
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

33

Website Localization Techniques

Waseem I. Bader
Al-Salt College for Human Sciences,

Al-Balqa Applied University,
 Al-Salt, Jordan

ABSTRACT

The world is becoming a smaller place with the fast

communication advances that are going on, nowadays

ambitious organizations are looking to upgrade their

businesses from serving local regions to global ones. To

achieve this internationalizing approach many linguistic and

cultural differences need to be considered and website

programmers and designers are faced with many technical

issues. This paper will try to present different technical

techniques that can be used to accomplish localization in

websites.

The code samples in this paper were implemented using the

ASP.net programming language, but it can be implemented in

other development languages and environments using the

same concepts.

Keywords

Website Localization, Website Translation,

Internationalization, Multi-language website, Dynamic

Website

1. INTRODUCTION
Websites nowadays are considered the most important

advertising, sales, marketing, technical support or even public

relation part of any company, organization or personal figure.

In the ever fast growing communication era nowadays, a good

website can turn any small organization serving local

communities into becoming a worldwide one. [1]

This can be done through good website design, content and

service, but it cannot be done without taking care of

Localization.

Website localization is a term used to reflect on the process of

preparing a website to have different views and content that is

linguistically and culturally acceptable to different clients’

from different countries or regions outside the local one.

Website Localization is concerned with making the client

experience with a website as local as possible to make the

client feel as if this website was created just for his own

country, region or even oneself! [2]

Website localization deals with translating website contents to

clients’ local languages, viewing the layout in the appropriate

local orientation, using locally interpreted images, media or

colors, correct regional date, time, currency formats, and all

the aspects of cultural differences between world regions.

As much as localization is important today, it is quite a

complex and hard task to achieve, that is because it has to deal

with a lot of different aspects of cultural difference that need

to be overcome and sometimes the cost to implement

localization exceeds an organization ambition to do so.

The following figure shows some of the world languages with

most native speakers including bilingual speakers, the figure

clearly shows that millions of humans speak certain languages

and they are completely lost as an audience to a certain

organization if their language/culture is not supported in its

website. [3]

Figure 1: Some World Languages with Most Native

Speakers

Websites range from simple static-content with few pages to

huge portals with database-driven sites with millions of views.

To localize a website first it is necessary to analyze its

structure and needs and determine the clients regions of

interest, and determine the differences between the various

local versions. Preparing a website for localization before the

development process is a key factor in its success because

doing so after a website is developed is a much harder task to

do. [4]

Here is an example of the Website of Al-Balqa Applied

University in Jordan where the same page is viewed either in

English or in Arabic based on the user preference.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

34

Figure 2: Website Localization Example

2. LOCALIZATION ANALYSIS &

PREPERATION
Localization should be prepared alongside the initial analysis

phases of a website development cycle because a great deal of

programming and design will be affected with the localization

needs [5]. Here are some key points to take care of while

preparing a website for localization:

2.1 Determine what to be localized
The first step should clearly identify what are the culturally-

dependent parts of a website that need to be changed between

the different versions, for example parts where text content

need to be translated to different languages, or parts of the

page which will have various formats based on different

cultures for example numbers, dates, times, currency,

addresses and telephone numbers formats, or even the

orientation of the entire layout in the website. [6]

In general there are some common standards that should be

taken into consideration when applying website localization

these standards are published by the International

Organization for Standardization. Here are some examples:

[7]

• Common ISO 639: Language Codes (en = English,

ar = Arabic, ch = Chinese)

• Common ISO 3166: Country Codes (us = USA, ru

= Russia, cn = China)

• Common ISO 4217: Currency Codes (USD =

United States of America Dollar, EGP = Egyptian

Pound, JPY = Japanese Yen)

• ISO 8601: Date Format (YYYY-MM-DD = year-

month-day ex. 2016-08-17)

• UPS: Universal Product Code for barcode

symbology

• UPU: Universal Address Formats (numbers used in

postal code to determine one’s region, department,

zone, sector, village)

