Complexity rises from version 0.5.6 to version 0.7.0. After

then it slightly decreases in version 0.7.1 and increases in

version 0.7.2. The minimum complexity is shown in version

0.5.6.

Fig6.34: Weighted Method per Class of jFree

The above graph of WMC reveals that, all the classes have a

WMC less than 10. WMC is at level 8.18 in version 1.5.6.

Then increases from version 0.5.6 to version 0.6.0. Then

decreases in version 0.7.0 and consistent in version 0.7.1.

Again decreases in version 0.7.2 Higher WMC indicates

classes that may be difficult to understand and more difficult

to maintain. Minimum WMC is shown in version 0.5.6.

Fig6.35: Response for a Class of jFree

The trend in RFC shows a consistent increase from version

0.5.6 to version 0.7.2. The study of first five versions shows

that there has been an increase of RFC in these versions which

is very significant. Some functionality seems to be added

towards the end by adding more classes. Therefore, it can

reasonably be concluded that there has been significant

additions in the product.

Fig6.36: Lack of Cohesion of jFree

As the above graph shows, that LCOM is at level 0..

However, LCOM increases from version 0.5.6 to version

0.6.0. Then slightly decreases in version 0.7.0 to version

0.7.1. Again increases in version 0.7.2.Maximum LCOM in

version 0.6.0. As, high cohesion indicates good class

subdivision.

Fig6.37: Coupling between Object of jFree

As shown in above graph, CBO is at level 7.14 in version

0.5.6. After that a huge increases observed in version 0.5.6 to

version 0.6.0. Then it slightly decreases in version 0.7.0 to

version 0.7.1. Then again increases in version 0.7.2.Minimum

CBO in version 0.5.6. Higher CBO indicates classes that may

be difficult to understand and more difficult to maintain.

Fig6.38: Depth of Inheritance of jFree

As shown in above graph, DIT is at level 1.4 in version 0.5.6.

After that a slightly increases observed in version 0.6.0. Then

it slightly decreases from version 0.7.0 to version 0.7.2.

Minimum DIT in version 0.7.1. Higher DIT indicates greater

design complexity.

Fig6.39: Maintainability Index of jFree

Software is considered maintainable if its maintainability

index is in a higher range. The graph shows the variations of

MI. In version 0.5.6 MI is at level 116.82.Then it slightly

0

5

10

15

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

WMC

WMC

0

20

40

60

80

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

RFC

RFC

0
0.2
0.4
0.6
0.8

LCOM

LCOM

0

5

10

15

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

CBO

CBO

1.25

1.3

1.35

1.4

1.45

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

DIT

DIT

110

112

114

116

118

0.5.6 0.6.0 0.7.0 0.7.1 0.7.2

MI

MI

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

21

decreases in version 0.5.6 to version 0.6.0. After that value of

MI gets increases in version 0.7.0 to version 0.7.1. Again it

decreases in version 0.7.2. Maximum value of MI shown in

version 0.5.6 which shows that version 0.5.6 is more

maintainable as compared to other versions.

Fig6.40: Number of Children of jFree

In the above graph, NOC is at level o.46. However, slightly

increases from version 0.5.6 to version 0.6.0.Then decreases

in version 0.7.0 to version 0.7.2. Minimum NOC in version

0.7.2. Higher NOC indicates improper abstraction of the

parent and misuse of sub classing.

The above table shows, five versions of jFree and their

relationship between metrics. The result shows that the

increases in No. of Classes, Lines of Code, WMC, RFC,

LCOM, CBO, DIT and NOC will decreases MI, from version

0.5.6 to version 0.6.0. Then increases in No. of Classes, LOC,

CC, RFC will decreases in WMC, LCOM, CBO, DIT , MI

and NOC from version 0.6.0 to version 0.7.0. However,

decrease in No. of Classes, LOC, CC, LCOM, CBO, DIT and

NOC will increases in WMC, RFC and MI from version 0.7.0

to version 0.7.1. Again increases in Classes, LOC, CC, RFC,

LCOM, CBO, DIT will decreases MI, WMC, AND NOC

from version 0.7.1 to version 0.7.2.Therefore, by looking at

the trends change in LOC, CC, LCOM, CBO, DIT. It is

concluded that as the CC increases, the LOC and CC also

increases. CC in this case is in direct relationship with LOC

and Classes. As increases in LCOM, CBO and DIT also

increases. LCOM is in direct relationship between CBO and

DIT.

