
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

43

Parallel Protein Structure Alignment: A Comparative

Study of Two Parallel Programming Paradigms

Nada M. A.
Mohammed

Faculty of Computer
and Information

Science, Ain Shams
University

Hala M. Ebeid
Faculty of Computer and
Information Science, Ain

Shams University

Mostafa G. M.
Mostafa

Faculty of Computer and
Information Science, Ain

Shams University

Mahmoud E. A.
Gadallah

Modern Academy for
Computer Science and
Information Technology

ABSTRACT

Protein 3D structure alignment process has become the key

focus of interest in structural bioinformatics. Yet, obtaining

perfect alignment in a short execution time was not successful

to this point. To overcome this problem, researchers tend to

use parallel programming techniques to enhance the

performance of the alignment process. In this article, we

compare between two parallel programming paradigms for

implementing a parallel version of the well-known pairwise

alignment algorithm MatAlign. This parallel algorithm is

implemented by using two common APIs for C++ parallel

programming, which are OpenMP for multi-core CPUs and

CUDA for multi-core GPUs. The results show that beside the

significant improvement of the parallel implementation over

the sequential one, it also shows that the multi-core GPU

parallel programming model improves speedup over multi-

core CPU programming model.

General Terms

Protein Structure Alignment, GPU Parallel Computing, Multi-

core Parallel Programming

Keywords

MatAlign, TM-Score, GPGPU, CUDA, OpenMP

1. INTRODUCTION
Although the pairwise protein three-dimensional (3D)

structure alignment plays a critical role in many molecular

biology fields especially in structural bioinformatics, its

complexity is categorized as non-deterministic polynomial-

time hard (NP-hard) [1]. In this article, the problem of finding

a good alignment on common servers is studied, which often

have several processing units (CPUs and GPUs). Modern

structural bioinformatics applications in different

bioinformatics fields require finding fast algorithms capable

of processing and aligning large volume of data [2, 3, 4, 5].

As a common solution, one can deploy a large number of

processors to do the task concurrently. This article will

discuss how to design and implement parallel structural

alignment algorithms and will present the actual timing results

for the alignment process

1.1 Parallel Programming Background
There is an urge to find the best parallel programming

techniques for the benefit of performance for protein pairwise

alignment process, see [6, 7, 8]. Some of the parallel

computing methods tend to solve problems by using CPU

hardware capabilities while as other methods use GPU’s.

CPUs and GPUs are significantly different which makes them

suitable to perform different tasks.

Up till now, no one can determine which between CPU and

GPU can produce the perfect parallel results. Both provide

specific advantages for specific problems. Architecturally,

GPUs have had very high arithmetic intensity. They have

hundreds of cores that are designed to process an enormous

amount of time-consuming operations (SIMD/Single

Instruction Multiple Data). In contrast, A CPU, due to its few

cores, cannot efficiently process many operations [9].

1.2 The Structural Alignment Problem
Pairwise protein structure alignment is the process of finding

similar portions between two proteins based on their three-

dimensional information. If the alignment result is accurate, it

will be easy to predict functional relationships that may not be

apparent from sequence comparison [10].

There are several methods available to perform the structural

alignment. These methods are divided into two categories, 1)

methods which aim to retrieve optimal alignment results and

2) methods which tend to obtain approximate alignment

results. Methods in the first category are known as NP-hard

problems due to the unlimited number of possible

superposition of the two structures. Likewise, methods in the

second category are still computationally too expensive,

although they can manage the process successfully. As a

consequence, most of the alignment algorithms introduced in

the literature are, therefore, heuristic.

The rest of this article is organized as follows. The next

section introduces a brief explanation of the MatAlign

alignment procedure. Then Section 3 explains how this

algorithm has been parallelized and implemented by CUDA

and OpenMP APIs. In Section 4, the comparative study for

the proposed parallel implementations is provided and

discussed. At the end of the paper, the conclusion is presented

in Section 5.

2. THE MatAlign ALGORITHM
In MatAlign [11], the pairwise protein 3D structure alignment

is reached, simply, by aligning the distance matrices of the

two query proteins specified by the user instead of comparing

their original 3D structure. These distance matrices are built

by calculating the distance between Alpha-Carbon (Cα) atoms.

Technically, MatAlign applies a two-level dynamic

programming approach by first mapping the protein structures

into two-dimensional (2D) distance matrices and aligns them

to find the initial alignment. Second, initial alignment is

refined to reach the optimum alignment score [11].

