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ABSTRACT 

Protein 3D structure alignment process has become the key 

focus of interest in structural bioinformatics. Yet, obtaining 

perfect alignment in a short execution time was not successful 

to this point. To overcome this problem, researchers tend to 

use parallel programming techniques to enhance the 

performance of the alignment process. In this article, we 

compare between two parallel programming paradigms for 

implementing a parallel version of the well-known pairwise 

alignment algorithm MatAlign. This parallel algorithm is 

implemented by using two common APIs for C++ parallel 

programming, which are OpenMP for multi-core CPUs and 

CUDA for multi-core GPUs.  The results show that beside the 

significant improvement of the parallel implementation over 

the sequential one, it also shows that the multi-core GPU 

parallel programming model improves speedup over multi-

core CPU programming model. 
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Protein Structure Alignment, GPU Parallel Computing, Multi-

core Parallel Programming 
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1. INTRODUCTION 
Although the pairwise protein three-dimensional (3D) 

structure alignment plays a critical role in many molecular 

biology fields especially in structural bioinformatics, its 

complexity is categorized as non-deterministic polynomial-

time hard (NP-hard) [1]. In this article, the problem of finding 

a good alignment on common servers is studied, which often 

have several processing units (CPUs and GPUs). Modern 

structural bioinformatics applications in different 

bioinformatics fields require finding fast algorithms capable 

of processing and aligning large volume of data [2, 3, 4, 5]. 

As a common solution, one can deploy a large number of 

processors to do the task concurrently. This article will 

discuss how to design and implement parallel structural 

alignment algorithms and will present the actual timing results 

for the alignment process 

1.1 Parallel Programming Background 
There is an urge to find the best parallel programming 

techniques for the benefit of performance for protein pairwise 

alignment process, see [6, 7, 8]. Some of the parallel 

computing methods tend to solve problems by using CPU 

hardware capabilities while as other methods use GPU’s.  

CPUs and GPUs are significantly different which makes them 

suitable to perform different tasks.  

Up till now, no one can determine which between CPU and 

GPU can produce the perfect parallel results. Both provide 

specific advantages for specific problems. Architecturally, 

GPUs have had very high arithmetic intensity. They have 

hundreds of cores that are designed to process an enormous 

amount of time-consuming operations (SIMD/Single 

Instruction Multiple Data). In contrast, A CPU, due to its few 

cores, cannot efficiently process many operations [9].  

1.2 The Structural Alignment Problem 
Pairwise protein structure alignment is the process of finding 

similar portions between two proteins based on their three-

dimensional information. If the alignment result is accurate, it 

will be easy to predict functional relationships that may not be 

apparent from sequence comparison [10].  

There are several methods available to perform the structural 

alignment. These methods are divided into two categories, 1) 

methods which aim to retrieve optimal alignment results and 

2) methods which tend to obtain approximate alignment 

results. Methods in the first category are known as NP-hard 

problems due to the unlimited number of possible 

superposition of the two structures. Likewise, methods in the 

second category are still computationally too expensive, 

although they can manage the process successfully. As a 

consequence, most of the alignment algorithms introduced in 

the literature are, therefore, heuristic. 

The rest of this article is organized as follows. The next 

section introduces a brief explanation of the MatAlign 

alignment procedure. Then Section 3 explains how this 

algorithm has been parallelized and implemented by CUDA 

and OpenMP APIs. In Section 4, the comparative study for 

the proposed parallel implementations is provided and 

discussed. At the end of the paper, the conclusion is presented 

in Section 5. 

2. THE MatAlign ALGORITHM 
In MatAlign [11], the pairwise protein 3D structure alignment 

is reached, simply, by aligning the distance matrices of the 

two query proteins specified by the user instead of comparing 

their original 3D structure. These distance matrices are built 

by calculating the distance between Alpha-Carbon (Cα) atoms. 

Technically, MatAlign applies a two-level dynamic 

programming approach by first mapping the protein structures 

into two-dimensional (2D) distance matrices and aligns them 

to find the initial alignment. Second, initial alignment is 

refined to reach the optimum alignment score [11].  

Level 1: Finding Initial Alignment 

Assume DMA and DMB represent distance matrices for two 

query proteins A and B respectively. In MatAlign first level, a 
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score matrix SM is calculated by aligning each row from 

DMA against each row from DMB by using a match function 

similar to the one used in the classical Needleman-Wunsch 

[12]. This match function is used to determine the matching 

degree between two alpha carbon atoms distance values d1 

and d2. The match function can be defined as: 

                

 

          
                     

                                                       

  

Where α is the score adjusting weight with value = 0.7, and 

TMatch is the difference threshold of the distances with value 

1.6Å. This match function is used in the dynamic 

programming's selection step.  