• World Wide Web Consortium (W3C) HTML

Specifications

2.2 Text Translation
Text content translation is the most integral part of website

localization because in general a client is interested in the

content of the website and should simply be able to

understand it in his own language if possible. This step can be

done by automatic translation applications or online

translators but this might cause the resulting translated content

to be weak or misunderstood besides many linguistic and

grammatical errors are often found in their results, so using

human translators with the targeted native language

experience is much more useful and accurate if the

organization has the ability to provide them. [8]

It is important to know that fonts of different languages need

to be provided to support the characters of the targeted

language and view the content properly on a localized website

and the programmer of the website need to specify the correct

character set encoding to be used in each version of the

localized website. This is done in HTML through the use of

“meta” tag “charset” attribute as shown in the following

example for an Arabic content website:

Figure 1: Website Character Set in HTML

Here is a sample list of character set encodings that can be

used to support different languages in a website:

Figure 2: Sample HTML Character Set Encoding Values

2.3 Localized Symbols & Media
In an internationalized-intended website, cultural-dependent

symbols should be avoided, such as icons representing local

holidays, historical events or slogans instead these

information can be used on the local versions of the website

but not on the global one.

Images and media in general need to suit the local culture of

the clients as well, for example on an international educational

website, the Arabic version of the website cannot have an East

Asian student representing it and vice versa.

<meta http-equiv="Content-Type"

content="text/html; charset=utf-8" />

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

35

2.4 Maintaining Localized Versions
The developed localized website should take great deal of

keeping the content of all the different versions of the website

up-to-date and the data should be consistent between the

localized versions with no contradictions between them.

3. LOCALIZATION TECHNIQUES
In the following section different techniques that can be used

to enable localization in a website will be discussed:

 Separate Localized Versions

 Resource Files

 Database Tables

3.1 Separate Localized Versions
Technique in achieving website localization is to provide

separate versions of a webpage or web part for each

language/culture needed.

For example, if a website needs to be in two languages

(English & Arabic), there would be two separate websites or

web pages for each language, each one is translated and

oriented in the appropriate way with the ability to browse to

the other version through hyperlinks as shown in the next

figures:

Figure 3: English Version of a Website (PageEn.html)

Figure 4: Arabic Version of a Website (PageAr.html)

Although this technique has provided some kind of

localization to a website but that can only be used in some

small websites with mostly static content and low need of

updating, but it is considered a very bad approach to achieve

website localization. Some of the many disadvantages of this

technique is that it is necessary here to provide a separate

website for each language targeted, and if anything in the

layout of the webpage must be changed then the same change

is repeated in every page for every language so the

maintenance and updating of such a website will be a huge

task specially for a big company or website with fast changing

content or live data.

3.2 Resource Files
A resource file can be a simple text file (XML file) or a class

layer that is prepared for each targeted language in a localized

website, each file name must specify the language/culture that

it is prepared for by using the common ISO codes mentioned

before [9]. For Example, for English and Arabic versions of a

website, two resource files would be prepared, if the default

language is desired to be in English then the Default file name

would be for example “myResources.resx”, and the Arabic

file name would be “myResources.ar.resx”.

A separate culture for each language can also be specified by

using different resource files for each language/culture pair,

for example if there is a need to have different versions for

Saudi Arabia and Egypt while both countries languages is

Arabic, then two separate resource files are needed named

“myResources.ar-sa.resx” and “myResources.ar-eg.resx”,

where “ar-sa” language/Country code stands for the resource

file of Arabic language in Saudi Arabia Culture and the “ar-

eg” stands for Arabic Language in Egypt Culture version.

These files are constructed of a resource name/value pairs and

would contain actual phrases, examples, media paths, etc. for

each targeted language/culture as shown in the following

example:

Figure 5: Resources Files Example Sample Data

In the previous example two resources files were prepared,

one for the default English language “myResource.resx” and

the other for the Arabic language “myResource.ar.resx”. Each

file contains four resources named (General Align, General

Title, Heading1, Paragraph1) but each file contains different

values for each resource name translated into the targeted

language or has its unique value such as the case in (right/left)

for the general alignment resource name. Both files are stored

within the project.