Level 1: Finding Initial Alignment

Assume DMA and DMB represent distance matrices for two

query proteins A and B respectively. In MatAlign first level, a

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

44

score matrix SM is calculated by aligning each row from

DMA against each row from DMB by using a match function

similar to the one used in the classical Needleman-Wunsch

[12]. This match function is used to determine the matching

degree between two alpha carbon atoms distance values d1

and d2. The match function can be defined as:

Where α is the score adjusting weight with value = 0.7, and

TMatch is the difference threshold of the distances with value

1.6Å. This match function is used in the dynamic

programming's selection step.

After executing the dynamic programming, the matching

score of the two given rows is reached. See the row-row

comparison in Algorithm 1.

Algorithm 1 A single-thread version of the first level of

MatAlign algorithm

 1: Procedure GetInitialAlignment(DMA, DMB)

 2: Let SM be the similarity matrix

 3: for row i in DMA do

 4: for row j in DMB do

 5: SM[i,j]  row-row matching score of ith row of

DMA and jth row of DMB

 6: end for

 7: end for

 8: GS  0 //GS is the Gap Score

 9: F  GS // Let F be a second similarity matrix

10: for row i in DMA do

11: for row j in DMB do

12: F[i,j]  Max (F[i-1,j]+GS, F[i-1,j-1]+SM[i,j], F[i-

1,j]+GS)

13: end for

14: end for

15: GetAlignment (SM, F)

16: end procedure

Level 2: Alignment Refining

MatAlign used both the RMSD [13] value (∆) and the number

of aligned pairs by using the same scoring function (S) used in

[14]. Since the initial alignment resulted from level 1 is not

usually an optimum in terms of S, the alignment is iteratively

refined until S cannot be further improved. RMSD is known

as the most commonly used tool in specifying the similarity

between two protein structures. Despite that, it has some

defects that affect the accuracy of the comparison results. TM-

score [15] overwhelms RMSD problems. And so, the TM-

score is more efficient than using RMSD. In order to assess

the alignment quality and balance the accuracy, we used the

TM-score function instead the regular MatAlign Score (S).

Based on the heavy computations in the row-row comparison

step, only the first level of MatAlign is parallelized.

3. THE PARALLEL METHODOLOGIES

As noted in Section 2, the two parallel implementations are

modified versions of the basic MatAlign to gain better

performance. The modified parallel algorithms are named as

PTM-MatAlign [16]. Note that the prefix “PTM” denotes

“Parallel algorithm enhanced using TM-Score”.

There are two main time-consuming steps, in the first

alignment level that affect the performance of MatAlign. First,

the heavy calculation in row-row alignment at Algorithm 1

lines 3 – 7 and second, the dynamic programming performed

on the score matrix to generate the list of aligned pairs of

Algorithm 1 lines 10 – 14. PTM-MatAlign parallelizes the

above two steps to accelerate the comparison process.

3.1 The CUDA implementation
In the CUDA parallel implementation, one GPU kernel is

assigned to run the row-row comparison step in parallel. Each

row from the first protein is aligned against each row from the

second protein and stores the similarity results in the global

memory. Since the total number of blocks that can

concurrently execute a kernel depends on the maximum

global memory size of the GPU, in this model, the total

number of blocks Bt is determined in terms of the number of

amino acids in query proteins, A and B, and the total number

of threads Tt in each block where Bt= |B| / Tt *|A|.

In terms of memory usage, each thread requires one similarity

matrix of size (|A|+1)*(|B|+1). Therefore, the total memory

space needed to execute all threads in parallel is

|A|*|B|*(|A|+1)*(|B|+1). This amount of data exceeds the limit

of GPU local and shared memory in case of large size

proteins. Therefore, the only rescue is the use of global

memory to overcome the limitation of GPU memory

resources.

In order to optimize the use of global memory, each thread

remembers only the last two rows of the similarity matrix.

This is satisfactory to determine the maximum score of the

similarity matrix, which is needed to check whether the two

query proteins are similar or not. Algorithm 2 describes a

pseudo-code of the CUDA parallel implementation.