Table5.5: Comparison values of OSS using Analust4J

Project Name Versions LOC CC WMC RFC LCOM CBO DIT MI NOC

sweetHome3D 0.11 5646 1.66 4.21 19.82 0.46 7.59 1.66 112.86 0.27

0.13 6323 1.7 4.07 22.75 0.5 8.65 1.68 108.9 0.19

0.14 8654 1.83 4.66 25.98 0.49 8.55 1.64 105.86 0.25

0.15 4585 2.0 9.06 41.8 0.57 8.84 1.62 110.07 0.6

0.16 8095 1.78 4.75 26.92 0.44 8.67 1.63 106.53 0.25

FindBugs 1.2 3654 1.81 7.65 28.29 0.53 8.45 1.17 93.9 0.21

1.2.1 3799 2.0 6.53 26.31 0.45 7.64 1.18 97.31 0.23

1.3 1899 1.47 6.4 19.63 0.48 5.27 1.22 86.46 0.2

1.4 2082 1.56 5.81 19.62 0.48 5.63 1.16 80.58 0.19

1.5 1749 1.33 6.28 19.63 0.44 5.0 1.0 65.63 0.11

Jacob 1.9.1 3748 1.4 12.35 27.17 0.37 4.33 1.55 104.97 0.29

1.10 3739 1.5 12.58 27.31 0.36 4.48 1.77 106.35 0.38

1.10.1 3533 1.46 10.31 24.56 0.32 4.52 1.67 107.44 0.33

1.11 3562 1.46 10.31 24.94 0.32 4.56 1.67 108.0 0.33

1.11.1 4097 1.56 13.07 28.57 0.33 4.57 1.69 106.99 0.35

jFree 0.5.6 3585 1.79 8.18 32.93 0.49 7.14 1.4 116.82 0.46

0.6.0 5962 1.99 9.96 52.2 0.63 10.65 1.41 113.82 0.53

0

0.2

0.4

0.6

NOC

NOC

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.5, September 2016

22

0.7.0 6639 2.12 9.25 70.13 0.53 10.52 1.4 113.59 0.47

0.7.1 6262 2.03 9.31 72.9 0.49 10.07 1.31 116.8 0.39

0.7.2 6498 2.05 9.28 73.49 0.5 10.19 1.33 115.76 0.38

The result shows that the increases in Classes will increases

Line of Code and Coupling Between Objects increases Lack

of Cohesion and Depth in Inheritance also increases. But

when Classes decreases then MI increases. there is a sudden

rise in the value of LOC, then it means that there have been

some significant additions to the product. So it can be

concluded that LOC is in direct relationship with No. of

Classes. Similarly CBO also varies as LCOM and DIT varies

Using these metrics together, one can easily predict that how

maintainable a system is.

Table5.6: MI Values of Software

Software Versions MI

SweetHome3D 0.15 110.07

FindBugs 1.2 93.9

jFree 0.7.1 116.8

Jacob 1.11 108.0

According the above table, SweetHome3D version 0.15 have

been taken as highly MI of SweetHome3D, as No.of Classes

decreases in version 0.15 , will increases MI value that means

version 0.15 is highly maintainable as compared o other

versions of SweetHome3D. FindBugs version 1.2 have been

taken as highly MI of FindBugs, as MI value of version 1.2

increases and Software highly maintainable jFree version

0.7.1 have been taken as highly maintainable version. Then

Jacob version 1.11 have been taken as highly maintainable as

compared to previous versions. Result concluded that best MI

have been taken from jFree version 0.7.1 with 116.8 Metric

value.