Now in the desired web page, instead of using static data for

titles, headings, paragraphs, etc. a reference to the resource

name to be used is placed in a certain part of the webpage by

using the “GetGlobalResourceObject” built-in ASP.net

function. The general Syntax of the function is:

Figure 6: GetGlobalResourceObject Syntax

GetGlobalResourceObject("resource filename", "resource
name")

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

36

Where in the first parameter the desired resource file name to

be used is specified, in our example it would be

“myResource”. Notice that the language or culture part in the

first parameter is not specified, but the general resource file

name without the detailed localization language/culture parts

is used and later the targeted file based on the page culture

will be used. In the second parameter the resource name is

specified in the used resource file, in the example one of the

four resource names (General Align, General Title, Heading1,

Paragraph1). The function will return the correct value based

on the current language/culture settings and resource name.

For example to get the value of the GeneralAlign resource

name from myResource resource files, the syntax would be:

Figure 7: GetGlobalResourceObject Example Code

Let’s take a look at a sample page that would use this

technique to achieve localization:

Figure 8: Resource Files Localization Example

The generated page in its default values would show the

English values of the default resource file “myResource.resx”

as shown in figure:

Figure 9: Resource Files Localization Example Result in

Default

To change the current language “UICulture” attribute is

added in the Page tag in the first line as following:

Figure 10: Changing Locale in a page

This would inform the webpage to show the content of the

Arabic version of the resources files used in the page, in our

example it will show the content of “myResource.ar.resx” and

the resulting page will show content in Arabic as shown:

Figure 11: Resource Files Localization Example Result in

Arabic

To specify language/country resource file, the UICulture

value is only needed to be set to the correct language and

country codes as did before in naming the resource files. For

example to set the UICulture to the Egyptian Arabic version

of the webpage the value would be “ar-eg” instead of just

“ar”.

Notice that in the previous examples, the resource values are

accessed in the webpage using ASP.net inline expressions

which has the syntax of <%= expression %> [4] [10]. This

allows us to access server-side variables or expressions within

the HTML code, notice how in the previous example it is used

to specify the HTML paragraph align attribute to be left

oriented in the default English view and to be right oriented in

the Arabic view.

This technique can also be used to assign dynamic resource

values to Server-side controls by using the inline bind

expressions, for example to set the same values on an ASP.net

Label control in the page, the syntax would be:

Figure 12: Binding a Resource to a control attribute.

Here the Text attribute will have the same value of the

Heading1 resource from “myResource” based on the current

Language/Culture and the same feature can be applied to

other control attributes like ForeColor, BackColor, etc.

<asp:Label ID="lblHeading1" runat="server"
Text="<%$ Resources:myResource,Heading1 %>" />

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="TestResources.aspx.cs"
Inherits="Project.TestResources"%>

<html>

<body>

 <form id="form1" runat="server">

<p align="<%=
GetGlobalResourceObject("myResource","GeneralAlign")
%>">

<%= GetGlobalResourceObject(

"myResource", "GeneralTitle")%>

<%= GetGlobalResourceObject(

"myResource", "Heading1")%>

<%= GetGlobalResourceObject("myResource",
"Paragraph1")%>

</p>

</form>

</body>

</html>

GetGlobalResourceObject("myResource",
"GeneralAlign")

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

37

The inline Bind expression has the syntax of <%$ bind

variable/reference %> and is used with server-side controls’

attributes.

To change the Language/Culture for a single web page

through code, the built-in “InitializeCulture” function that is

called early in the page’s life-cycle is overridden and in it the

desired UICulture is set as shown:

Figure 13: Changing Locale in a page through code

Notice that there are two important localization page

properties used, Culture and UICulture, Culture value affects

all non visual components such as Date, Time, Currency,

Numbers, etc. on a page, while UICulture affects the visual

elements such as the ones used in the resource files examples.

