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ABSTRACT 

One of the major symptoms of many blood related diseases 

like diabetes or cardiovascular disease is the change in blood 

vessel features. These diseases can be detected by analyzing 

features of retinal vessels and proper treatment can be 

provided to patient in early stages of disease. Cost associated 

in detecting these changes and inconsistency in the detection 

procedure led to the automation of this process. Among other 

tasks, retinal blood vessel segmentation is the foremost and 

very challenging task from which various features are 

analyzed to detect the disease. In this paper, an effective blood 

vessel segmentation method from coloured retinal fundus 

images is presented. Segmentation is done by extracting the 

green channel from RGB retinal image. Firstly the vessel 

structure is estimated using morphological operations and 

then noise is removed using Rician Denoise method. After 

removing the noise, segmentation of blood vessels is carried 

out using thresholding method. Segmented image needs to be 

post-processed before considering it for examining any 

disease.  Proposed segmentation method was evaluated on 

two publicly available DRIVE and STARE datasets. 

Segmentation process achieves high level of accuracy than 

most of the previous techniques. Further, results have 

demonstrated that the proposed method is applicable for 

segmenting retinal vessels and taking measurements from it. 

Advantages of this method are its simplicity, fast 

segmentation process, high efficiency and scalability to deal 

with coloured retinal images of high resolution.   
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1. INTRODUCTION 
The leading cause of loss of sight among the peoples of 

working age is Diabetic Retinopathy (DR) [1]. It is due to the 

complications in diabetes-mellitus but not all diabetic patients 

are visually impaired. It has been studied that the 2% of the 

total diabetic patients suffer from blindness and almost one 

tenth suffer severe loss in sight in a time period of 10 to 15 

years [2, 3]. It has been estimated that the patients suffering 

from DR are going to double in 2030 as compared to year 

2000. 171 million patients were suffered from DR in 2000 and 

the toll is suspected to go as up as 366 million in 2030 [4]. 

Among other causes, the main cause that led to DR is growth 

in glucose level in blood which results in the damage of vessel 

endothelium. Earliest Symptoms of DR are microaneurysms 

i.e. small capillary dilations. Later on, various other effects 

start to show up like hemorrhages, macular edema and 

neovascularization. In final phase, retinal detachment occur 

which ultimately lead to blindness. 

Although, DR cannot be cured but loss of sight can be 

prevented if it is detected in early stages [1, 5]. However, 

symptoms start when loss of sight start taking place and at 

that time it is very hard to cure. So, one can ensure that if 

checking of diabetic patients by eye fundus test is done on 

annual basis, then DR can be detected and prevented before 

its growth [6]. But this solution suffers from many problems 

like huge number of patients and less experts. Due to which 

most of the patients does not get proper treatment. Also, it 

became a big financial problem for health department because 

it costs $1 billion alone in the U.S. in one year [7].  

From last decade, employment of computer aided diagnosis 

(CAD) system is playing a major role in detecting and 

preventing many diseases. A CAD system designed for DR 

can reduce the workload of specialists by filtering out the 

cases which are not affected by the disease. On the other 

hand, this system can reduce the cost of the test by a great 

amount [8]. 

For the automation of DR diagnosis, the detection of vessels 

is must as anomalies in vascular structure are the most 

important symptoms of DR. The vessel assessment requires 

vascular tree segmentation as a previous step for the further 

assessment. False positives can be reduced by getting 

information about blood vessel location for the diagnosis of 

microaneurysm and hemorrhage [9–12]. Vascular tree 

segmentation also proved advantageous for the other clinical 

purposes: in the examination of the retinopathy of prematurity 

[15], arteriolar narrowing [16, 17], hypertensive retinopathy to 

characterize vessel tortuosity [18], to examine hypertension 

and cardiovascular ailments [19-21], and computer-aided laser 

surgery [22, 23] and many other. The vascular tree 

segmentation also provides vital information so as to find the 

fundus features i.e. optic disc [24-26] and the favoea [27]. In 

addition to this, vascular segmentation can also be used to 

register multimodal images [13, 14].  

Rest of the paper is presented as follows: previous work done 

for the segmentation of blood vessels is presented in Section 

2. Materials and datasets required for the evaluation of the 

proposed system are discussed in Section 3. Section 4 presents 

the methodology applied to segment the blood vessels from 

retinal images. Then results are evaluated and discussed in 

Section 5. Finally the paper is concluded in Section 6. 