 Algorithm 2 The CUDA parallel implementation (Step 1)

 1: kernel Row-RowAlignmentKernel(DMA, DMB)

 2: Let SM be the similarity matrix

 3: Let patch = |B| / Tt

 4: for i  BlockId / patch to |A| in parallel do

 5: for j  (BlockId mod patch) * Tt + ThreadId to |B| in

parallel do

 6: SM[i,j]  score of aligning row i in DMA against

row j in DMB

 7: end for

 8: end for

 9: end kernel

After that, another dynamic programming algorithm is applied

on the score matrix SM and then traced back by a recursive

algorithm to generate the initially aligned pairs. Since

alignment path is needed, then not only the first two rows of

similarity matrix F is needed but also the whole matrix rows

have to be allocated. Consequently, from the memory view,

only one global similarity matrix F is represented as a 1D

vector of type double with size [(|A|+1) * (|B|+1)].

In order to decrease the number of accesses to the GPU global

memory, the similarity matrix F is not calculated cell by cell

but it is divided into diagonals. From the data dependency

view, each element F[i,j] depends on three elements, F[i,j-1],

F[i-1, j], and F[i-1, j-1]. In another word, F[i,j] depends on the

data from both same and previous rows. This kind of

dependency looks like a diagonal scan over the elements. This

technique is called wave-front technique [17].

In fact, algorithms which are using wave-front techniques are

usually developed by calling two nested loops where the outer

loop represents matrix diagonals, and the inner loop

represents the cells of each diagonal. This technique can be

parallelized by implementing the inner loop as a parallel for

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

45

loop. This means that all cells in each diagonal run in parallel

where diagonals itself are running in sequence. So in terms of

data dependency, each matrix diagonal depends on the

previous one.

This way of parallelism has its weakness, such as the load

resulted from repetitive CPU-GPU data transfer process

which is too unhelpful and will affect performance. Since, in

the CUDA dynamic parallel model [18], GPU kernel can

launch an inline nested kernels to eliminate the data transfer

load from CPU to GPU and vice versa, this model is applied

as illustrated in Algorithm 3.

The computation is split into two GPU kernels where the first

kernel (parent) is responsible for calling diagonals in sequence

and figuring out the number of blocks needed to parallelize

each diagonal. It is clear that not all diagonals need the same

number of blocks to run in parallel. Accordingly, the total

number of blocks Bt is determined by the number of cells in

each diagonal Cd where Bt = Cd. Afterward, this parent kernel

calls a child kernel to calculate the value of each cell using

dynamic programming. Once this calculation is done, the

similarity matrix is moved from GPU memory to CPU

memory to run a recursive algorithm to generate the initial

alignment pairs. Experiments show that recursive step is much

faster on the CPU than the GPU.

Algorithm 3 The CUDA parallel implementation (Step 2)

 1: kernel ParentKernel(SM, F)

 2: Let P = max number of cells in all diagonals

 3: Let R = number of repeats of diagonals with max

number of cells

 4: for i=1 to P do

 5: ChildKernel<<<i, 1>>>(SM, F)

 6: end for

 7: for i=1 to R do

 8: ChildKernel<<<P, 1>>>(SM, F)

 9: end for

10: for i=1 to P do

11: ChildKernel<<<P-i, 1>>>(SM, F)

12: end for

13: end kernel

 1: kernel ChildKernel(SM, F)

 2: calculate current cell indices i and j using threadId and

blockId

 3: F[i,j]  Max(F[i-1,j]+GS, F[i-1,j-1]+SM[i,j], F[i-

1,j]+GS)

 4: end kernel

3.2 The OpenMP implementation
The proposed OpenMP parallel implementation of the

algorithm follows the same logic as explained for the CUDA

implementation. These were developed by adding #pragma

omp directives to our sequential C++ code (e.g. add one above

the first C++ for loop in line 3 of Algorithm 1).

4. RESULTS AND DISCUSSIONS
To test the performance and correctness of the parallel

algorithms, a benchmarked dataset of 68 protein pairs which

is introduced by Fischer [19] is used. This dataset was

selected to represent different classes according to the SCOP

classification [20] such as, all alpha proteins (all α), all beta

proteins (all β), alpha and beta proteins (α/β), alpha and beta

proteins (α+β), multi-domain proteins (alpha and beta),

membrane and cell surface proteins and peptides, coiled-coil

proteins, and small proteins. Some of the query protein

structures used in the evaluation are shown in Table 1.