To change the Language/Culture globally for the all the pages

in the entire website the general configuration file

“web.config” is used by adding a globalization node under the

System.web node as shown:

Figure 14: Changing Locale Globally

To change the Language/Culture for the all the pages in the

entire website through code, the “Global.asax” file can be

used, which affects all the web pages in a project, add an

“Application_BeginRequest” function that will be called

upon every request to every page, and set the correct

language/culture as following:

Figure 15: Changing Locale Globally through Code

As seen this technique is quite powerful in customizing a

website to view different localized views depending on the

prepared language/Culture resource files. This avoids the

problem of having separate websites for each language so the

maintenance and updating of such websites is quite forward

and simple.

Needless to say that if there is a lot of language/culture pairs

to be targeted in a website, then a separate language/culture

resource file need to be prepared for it, and adding a new

record or removing an existing one or even changing its name

will require updating that in every single file. This problem

can be somehow reduced using the other techniques.

3.3 Database Tables
Localizing big fast changing websites is better performed

using Databases. This technique is quite popular and suitable

to avoid most of the problems faced in websites localization.

In this technique instead of using separate resource files for

each language/culture as seen in the previous section,

database tables are created to store all the translated contents

and the different values for each language/culture in often few

database tables. [11]

In this section two simple database designs will be discussed

that'll be used to sell items in a multilingual website. Although

both will provide localization but one design will be

considered as a bad database design and the other as a good

one.

The basic requirements for the database are:

• Each item will have a name, description and price.

• The design must support English and Arabic

languages.

3.3.1 Database Localization - The Bad Design
This database design is used in many websites and it does

provide localization but it is harder to maintain and upgrade as

will be seen later, in this technique one table is usually needed

with every translated value has its own column in the table as

shown.

Figure 16: Items Database Table Structure - Bad Design

Every item has a unique identifier, English name, Arabic

name, English description, Arabic description and price, some

sample data are shown in the next figure:

Figure 17: Items Database Table Sample Data - Bad

Design

Now in the display web page, the desired content is displayed

to the user by retrieving the data from the appropriate

language columns in the table, if the English version is

targeted, the English columns are retrieved for the item name

public class Global : System.Web.HttpApplication
{
void Application_BeginRequest
(object sender, EventArgs e)
{
System.Threading.Thread.CurrentThread.CurrentCulture =
System.Globalization.CultureInfo.CreateSpecificCulture("ar");
System.Threading.Thread.CurrentThread.CurrentUICulture =
new System.Globalization.CultureInfo("ar");
 }
 }

<system.web>
<globalization culture="ar-SA" uiCulture="ar-SA"/>
…
</system.web>

protected void InitializeCulture()
{
 Page.Culture = "ar-SA";
 Page.UICulture = "ar-SA";
}

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

38

and description, and if the Arabic language is targeted the

corresponding Arabic columns are retrieved. A sample code

snippet to retrieve the desired language content is shown in

the following figure:

Figure 18: Items Server-Side Code Example - Bad Design

In the previous example, items are read from the database

table through SQL and a user-defined layer called

“DataLayer” is used, items identifiers and prices are read for

both languages because there is no change between them, but

depending on the current viewing language items’ names and

descriptions are chosen through a conditional statement.

Notice that the targeted language is stored in the current client

session and further detailed examples on using sessions for

localization are explained in the next section.

Although this approach has provided localization to the

current webpage, but it is considered a bad database design,

because in this approach every piece of information that must

be localized will need to have a separate column for each

language/culture needed. So in case of huge contents and

many languages expected to be provided, the required

database tables will have a big complex structure and

changing any column or adding a new one will be quite hard

to do.