2. RELATED WORK 
Several methods for retinal vessel segmentation have been 

introduced. These can be categorized into two types: rule-

based methods and supervised methods. 

In case of rule-based methods, vessel tracking methods [28-

33] try to get the vascular structure by following vessel 

middle lines. Beginning from an initial set of points 

established automatically or by some manual labeling, vessels 

are tracked by resolving from local knowledge, the most 

suitable candidate pixel from those near to that presently 

under evaluation. While other methods use mathematical 

morphology [15], [34-36] to aid from a priori-known vascular 
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shape characteristics, such as piecewise linear and connected. 

After this, by applying morphological operators, the 

vasculature is filtered from the background for the last and 

final segmentation. Matched filtering techniques [37-42] 

generally use a 2-D linear structural element with a Gaussian 

cross-profile section, extruded or rotated into three 

dimensions for identification of blood vessel cross-profile 

(typically a Gaussian or Gaussian-derivative profile). The 

kernel is oriented into many rotations (generally 8 or 12) to 

adjust into vessels of distinct configuration after this image is 

thresholded to get the vessel silhouette from the background. 

In case of model-based locally adaptive thresholding, a 

common framework based on a verification-based 

mutlithreshold probing technique was introduced by Jiang et 

al. in [43]. On the other side, snake or deformable models 

have also been used in [44] and [45]. A snake is a model 

which is active and contour, once it is placed on the image 

close to the contour of interest, can transform to adjust the 

shape of the required structure by an iterative adaption. Other 

rule-based methods for retinal blood vessel segmentation were 

introduced in [46] and [47]. Martinez et al. [46] introduced a 

method based upon multi-scale characteristic extraction. In 

the method introduced in [47], blood vessel-like structures 

were extracted with help of Laplacian operator and noisy 

structures were pruned in accordance to centerlines, detected 

by means of the normalized gradient vector field.   

However, supervised methods are dependent on pixel 

classification, which based on classifying each pixel into two 

classes i.e. vessel and non-vessel. Classifiers are trained by 

supervised learning with data from manually-labeled images. 

Gardner et al. [48] introduced a back propagation multilayer 

neural network (NN) especially for vascular tree 

segmentation. After this histogram equalization, smoothing 

and edge detection, the image was split into 20 20 pixel 

squares (400 input neurons). The NN was then input with the 

values of these pixel windows for categorizing every pixel 

into vessel or not. Sinthanayothin et al. [49] also used a 

multilayer perceptron NN. Every pixel in the image was 

categorized by using the very first principal component, and 

the edge strength values from a 10 10 pixel sub-image placed 

on the pixel under examination, as input data. Niemeijer et al. 

[50] put into practice a K-nearest neighbor (k-NN) classifier. 

A 31-component pixel feature vector was established with the 

Gaussian and its derivatives up to order 2 at 5 distinct scales, 

augmented with the gray-level from the green channel of the 

real image. The assumption that the vessels are elongated 

structures is the base for the supervised ridge-based vessel 

detection process introduced by staal et al. [51]. Ridges were 

located from the image and then used as primitives to make 

line elements. Every pixel was then allotted to its closest line 

element, the image thus being divided into patches. For each 

pixel, 27 characteristics were initially computed and those 

providing the best class separability were finally selected. 

Feature vectors were categorized by using a k-NN classifier 

and sequential forward characteristic selection. Soares et al. 

[52] used a Gaussian mixture model Bayesian classifier. 

Multi-scale analysis was operated on the image by using the 

Gabor wavelet transform. The gray-level of the inverted green 

channel and the highest Gabor transform reaction over angles 

at four distinct scales were considered as pixel characteristics. 

Finally, Ricci and Pefetti [53] used a support vector machine 

(SVM) for pixel categorization as vessel or non-vessel. They 

used two orthogonal line detectors to construct the feature 

vector along with the gray-level of the target pixel. 

 

3. MATERIALS 
Popular datasets which are used for the evaluation of retinal 

blood vessel segmentation are DRIVE and STARE. In both 

datasets, images are divided into training and testing classes. 

Training class include the images with ground truth where the 

segmentation is done manually by the experts. Testing class 

include images which are to be tested to check the validation 

of the proposed system. 