After executing the dynamic programming, the matching 

score of the two given rows is reached. See the row-row 

comparison in Algorithm 1. 

Algorithm 1 A single-thread version of  the first level of 

MatAlign algorithm 

  1: Procedure GetInitialAlignment(DMA, DMB)     

  2:     Let SM be the similarity matrix 

  3:     for row i in DMA do 

  4:         for row j in DMB do                   

  5:             SM[i,j]  row-row matching score of ith row of 

DMA and jth row of DMB 

  6:         end for 

  7:     end for 

  8:    GS  0  //GS is the Gap Score 

  9:    F  GS  // Let F be a second similarity matrix 

10:    for row i in DMA do 

11:        for row j in DMB  do 

12:            F[i,j]  Max ( F[i-1,j]+GS, F[i-1,j-1]+SM[i,j], F[i-

1,j]+GS) 

13:        end for 

14:    end for 

15:    GetAlignment (SM, F) 

16: end procedure 

 

Level 2: Alignment Refining 

MatAlign used both the RMSD [13] value (∆) and the number 

of aligned pairs by using the same scoring function (S) used in 

[14]. Since the initial alignment resulted from level 1 is not 

usually an optimum in terms of S, the alignment is iteratively 

refined until S cannot be further improved.  RMSD is known 

as the most commonly used tool in specifying the similarity 

between two protein structures. Despite that, it has some 

defects that affect the accuracy of the comparison results. TM-

score [15] overwhelms RMSD problems. And so, the TM-

score is more efficient than using RMSD. In order to assess 

the alignment quality and balance the accuracy, we used the 

TM-score function instead the regular MatAlign Score (S). 

Based on the heavy computations in the row-row comparison 

step, only the first level of MatAlign is parallelized. 

3. THE PARALLEL METHODOLOGIES 

As noted in Section 2, the two parallel implementations are 

modified versions of the basic MatAlign to gain better 

performance. The modified parallel algorithms are named as 

PTM-MatAlign [16].  Note that the prefix “PTM” denotes 

“Parallel algorithm enhanced using TM-Score”.  

There are two main time-consuming steps, in the first 

alignment level that affect the performance of MatAlign. First, 

the heavy calculation in row-row alignment at Algorithm 1 

lines 3 – 7 and second, the dynamic programming performed 

on the score matrix to generate the list of aligned pairs of 

Algorithm 1 lines 10 – 14. PTM-MatAlign parallelizes the 

above two steps to accelerate the comparison process. 

3.1 The CUDA implementation 
In the CUDA parallel implementation, one GPU kernel is 

assigned to run the row-row comparison step in parallel. Each 

row from the first protein is aligned against each row from the 

second protein and stores the similarity results in the global 

memory. Since the total number of blocks that can 

concurrently execute a kernel depends on the maximum 

global memory size of the GPU, in this model, the total 

number of blocks Bt is determined in terms of the number of 

amino acids in query proteins, A and B, and the total number 

of threads Tt in each block where Bt= |B| / Tt *|A|.  

In terms of memory usage, each thread requires one similarity 

matrix of size (|A|+1)*(|B|+1). Therefore, the total memory 

space needed to execute all threads in parallel is 

|A|*|B|*(|A|+1)*(|B|+1). This amount of data exceeds the limit 

of GPU local and shared memory in case of large size 

proteins. Therefore, the only rescue is the use of global 

memory to overcome the limitation of GPU memory 

resources.  

In order to optimize the use of global memory, each thread 

remembers only the last two rows of the similarity matrix. 

This is satisfactory to determine the maximum score of the 

similarity matrix, which is needed to check whether the two 

query proteins are similar or not. Algorithm 2 describes a 

pseudo-code of the CUDA parallel implementation.  

 Algorithm 2 The CUDA parallel implementation (Step 1) 

 1: kernel Row-RowAlignmentKernel(DMA, DMB)     

 2:     Let SM be the similarity matrix 

 3:     Let patch = |B| / Tt 

 4:     for i  BlockId / patch to |A| in parallel do 

 5:         for j  (BlockId mod patch) * Tt + ThreadId to  |B| in 

parallel do                  

 6:             SM[i,j]  score of aligning row i in DMA against 

row j in DMB  

 7:         end for 

 8:     end for 

 9: end kernel 

 

After that, another dynamic programming algorithm is applied 

on the score matrix SM and then traced back by a recursive 

algorithm to generate the initially aligned pairs. Since 

alignment path is needed, then not only the first two rows of 

similarity matrix F is needed but also the whole matrix rows 

have to be allocated. Consequently, from the memory view, 

only one global similarity matrix F is represented as a 1D 

vector of type double with size [(|A|+1) * (|B|+1)]. 