3.3.2 Database Localization - The Good Design
To overcome the disadvantages of the previous database

design approach, the previous table will be split into multiple

separate tables as shown in figure:

Figure 19: Items Database Table Structure - Good Design

In this design data are stored in three separate tables, some

sample data for the three tables is shown in the following

figure:

Figure 20: Items Database Table Sample Data - Good

Design

The “CulturesTable” contains the supported

languages/cultures in the database, The “ItemsTable” contains

the items identifiers and their language-independent

information in our case the price of the item, while the

“ItemsLocaleTable” contains the join of the previous two

tables with its language-dependent information, hence the

item identifier is joined with the language/culture identifier,

along with the item’s name and description specific for the

current culture.

The edited sample server-side code will have the SQL select

statement join the three tables and select the appropriate

language/culture needed. Notice that the conditional

statements have been omitted because only the correct

translations are returned from the SQL statement.

String currentLanguage = ""+Session["curLang"];
DataLayer dl = new DataLayer();
DataReader itemReader = dl.getDataReader(" select
ItemId, ItemNameEn, ItemNameAr, ItemDescEn,
ItemDescAr, ItemPrice from ItemsTable ");
while (itemReader.Read())
{
String itemId;
String itemName;
String itemDesc;
String itemPrice;
itemId = ""+ itemReader["ItemId"];
itemPrice = "" + itemReader["ItemPrice"];
if (currentLanguage.Equals("en"))
{
 itemName = ""+ itemReader["ItemNameEn"];
 itemDesc = "" + itemReader["ItemDescEn"];
}
else if (currentLanguage.Equals("ar"))
{
 itemName = "" + itemReader["ItemNameAr"];
 itemDesc = "" + itemReader["ItemDescAr"];
}
//code to display item
}
da.closeConnection();

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

39

This “good” localization database design approach enables us

to easily maintain the database because new languages can be

added to the website by only adding new records to the tables

without the need to change the structure of the tables.

Using the same database design discussed here, the resources

files technique can be substituted by using a similar structure,

and still avoids the disadvantages of having multiple

language/culture files. The next figure shows the same

example used in the previous resource files section designed

as a database.

Figure 21: Database Design Substitute for Resources Files

Notice that the disadvantages discussed in using resources

files are solved through this technique, by having few tables

to maintain for all the different languages/cultures.

4. DYNAMIC SERVER-SIDE

LOCALIZATION
In this section some programming techniques will be

discussed that can be quite useful in helping website

programmers and designers to provide localization

capabilities with minimum maintenance effort as possible.

These techniques will be discussed through code and will deal

with a scenario of an English/Arabic supporting website but it

can easily be upgraded to deal with any language/culture.

First of all a “LocalAccess” layer is prepared that will contain

the necessary localization functionalities.

Figure 22: LocalAccess Class/Layer

The First function to prepare will be called “SetLanguage”

which will set the current client’s language to a certain

language/culture value as shown:

Figure 23: LocalAccess SetLanguage Function

This function takes the new language/culture to be set for the

current client session as the first parameter, the values will be

one of the language/culture common ISO codes discussed

earlier, in our example it will have “en” for English language

or “ar” for Arabic language. This value will be stored in the

current client’s session under the name “curLang”, but first

any previous stored value is removed. To use this function

simply call it through the class layer name as following:

Figure 24: Using SetLanguage Function Example

Note that a session object is created on the web server for

each client as shown in figure:

Figure 25: Session per Client on Web Server

Each session is structured as name/value pairs that a website

can use to store client specific data for the current client

request and is accessed through all the pages of the current

web project. [12]