DRIVE dataset [54] contain 40 images taken from the colour 

fundus camera Canon CR5. Resolution of image is kept fixed 

at 768*584 pixels and format in which images are stored is 

TIFF. Field of view for the camera is 45° which is 

approximately 540 pixels and is a non mydratic 3CCD 

camera. The images were obtained in a screening program 

held in Netherlands for retinopathy diabetic. There were 453 

subjects with age greater than 30 years. Testing set is divided 

further into set X and set Y. There are 577,649 pixels which 

are marked as vessels and 3,960,532 pixels which are marked 

as non-vessel in set X. In set Y, pixel marked as vessel is 

556,532 and as non-vessel are 3,981,611 pixels. 

 

Fig. 2 DRIVE: (a) healthy image, (b) image with pathologies 

STARE dataset [55] contain 20 images taken by TopCon 

TRV-50 camera. Resolution of images is kept at 700*605 

pixels and the images are stored in a PPM format. Field of 

view for this dataset is 35°. Manual segmentation was done by 

two observers. One of them segmented 10.4% pixels as vessel 

while other has segmented 14.9%. The difference in the 

segmented pixels lies in the fact that second observer 

segmented more number of thinner vessels than the first one. 

 
Fig. 3 STARE: (a) healthy image, (b) pathological image 

4. METHODOLOGY 
Proposed approach for blood vessel detection and 

segmentation is presented in this section. Fundus retinal 

images are firstly preprocessed to remove the noise and 

enhancing blood vessels. The segmentation of blood vessels is 

done by estimating vessels using morphological operations 

from green channel. Finally the segmentation results are 

compared with the ground truth to evaluate the performance 

of the proposed system. Design of the methodology followed 

is shown in Figure 4. 
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Figure 4: Proposed Segmentation Process 

4.1 Green Channel Selection 
The colored image of the retina is captured using fundus 

camera in which each color channel provides information 

about the anatomical and pathological structures of the retina. 

The vascular structure is represented using green channel as it 

has higher contrast between vessels and retinal background as 

compared to other channels and it was also considered in 

existing work of vessel segmentation [56-57]. Therefore, only 

green channel is considered for segmentation of vascular 

structure. 

 

a. RGB Retinal Image 

 

b. Green Channel 

 

c. Blue Channel 

 

d. Red Channel 

Figure 5: RGB Channels of Fundus Retinal Image. 

4.2 Blood Vessel Estimation 
The blood vessel structure is estimated by normalizing the 

retinal image. It is achieved by subtracting the original image 

from estimated background retinal image. The background 

image is estimated using morphological operations. 

Morphological operations are collection of techniques used 

for extracting components that are useful for representation 

and description of shape regions such as boundaries, skeletons 

and convex hull [58]. The most basic morphological 

operations are dilation and erosion. On the basis of these 

operations morphological opening and closing operations are 

defined. The closing operation is given as: 

𝑝 = (𝑓 • 𝑔) = (𝑓 ⊕ 𝑔) ⊖ 𝑔 

Where 𝑓 is the input image, 𝑔 is the structuring element, ⊕
 denotes dilation and ⊖ denotes erosion. The morphological 

closing operation has been used in this work to estimate 

background of retinal area. Since closing operation suppresses 

dark details smaller than the structuring element. Therefore it 

will eliminate the vessels present in the retinal image to 

produce the background of retina. Here, size of the structuring 

element is the parametric value on which the background 

estimation depends. Larger the size of structuring element, 

more the blurred retinal image will be. Vessel structure is 

estimated as: 

𝑠 =  𝑓 − 𝑝  

The vessel structure estimation is the absolute difference 

between original image and estimated background retina. 

 
Background Estimation 

 
Vessel estimation 

Figure 6:Blood Vessel Estimation 

4.3 Noise Removal 
Since noise from the original input image is not removed; it 

remains exists after vessel estimation. Therefore, it is required 

to de-noise the retinal image while preserving the vascular 

structure as shown in Figure 7. The process of denoising of 

image includes transformation of image where noise is 

identified easily. Then inverted transformation is applied to 

reconstruct the noise free image [57]. Rician denoise is a total 

variation based algorithm that tries to remove noises. 

Assuming 𝑓 = 𝑢 + 𝑛, where 𝑢 is the original image; 𝑓 is the 

observed image with Rician noise 𝑛.  