Table 1. Sample of the test dataset

PDB Length SCOP Class

1hom_A 68 All alpha proteins

1hip_A 85 Small proteins

1ten_A 90 All beta proteins

1onc_A 104 Alpha and beta proteins a+b

2hhm_A 276 Multi-domain proteins

2cmd_A 312 Alpha and beta proteins a/b

2omf_A 340
Membrane and cell surface

proteins and peptides

1gal_A 583 Alpha and beta proteins

The parallel algorithms are implemented using C++ with the

two APIs: CUDA 6.5 and OpenMP 2.0. To run the CUDA

program, an Nvidia GeForce GTX 860M series (Maxwell

class) graphics card is used. This GTX 860M has Nvidia

compute capability 5.0 and consists of 5 streaming

multiprocessors. Each multiprocessor has 640 processing

cores, 49 KB of shared memory per block, 65 KB of total

constant memory, 65536 registers per block, and 2GB of total

global memory. To run the OpenMP parallel implementation,

a hyper-threaded dual-core 2.5 GHz Intel CPUs is used which

provides at least 8 and up to 16 independent Pthreads.

Table 2 summaries the time in seconds for the two proposed

protein structural alignment parallel implementations when

the query length changed from 131 to 900. The experimental

performed using 68 proteins. In the last row, the overall

average running times (in seconds) are displayed. For the

CUDA implementation, the I/O time for loading the distance

matrices into device memory are not included. Likewise no

disk I/O time for any algorithm is included. For detailed

execution time, see Fig 1.

As noticed in Table 2, there is a fluctuation in the execution

times. The reason behind this fluctuation is that the algorithm

which is used to build the parallel implementations is divided

into two computational parts, 1) finding the initial alignment

and 2) refining the alignment results. Since each part has it is

own time complexity as mentioned in [11], then it is possible

for the same query to reach the worst case in the first part

while achieving the best case in the other part. And since not

all queries have the same length or the same structure, then it

is not predicted for all queries to have the same time

complexity in both alignment parts. Therefore, there is no

clear relationship between the total query length and the

relevant execution time for both CUDA and OpenMP

implementations.

In general, as it is expected, the overall average running times

of the sequential algorithm, MatAlign, in Table 2 are much

slower than the parallel implementations. For the parallel

algorithm running on OpenMP, it two times faster than

MatAlign. On the other hand, the parallel implementation

running on the GPU has the best overall performance (about 4

times speed-up over the Open-MP parallel algorithm, and

about 8 times speed-up over the sequential algorithm) as

shown in Fig 2.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

46

Although the CUDA algorithm provides best results, the

OpenMP algorithm has some advantages that CUDA does not

have. The benefit of using OpenMP over CUDA is that the

memory available is larger (8GB vs. 2Gb DRAM) and much

faster at data transfer rate. This makes the alignment process

for the large-size proteins much faster.

Fig 2: Average execution time of the protein structural

alignment algorithm using different query length

5. CONCLUSION
In this paper, a comparative study of implementing parallel

protein structure alignment using two parallel programming

paradigms (CUDA and OpenMP) is presented. The execution

time of both serial and parallel execution is used as the

evaluation measure for the comparison. It is found that both

CUDA and OpenMP based parallel implementations improve

the execution time of detecting the best alignment path

between two protein structures. However, for the PTM-

MatAlign algorithm, it is found that the GPU implementation

accelerates it more than that of the OpenMP. Though the

difficulty of implementing the alignment algorithm on the

GPU platform using CUDA implementation, it speedup the

execution time by 3.9x on average better than the OpenMP

implementation and 8.4x on average better than the sequential

implementation. In general, it is recommended to use GPU

than OpenMP for problems with massive amount of

calculations. For future work, it is expected to parallelize

different alignment algorithms and compare the results with

those obtained from PTM-MatAlign.

6. REFERENCES
[1] Alexandrov, N., and Fischer, D. 1996. Analysis of

topological and nontopological structural similarities in

the PDB: New examples with old structures. Proteins:

Structure, Function, and Bioinformatics, 25(3), 354-365.

[2] Singh, A. P., and Brutlag, D. L. 2000. Protein Structure

Alignment: A Comparison of Methods. Bioinformatics.

[3] Aung, Z., and Tan, K. 2006. MatAlign: Precise protein

structure comparison by matrix alignment. Journal of

Bioinformatics and Computational Biology, 4(06), 1197-

1216.

[4] Clark, M. 2012. Introduction to GPU Computing, s.l.:

Developer Technology Group, nVIDIA.

[5] Daniel, F., Arne, E., Danny, R., and David, E. 1996.

Assessing the performance of fold recognition methods

by means of a comprehensive benchmark. In Proceedings

of Pacific Symposium on Biocomputing 397, 300-318.

[6] Dhraief, A., Issaoui, R., and Belghith, A. 2011. Parallel

Computing the Longest Common Subsequence (LCS) on

GPUs: Efficiency and Language Suitability. In The 1st

International Conference on Advanced Communications

and Computation (INFOCOMP).