In order to decrease the number of accesses to the GPU global 

memory, the similarity matrix F is not calculated cell by cell 

but it is divided into diagonals. From the data dependency 

view, each element F[i,j] depends on three elements, F[i,j-1], 

F[i-1, j], and F[i-1, j-1]. In another word, F[i,j] depends on the 

data from both same and previous rows. This kind of 

dependency looks like a diagonal scan over the elements. This 

technique is called wave-front technique [17]. 

In fact, algorithms which are using wave-front techniques are 

usually developed by calling two nested loops where the outer 

loop represents matrix diagonals, and the inner loop 

represents the cells of each diagonal. This technique can be 

parallelized by implementing the inner loop as a parallel for 
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loop. This means that all cells in each diagonal run in parallel 

where diagonals itself are running in sequence. So in terms of 

data dependency, each matrix diagonal depends on the 

previous one.  

This way of parallelism has its weakness, such as the load 

resulted from repetitive CPU-GPU data transfer process 

which is too unhelpful and will affect performance. Since, in 

the CUDA dynamic parallel model [18], GPU kernel can 

launch an inline nested kernels to eliminate the data transfer 

load from CPU to GPU and vice versa, this model is applied 

as illustrated in Algorithm 3.  

The computation is split into two GPU kernels where the first 

kernel (parent) is responsible for calling diagonals in sequence 

and figuring out the number of blocks needed to parallelize 

each diagonal. It is clear that not all diagonals need the same 

number of blocks to run in parallel. Accordingly, the total 

number of blocks Bt is determined by the number of cells in 

each diagonal Cd where Bt = Cd. Afterward, this parent kernel 

calls a child kernel to calculate the value of each cell using 

dynamic programming. Once this calculation is done, the 

similarity matrix is moved from GPU memory to CPU 

memory to run a recursive algorithm to generate the initial 

alignment pairs. Experiments show that recursive step is much 

faster on the CPU than the GPU. 

Algorithm 3 The CUDA parallel implementation (Step 2) 

 1: kernel ParentKernel(SM, F)   

 2:     Let P = max number of cells in all diagonals  

 3:     Let R = number of repeats of diagonals with max 

number of cells  

 4:     for i=1 to P do  

 5:        ChildKernel<<<i, 1>>>(SM, F)   

 6:     end for 

 7:     for i=1 to R do  

 8:         ChildKernel<<<P, 1>>>(SM, F)  

 9:     end for 

10:    for i=1 to P do  

11:         ChildKernel<<<P-i, 1>>>(SM, F)  

12:    end for 

13: end kernel 

 

 1: kernel ChildKernel(SM, F) 

 2:     calculate current cell indices i and j using threadId and 

blockId 

 3:     F[i,j]  Max( F[i-1,j]+GS, F[i-1,j-1]+SM[i,j], F[i-

1,j]+GS) 

 4: end kernel 

 

3.2 The OpenMP implementation 
The proposed OpenMP parallel implementation of the 

algorithm follows the same logic as explained for the CUDA 

implementation. These were developed by adding #pragma 

omp directives to our sequential C++ code (e.g. add one above 

the first C++ for loop in line 3 of Algorithm 1). 

4. RESULTS AND DISCUSSIONS 
To test the performance and correctness of the parallel 

algorithms, a benchmarked dataset of 68 protein pairs which 

is introduced by Fischer [19] is used. This dataset was 

selected to represent different classes according to the SCOP 

classification [20] such as, all alpha proteins (all α), all beta 

proteins (all β), alpha and beta proteins (α/β), alpha and beta 

proteins (α+β), multi-domain proteins (alpha and beta), 

membrane and cell surface proteins and peptides, coiled-coil 

proteins, and small proteins. Some of the query protein 

structures used in the evaluation are shown in Table 1. 

Table 1. Sample of the test dataset 

PDB Length SCOP Class 

1hom_A 68 All alpha proteins 

1hip_A 85 Small proteins 

1ten_A 90 All beta proteins 

1onc_A 104 Alpha and beta proteins a+b 

2hhm_A 276 Multi-domain proteins 

2cmd_A 312 Alpha and beta proteins a/b 

2omf_A 340 
Membrane and cell surface 

proteins and peptides 

1gal_A 583 Alpha and beta proteins 

 

The parallel algorithms are implemented using C++ with the 

two APIs: CUDA 6.5 and OpenMP 2.0. To run the CUDA 

program, an Nvidia GeForce GTX 860M series (Maxwell 

class) graphics card is used. This GTX 860M has Nvidia 

compute capability 5.0 and consists of 5 streaming 

multiprocessors. Each multiprocessor has 640 processing 

cores, 49 KB of shared memory per block, 65 KB of total 

constant memory, 65536 registers per block, and 2GB of total 

global memory.  To run the OpenMP parallel implementation, 

a hyper-threaded dual-core 2.5 GHz Intel CPUs is used which 

provides at least 8 and up to 16 independent Pthreads.  