7. CONCLUSION/FUTURE SCOPE
This paper, based on a data set of 5 versions of java open

source software namely SweetHome3D, FindBugs, Jfree and

Jacob, the relationship between different metrics and

maintainability of open source software have been

investigated. The work not only analyzed the influence of

individual metrics, but also reported their ability to predict

how maintainable a system is, when these metrics are used

together. Results show that these metrics are strongly related

to maintainability of open source software.

The result shows that the increase in No. of Classes will

increase Lines of Code and Coupling Between Objects

increases Lack of Cohesion and Depth in Inheritance also

increases. But when Classes decreases then MI increases.

There is a sudden rise in the value of LOC, then it means that

there have been some significant additions to the product. So

it can be concluded that LOC is in direct relationship with No.

of Classes. Similarly CBO also varies as LCOM and DIT

varies Using these metrics together, one can easily predict that

how maintainable a system is. . Result concluded that jFree

version 0.7.1 with 116.8 MI value is best among all the

software versions.

As different versions of open source software such as,

SweetHome3D, FindBugs, Jfree and Jacob JFreeChart have

been analyzed. Five versions of these software’s have been

taken and various metrics have been calculated. But if better

results are required and if results are required on a broad

basis, then more software versions should be taken. The

bigger the number of versions is, better will be the results.

Moreover, the value of different metrics can be calculated

based on each class in corresponding package. Also there are

no specific ranges defined for the metrics.Future work will be

to define the acceptable ranges for all the metrics so as to

maintain the quality of the software over its lifecycle.

8. REFERENCES
[1] “An Overview of Object-Oriented Design Metrics”

Daniel RodriguezRachel HarrisonRUCS/2001/TR/A

March2001.

[2] “Applying and Interpreting Object Oriented Metrics

“Presenter: Dr. Linda H. RosenbergTrack:

TrackMeasures/Metrics.

[3] CHIDAMBER-KEMERER (CK) AND LORENZE-

KIDD (LK) METRICS TO ASSESS JAVA

PROGRAMS Jubair J. Al-Ja'afer and Khair Eddin M.

Sabri King Abdullah II School for Information

Technology, University of Jordan, Jordan.

[4] International Journal of Engineering Research &

Management Technology March 2014 Volume-1, Issue-

2”Software Quality Metrics: Concept and Significance”.

[5] International Journal of Advanced Computer Science

andApplications, Vol. 3, No. 1, 2012 “Survey on Impact

of Software Metrics on Software Quality” Mrinal

SinghRawat1, Arpita Mittal2 Sanjay Kumar Dubey3.

[6] International Journal of Computer Applications (0975

8887) Volume 63– No.3, February2013 “Metrics

inEvaluating Software Defects “Chen-Huei Chou School

of Business College of Charleston Charleston, SC, USA

[7] https://sourceforge.net/projects/jfreechart/files/1.%20JFr

eeChart/

[8] https://sourceforge.net/projects/sweethome3d/files/Sweet

Home3D/

[9] McCabe Software. 2012. Metrics & Thresholds in

McCabe IQ. Available at: http://www.mccabe.com/pdf.

[10] O’Neill, D. 1996. National Software Quality Experiment

Results 1992-1996. In Proceedings of the Eighth Annual

Software Technology Conference. pp. 21-26.

[11] Rosenberg, L. 1997. Metrics for Object-Oriented

Environment, In Proceedings of EFAITP/AIE Third

Annual Software Metrics Conference.

[12] Watson, A. H., McCabe, T. J., and Wallace, D. R. 1996.

Structured testing: A testing methodology using The

cyclomatic complexity metric. National Institute of

Standards and Technology Special Publication 500-235.

IJCATM : www.ijcaonline.org

https://sourceforge.net/projects/jfreechart/files/1.%20JFreeChart/
https://sourceforge.net/projects/jfreechart/files/1.%20JFreeChart/
https://sourceforge.net/projects/sweethome3d/files/SweetHome3D/
https://sourceforge.net/projects/sweethome3d/files/SweetHome3D/
http://www.mccabe.com/pdf