LocalAccess.SetLanguage(“ar”);
//OR
LocalAccess.SetLanguage(“en”);

public class LocalAccess
{ ...
public static void SetLanguage(String newLang)
{
HttpContext.Current.Session.Remove("curlang");
HttpContext.Current.Session.Add("curlang", newLang);
} ... }

public class LocalAccess
{ … }

String currentLanguage = ""+Session["curLang"];
DataLayer dl = new DataLayer();
DataReader itemReader = dl.getDataReader(
"select ilt.ItemId, ilt.ItemName, ilt.ItemDesc, it.ItemPrice
from ItemsTable it, CulturesTable ct, ItemLocaleTable
ilt
where ilt.ItemId = it.ItemId
and ilt.CultureId = ct.CultureId
and ct.CultureName = '”+ currentLanguage +”' ");
while (itemReader.Read())
{
String itemId; String itemName;
String itemDesc; String itemPrice;
itemId = ""+ itemReader["ItemId"];
itemPrice = "" + itemReader["ItemPrice"];
itemName = ""+ itemReader["ItemName"];
itemDesc = "" + itemReader["ItemDesc"];
//code to display item
} da.closeConnection();

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

40

Figure 26: Session Name/Value Structure

Hence the “SetLanguage” function stores the current desired

language for the current client session on the server. Next

we’ll add a “SwitchLanguage” function to swap the current

client language between English and Arabic.

Figure 27: LocalAccess SwitchLanguage Function

As the code implies this function will switch the current

language to the “other” one without the need to explicitly set

the language name as shown in figure:

Figure 28: Using SwitchLanguage Function Example

Now let’s add two more functions in the Local layer which

are “CurLangIsEnglish” and “CurLangIsArabic” which will

return “True” if so and “false” otherwise.

Figure 29: LocalAccess CurLangIsEnglish &

CurLangIsArabic Functions

These functions will come very handy for the programmer to

easily determine if the current client language is Arabic or

English and can be directly used in conditional or iterative

statements as shown in figure:

Figure 30: Using CurLangIsEnglish & CurLangIsArabic

Functions Example

Now a “Pick” function is prepared that will choose between

two values based on the current language in use as shown in

figure:

public class LocalAccess
{
...
public static Boolean CurLangIsEnglish()
{
Boolean res = false;
String clang = "" +
HttpContext.Current.Session["curlang"];
if (clang.Equals("en"))
 res = true;
return res;
}

public static Boolean CurLangIsArabic()
{
Boolean res = false;
String clang = "" +
HttpContext.Current.Session["curlang"];
if (clang.Equals("ar"))
 res = true;
return res;
}
…
}

LocalAccess.SwitchLanguage();

public class LocalAccess
{
...
public static void SwitchLanguage()
{
String currentlang = "" +
HttpContext.Current.Session["curlang"];

String newlang = "";
if (currentlang.Equals("ar"))
{ newlang = "en"; }
else if (currentlang.Equals("en"))
{ newlang = "ar"; }
else //default value
{ newlang = "en"; }
HttpContext.Current.Session.Remove("curlang");
HttpContext.Current.Session.Add("curlang", newlang);
}
…
}

if (LocalAccess.CurLangIsEnglish())
{
//English specific code or elements
}
else if (LocalAccess.CurLangIsArabic())
{
//Arabic specific code or elements
}

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

41

Figure 31: LocalAccess Pick Function

This function will be of great help for the web

programmer/designer since two values will be provided

through code and the correct one will be used for the current

chosen language/culture for example:

Figure 32: LocalAccess Pick Function Example

The result of the Pick will be one of the values passed based

on the current language.

We can also use the ASP.net Properties features to directly

deal with language/culture orientations [10] [13], for example

English language is left oriented so most of the content will be

viewed on the left side of their containers, on the other hand

Arabic is right oriented hence most of the content will be

viewed from the right side. So using Properties can be of great

help for the web design. For example a property called

“LEFT” is created, this property will mean left in the English

version of the website but will automatically mean right for

the Arabic one as shown in figure:

Figure 33: LocalAccess LEFT Property

This property will return “left” in English version and “right”

for the Arabic one, this approach will come very handy in

designing localized HTML layouts as following:

Figure 34: LocalAccess LEFT Property Example

As the example shows, this property will automatically have

different values based on the current language. And the layout

of the whole paragraph will change dynamically through code

without the need for the web design to explicitly write all the

needed code every time a language/culture orientation or

language-dependent design value is used. Likewise similar

Properties can be prepared for “RIGHT” and others for

direction right-to-left “RTL” and left-to-right “LTR”, etc…

5. CONCLUSION
World Wide Web really means serving a wide range of

cultures and regions in the world, so today localization is an

integral part of any ambitious organization.