Table 2 summaries the time in seconds for the two proposed 

protein structural alignment parallel implementations when 

the query length changed from 131 to 900.  The experimental 

performed using 68 proteins. In the last row, the overall 

average running times (in seconds) are displayed. For the 

CUDA implementation, the I/O time for loading the distance 

matrices into device memory are not included. Likewise no 

disk I/O time for any algorithm is included. For detailed 

execution time, see Fig 1. 

As noticed in Table 2, there is a fluctuation in the execution 

times. The reason behind this fluctuation is that the algorithm 

which is used to build the parallel implementations is divided 

into two computational parts, 1) finding the initial alignment 

and 2) refining the alignment results. Since each part has it is 

own time complexity as mentioned in [11], then it is possible 

for the same query to reach the worst case in the first part 

while achieving the best case in the other part. And since not 

all queries have the same length or the same structure, then it 

is not predicted for all queries to have the same time 

complexity in both alignment parts.  Therefore, there is no 

clear relationship between the total query length and the 

relevant execution time for both CUDA and OpenMP 

implementations. 

In general, as it is expected, the overall average running times 

of the sequential algorithm, MatAlign, in Table 2 are much 

slower than the parallel implementations. For the parallel 

algorithm running on OpenMP, it two times faster than 

MatAlign. On the other hand, the parallel implementation 

running on the GPU has the best overall performance (about 4 

times speed-up over the Open-MP parallel algorithm, and 

about 8 times speed-up over the sequential algorithm) as 

shown in Fig 2. 
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Although the CUDA algorithm provides best results, the 

OpenMP algorithm has some advantages that CUDA does not 

have. The benefit of using OpenMP over CUDA is that the 

memory available is larger (8GB vs. 2Gb DRAM) and much 

faster at data transfer rate. This makes the alignment process 

for the large-size proteins much faster. 

 

Fig 2: Average execution time of the protein structural 

alignment algorithm using different query length 

5. CONCLUSION 
In this paper, a comparative study of implementing parallel 

protein structure alignment using two parallel programming 

paradigms (CUDA and OpenMP) is presented.  The execution 

time of both serial and parallel execution is used as the 

evaluation measure for the comparison. It is found that both 

CUDA and OpenMP based parallel implementations improve 

the execution time of detecting the best alignment path 

between two protein structures. However, for the PTM-

MatAlign algorithm, it is found that the GPU implementation 

accelerates it more than that of the OpenMP. Though the 

difficulty of implementing the alignment algorithm on the 

GPU platform using CUDA implementation, it speedup the 

execution time by 3.9x on average better than the OpenMP 

implementation and 8.4x on average better than the sequential 

implementation. In general, it is recommended to use GPU 

than OpenMP for problems with massive amount of 

calculations. For future work, it is expected to parallelize 

different alignment algorithms and compare the results with 

those obtained from PTM-MatAlign. 
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Fig 1: Comparison between execution time using CUDA, OpenMP, and sequential implementations for the protein structural 

alignment algorithm 

Table 2: Execution times (in seconds) of the protein structural alignment algorithm using CUDA, OpenMP, and sequential 

implementations for different query length 

Query Length PTM-MatAlign PTM-MatAlign MatAlign 

(CUDA) (OpenMP) (Sequential) 

131 0.689 1.7 3.487 

143 0.541 0.98 2.4 

164 0.564 1.144 3.035 

180 0.5 1.3 1.75 

202 2.7 9.945 23.1 

230 0.6 1.89 3.09 

235 0.5 0.859 1.485 

249 2.3 9.284 19.82 

249 0.6 1.817 3.824 

256 1 4.311 10.355 

258 1.5 8.019 17.9559 

260 0.9 3.208 6.67 

279 1.8 7.07 15.096 

305 2.1 10.918 22.976 

325 3.9 18.555 36.715 

328 1.9 7.31 16.33799 

345 1.2 4.097 9.9 

360 0.63 1.467 3.301 

373 0.76 2.169 4.973 

394 0.82 2.878 5.7 

400 1.28 4.79 10.429 

402 1.71 7.141 14.294 

492 0.972 4.29 10.353 

499 0.82 2.491 5.634 

504 1.14 4.106 9.698 

539 0.502 1.318 1.922 

543 0.801 2.683 5.122 

684 0.48 0.9888 1.53 

686 0.71 1.685 3.746 

721 4.1 23.158 44.723 

737 3.2 14.359 33.35 

771 0.54 1.5 2.8 
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818 0.74 2.1 4.921 

844 1.02 3.94 9.09 

900 0.401 0.543 0.817 

Average 1.240263158 4.889968421 10.413155 
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