[7] Godzik, A. 1996. The structural alignment between two

proteins: is there a unique answer?. Protein Science: A

Publication of the Protein Society, 5(7), 1325-1338.

[8] Halperin, I., Ma, B., Wolfson, H., and Nussinov, R.

2002. Principles of docking: An overview of search

algorithms and a guide to scoring functions. Proteins:

Structure, Function, and Bioinformatics 47(4), 409-443.

[9] Hung, C.-L., and Lin, Y.-L. 2013. Implementation of a

Parallel Protein Structure Alignment Service on Cloud.

International Journal of Genomics.

[10] Jones, S., 2012. Introduction to Dynamic Parallelism.
In GPU Technology Conference Presentation S 338, p.

2012.

[11] Koehl, P. 2001. Protein structure similarities. Curr Opin

Struct Biol. 11, 348-353.

[12] Mrozek, D., Brożek, M., and Małysiak-Mrozek, B. 2014.

Parallel implementation of 3D protein structure similarity

searches using a GPU and the CUDA. J Mol Model,

20(2), p. 2067.

[13] Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia,

C., 1995. SCOP: a structural classification of proteins

database for the investigation of sequences and

structures. J Mol Biol 247(4), 536–540.

[14] Needleman, S. B., and Wunsch, C. D. 1970. A general

method applicable to the search for similarities in the

amino acid sequence of two proteins. J Mol Biol, 48(3),

443-53.

[15] Samudrala, R., and Hung, L.-H. 2012. Accelerated

Protein Structure Comparison using TM-Score-GPU.

Bioinformatics, 28(16), 2191-2192.

[16] Mohammed, N. M., Ebeid, H. M., Mostafa, M. G., and

Gadallah, M. E., 2016. PTM-MatAlign: A Fast GPU-

Based Algorithm for Pairwise Protein Structure

Alignment, submitted to International Journal of

Computational Biology, (2016).

[17] Shin, D. H., Hou, J., Chandonia, J. M., Das, D., Choi, I.

G., Kim, R., and Kim, S. H. 2007. Structure-based

inference of molecular functions of proteins of unknown

function from Berkeley Structural Genomics Center.

Journal of Structural and Functional Genomics, 8(2-3),

99-105.

[18] Xu, Y., Xu, D., and Liang, J. 2007. Computational

Methods for Protein Structure Prediction and Modeling.

[19] Zhang, Y. & Skolnick, J., 2004. Scoring function for

automated assessment of protein structure template

quality. Proteins, 57(4), 702-10.

[20] Zhang, C., and Lai, L. 2011. Towards structure-based

protein drug design. Biochemical Society Transactions,

39(5), 1382-138

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

47

Fig 1: Comparison between execution time using CUDA, OpenMP, and sequential implementations for the protein structural

alignment algorithm

Table 2: Execution times (in seconds) of the protein structural alignment algorithm using CUDA, OpenMP, and sequential

implementations for different query length

Query Length PTM-MatAlign PTM-MatAlign MatAlign

(CUDA) (OpenMP) (Sequential)

131 0.689 1.7 3.487

143 0.541 0.98 2.4

164 0.564 1.144 3.035

180 0.5 1.3 1.75

202 2.7 9.945 23.1

230 0.6 1.89 3.09

235 0.5 0.859 1.485

249 2.3 9.284 19.82

249 0.6 1.817 3.824

256 1 4.311 10.355

258 1.5 8.019 17.9559

260 0.9 3.208 6.67

279 1.8 7.07 15.096

305 2.1 10.918 22.976

325 3.9 18.555 36.715

328 1.9 7.31 16.33799

345 1.2 4.097 9.9

360 0.63 1.467 3.301

373 0.76 2.169 4.973

394 0.82 2.878 5.7

400 1.28 4.79 10.429

402 1.71 7.141 14.294

492 0.972 4.29 10.353

499 0.82 2.491 5.634

504 1.14 4.106 9.698

539 0.502 1.318 1.922

543 0.801 2.683 5.122

684 0.48 0.9888 1.53

686 0.71 1.685 3.746

721 4.1 23.158 44.723

737 3.2 14.359 33.35

771 0.54 1.5 2.8

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.7, September 2016

48

818 0.74 2.1 4.921

844 1.02 3.94 9.09

900 0.401 0.543 0.817

Average 1.240263158 4.889968421 10.413155

IJCATM : www.ijcaonline.org