Having a site with multiple languages and cultures is easily

said than done, because having different localized version of a

website will need more maintenance, their content should be

consistent and language/cultural dependent data should be

translated to suit every version.

In this paper some different techniques to achieve website

localization have been discussed in details showing their

advantages and disadvantages. These techniques are presented

in order to help website programmers and designers to

understand them and how to implement them in their work.

Further researches on this important topic is expected and

needed to further improve the performance and abilities of

achieving better website localization.

6. REFERENCES
[1] Y. Lee and K. Kozar, "Investigating the effect of website

quality on e-business success: An analytic hierarchy

process (AHP) approach," School of Business,

University of Kansas, United States, 2005.

[2] P. Sandrini, "Website Localization and Translation," in

MuTra 2005 – Challenges of Multidimensional

Translation: Conference Proceedings, Saarbrücken,

Germany, 2005.

[3] R. Noack and L. Gamio, "Ulrich Ammon, Dusseldorf

University – Population Reference Bureau," Independent

Newspaper, 31 December 2015. [Online]. Available:

http://www.independent.co.uk/news/world/the-worlds-

languages-in-seven-maps-and-charts-a6791871.html.

[Accessed 18 August 2016].

[4] M. A. Jimenez-Crespo, Translation and Web

Localization, Oxford, United Kingdom: Routledge, 2013.

[5] S. Maheshwari and D. C. Jain, "A Comparative Analysis

of Different types of Models in Software Development

Life Cycle," International Journal of Advanced Research

in Computer Science and Software Engineering, vol. 2,

no. 5, 2012.

[6] O. D. Troyer and S. Casteleyn, "Designing Localized

Web Sites," The Web & Information Systems

Engineering (WISE) Laboratory, Brussel, Belgium,

2014.

<p align="<%= LocalAccess.LEFT %>">
 //Paragraph content here
</p>
…

public class LocalAccess
{
public static String LEFT
{
get
{
String res = "left";

String clang = "" + HttpContext.Current.Session["curlang"];

if (clang.Equals("ar"))
{
 res = "right";
}

return res;
}
}
}

String siteTitle = LocalAccess.Pick(“Welcome”,”أهلا”);

public class LocalAccess
{
...
public static String Pick
(String paramEnglish, String paramArabic)
{
String res = paramEnglish;
String clang = "" + HttpContext.Current.Session["curlang"];
if (clang.Equals("ar"))
{
 res = paramArabic;
}
return res;
}
}

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

42

[7] J. Maroto and M. De Bortoli, "Web Site Localization," in

Crossing Cultures, London, United Kingdom, 2003.

[8] F. Costales, "Translation 2.0. The localization of

institutional websites," CETRA Research Seminar in

Translation Studies, Leuven, Belgium, 2008.

[9] "ASP.NET Web Page Resources Overview," Microsoft,

[Online]. Available: https://msdn.microsoft.com/en-

us/library/ms227427.aspx. [Accessed 18 August 2016].

[10] A.R. Jones, Mastering ASP.NET with Visual C#,

Indiana, United States of America: John Wiley & Sons,

2006.

[11] Yu, "Method and system for generalized localization of

electronic documents". California, United States of

America Patent US 2004/0205118 A1, 14 October 2004.

[12] Evjen, Professional ASP.NET 2.0, Indiana, United States

of America: John Wiley & Sons, 2006.

[13] J. Liberty and D. Hurwitz, Programming ASP.NET, 3rd

ed., California, United Stated of America: O'Reilly

Media, 2006.

IJCATM : www.ijcaonline.org