 

Figure 7:Enhanced Image 

Green Channel Selection 

Blood Vessel Estimation 

Noise Removal 

Vessel Segmentation 

Length Filtering and CCA 

Output Image 
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The problem is to recover original image 𝑢 from a noisy 

image 𝑓. The following formulation can be used: 

𝑚𝑖𝑛
𝑢 ∈ 𝐵𝑉(𝛺)

  ∇𝑢 𝑑𝑥 + 𝜆  
𝑢2 + 𝑓2

2𝜎2
− 𝑙𝑜𝑔𝐼0(

𝑢𝑓

𝜎
) 𝑑𝑥

𝛺
𝛺

 

where, 𝜆 is used to balance total variation, Ω is the domain of 

the image, 𝜎 is distribution of the Rician noise and 𝐼0(. ) is the 

modified Bessel function of order zero. The optimized code 

which solves the minimization problem is proposed by Tristan 

Ursell using gradient descent where gradient is given as: 

𝜕𝑢

𝜕𝑡
= ∇.

∇𝑢

 ∇𝑢 
−  

𝜆

𝜎2
𝑢 +

𝜆

𝜎2

𝐼1(
𝑢𝑓
𝜎2)

𝐼0(
𝑢𝑓
𝜎2)

𝑓 

The major calculations which are involved in the gradient 

computation are curvature term ∇.
∇𝑢

 ∇𝑢 
, where a finite 

difference stencil computation kernel is used in actual 

numeric computation [58]. 

4.4 Segmentation 
Vascular structure of the retinal image is segmented using 

thresholding method proposed by Phansalkar et al. [59]. 

To make their method suitable for our problem, we have 

modified their method by setting thresholding scheme to 

global instead of local. It is done by setting the size of local 

search window to whole image. Then calculated threshold is 

used for segmenting the vascular structure. It is given as: 

𝑇 = 𝑚𝑒𝑎𝑛 𝑓  1 + 𝑝𝑒−𝑞∗𝑚𝑒𝑎𝑛 (𝑓) + 𝑘  
𝑠𝑡𝑑(𝑓)

𝑅
− 1   

The parametric values of the method are set as: 𝑘 = 0.25,
𝑝 = 2, 𝑞 = 10 𝑎𝑛𝑑 𝑅 = 0.5. The selection of these 

parameters is based on accuracy evaluation by selecting 

several combination values on individual datasets. The final 

set of combination which is selected is one which produces 

highest accuracy. These parametric values are kept fixed for 

all images of datasets. 

 

Figure 8: Segmented Image 

4.5 Post Processing 
Post Processing: To further increase the performance of 

proposed algorithm, two post processing operations are 

applied on segmented image. These operations are area 

filtering and spur pixels elimination. Area filtering is applied 

to remove those small isolated and unwanted regions which 

do not belong to vascular structure. It is done using Connected 

Component Analysis (CCA) technique in which image is 

labeled into different components based on their pixel 

connectivity (either with 4 or 8-way connectivity) [60]. In this 

work 8-way connectivity is used for labeling and then for each 

labeled component area is calculated to remove false regions. 

False regions are that whose area is less than A, else is 

vascular structure. Further, spur pixels are also removed 

which are presented at edges of vessel structure to obtain final 

output image as shown in Figure 9. 

 

Figure 9: Final Segmented Image 

5. RESULTS AND DISCUSSION 
The performance of the proposed algorithm is evaluated on 

two publically available retinal image datasets namely, 

STARE and DRIVE for automatic segmentation of vascular 

structure. These datasets are used by many researchers to test 

performance of their algorithms. STARE dataset consists of 

total 20 colored retinal images and DRIVE dataset consists of 

total 40 colored retinal images divided into two sets: training 

and testing. Both datasets are provided with hand labeling of 

vessels by two different specialists. In existing work, hand 

labeling provided by first specialists is considered as 

groundtruth for performance evaluation. Also, vessel 

segmentation (hand labelling) provided by second specialists 

is evaluated against first for performance analysis.  

The proposed algorithm is implemented on system having 

MATLAB 2016 development environment and Intel core I7 

CPU running at 1.43 GHz and 8 GB RAM. It takes on an 

average a sec to process each retinal image. 

We evaluated our method in terms of sensitivity (SE), 

specificity (SP) and accuracy (ACC) metrics which are given 

as: 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Where True Positive (TP) represents correctly classified 

vessel pixels, False Positive (FP) represents non-vessel pixels 
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incorrectly classified as vessel, False Negative (FN) 

represents vessel pixels incorrectly classified as non-vessel 

and True Negative (TN) represents correctly classified non-

vessel pixels. 

The vascular structure for both datasets is extracted by setting 

the parameters as follows: disk structuring element for the 

background estimation is set to 5 and area filtering threshold 

is set to 50. Results obtained from proposed methodology are 

tabulated in Table 1 and Table 2. Further it is compared with 

state of the art techniques in Table 3. 

Table 2: Performance Metrics for Drive Dataset 

Image No. SE SP ACC 

1 0.751598 0.976396 0.946929 

2 0.767162 0.981553 0.949433 

3 0.684182 0.977028 0.934363 

4 0.651946 0.989855 0.944801 

5 0.63865 0.990249 0.942537 

6 0.622582 0.987518 0.936017 

7 0.679273 0.976875 0.937472 

8 0.640952 0.984056 0.940932 

9 0.567988 0.992116 0.9423 

10 0.693503 0.982526 0.948006 

11 0.666712 0.98083 0.940109 

12 0.66669 0.983437 0.943789 

13 0.630442 0.986812 0.93629 

14 0.724306 0.980951 0.950689 

15 0.754277 0.964958 0.943081 

16 0.64402 0.984472 0.939928 

17 0.668665 0.979009 0.940744 

18 0.718062 0.974492 0.945038 

19 0.813461 0.978322 0.958481 

20 0.725684 0.976129 0.94942 

Average 0.685508 0.981379 0.943518 

 

It can be seen from the table 1 that proposed methodology 

performs segmentation with an average accuracy of 94.35% 

for DRIVE dataset. Further it is observed that average 

specificity is 98.13% and sensitivity is 68.55%. 

Table 2: Performance Metrics for Stare Dataset 

Image No. SE SP ACC 

1 0.648517 0.951438 0.918498 

2 0.593353 0.940638 0.90867 

3 0.751578 0.953227 0.936806 

4 0.444455 0.991712 0.935164 

5 0.720731 0.96931 0.938772 

6 0.834181 0.969297 0.95749 

7 0.857677 0.965181 0.953381 

8 0.822951 0.966613 0.951936 

9 0.851241 0.966791 0.954376 

10 0.817413 0.9625 0.946529 

11 0.817296 0.967834 0.953143 

12 0.868554 0.97042 0.95967 

13 0.798127 0.965653 0.94518 

14 0.78545 0.968743 0.945936 

15 0.699207 0.97392 0.941601 

16 0.601173 0.983508 0.933169 

17 0.743226 0.985312 0.955605 

18 0.583248 0.994213 0.965741 

19 0.650348 0.985354 0.965612 

20 0.536074 0.971001 0.931404 

Average 0.72124 0.970133 0.944934 

 

When evaluated on STARE dataset, an average of 94.49% 

accuracy has been obtained. Further it is analyzed that average 

values for specificity is 72.12% and sensitivity is 97.01%. 

Table 3: Comparison with State of the Art Techniques 

Method Name Drive STARE 

2nd Human observer 0.9471 0.9348 

Jaing and Mojon [19] 0.9212  0.9009  

Martinez-Perez, et al. [23]  0.9344  0.9410  

Cinsdikici and Aydin [24]  0.9293  - 

Fraz, et al. [25] 0.9430  0.9442  

You, et al. [26]  0.9434  0.9497 

Ana Salazar-Gonzalez et al. 

[105] 
0.9412 0.9441 

Staal, et al. [20] 0.9441  0.9516  

Proposed Work 0.9435 0.9449 

Table 3 compares the proposed method with the state of the 

art techniques developed for blood vessel segmentation. It can 

be deduced that the proposed method outperforms other and 

can be implemented in real world applications. 

6. CONCLUSION 
An enhanced technique for blood vessel segmentation from 

retinal images taken by fundus camera for the purpose of 

detecting diseases is presented in this paper. Basic 

morphological and thresholding methods are used for 

extracting the vascular structure and segmenting blood vessels 

respectively from green channel of the RGB retinal image. 

For removing noise from images, Rician Denoise technique is 

used. Proposed technique is implemented on two publicly 

available datasets, DRIVE and STARE. On evaluating the 

results on the basis of Sensitivity, Specificity and Accuracy, it 

has been found that the implemented system outperforms 

most of state of the art techniques and shows comparable 

results w.r.t. others. Obtained Sensitivity values are 68.55% 

and 72.12%, specificity values are 98.13% and 97.01%, and 

accuracy values are 94.35% and 94.49% respectively for 

DRIVE and STARE datasets. Simplicity, robustness and 

effectiveness of the proposed segmentation system and its fast 

implementation make it a suitable choice as a tool for being 

integrated into pre-screening systems for early detection of 

DR. 
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