
International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.9, September 2016

36

SAS Macro to Expedite Data Manipulation

Bhavya Chaudhary
Software Engineer, Snapdeal

New Delhi, India

Nikita Malik
Research Scholar, IP University

New Delhi, India

Dhwani Mohan
Information Technology, IP

University
New Delhi, India

ABSTRACT

One of the most powerful and dynamic feature of SAS

language is Macro facility. The facility reduces the amount of

effort required to read and write SAS code. Macro generates

the SAS code automatically and enables one to acquire the

skill set to become an efficient SAS programmer. The use of

macro has prevailed over time and has deprecated the need to

write repetitive codes. With the help of this feature one small

change can be made to echo throughout the program in no

time. Macro presents a uniform and easy approach for

manipulation of data. In this research we explain the basic

fundamentals of macro facility to generate data-driven

programs .Also, how to create and use macro variables and

save them for future aspects.

Keywords

Macro Variable, Macro Defination, Symput, Data, Sql, Error

And Debugging

1. INTRODUCTION
This paper will discuss an easy approach to bridge the gap

between a beginner and an expert SAS programmer. The

macro facility comes as a part of base SAS that can be used to

enhance and customize the code and make it more efficient. It

is used to create, modify and write data with reduced

requirement of the text strings manipulations. Macro can

make the development and maintenance of production

programs much easier. In some cases, macro may slow down

the program due to an additional step before compilation and

execution. However, the facility reduces the amount of coding

to accomplish a task by providing modularized codes. It does

make the program more complex but the benefits make its

usage prevalent. This paper will not cover every aspect of the

facility. However, it will help the novice to gain familiarity

with the topic.

2. MACRO PROCESSOR

 METAPROGRAMMING

When a program is written SAS compiles it and then executes

it immediately. But when a macro is written, there is an

additional step. Before the SAS code compiles, the macro

statements are passed to a macro processor. The task of this

macro processor is to resolve the macro to standard SAS code.

This step is called meta-programming because a program is

made to write another program.

3. MACRO AND MACRO VARIABLES

3.1 MACRO
The name of macro is prefixed with a percent sign (%). It is

the large piece of program with complex logic encompassing

DATA and PROC steps and macro statements like %DO,

%END, %IF.

3.2 MACRO VARIABLES
The name of macro variables are prefixed with an ampersand

sign (&). A macro variable is like standard data variable

having single character value but it does not belong to data

step.

4. WAYS TO CREATE MACRO

VARIABLE

4.1 %LET
Creating a macro variable

The simplest and the most useful way to define a macro

variable is through %LET. It is assigned statement that work

like DATA step.

Syntax:

%LET macro-variable = text-string;

Here, %LET is followed by the name of macro variable, an

equal sign (=) and the text string which is to be placed in the

variable. The text string is neither character nor numeric but

plain text. The text does not require quotation marks.

Everything that we write on the right side of the equal sign is

assigned to the variable.

Using a macro variable:

To use a macro variable add the ampersand prefix (&) to the

macro variable. The processor does not resolve the macro in

single quotation marks therefore we make use of double

quotation marks.

%LET loop=10;

%LET heading=Macros;

1. Do i=1 to &loop;

 TITLE ‘Name of the topic is &heading’;

2. Do i=1 to &loop;

 TITLE “Name of the topic is &heading”;

After being resolved by the processor, these statements would

become

1. Do i=1 to 10;

TITLE ‘Name of the topic is &heading’;

2. Do i=1 to 10;

 TITLE “Name of the topic is Macros”;

Here the variable heading could not be resolved in the first

part of statements due to presence of single quotes which are

not recognized by macro processor.

The following program to determine the content and form of

data set PATTERNS in WORK library.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.9, September 2016

37

PROC CONTENTS helps to enhance the documentation of

data warehouse. The documentation is very important. Users

and developers alike appreciate it because it makes the job

easier.

PROC CONTENTS DATA=PATTERNS;

TITLE 'DATA SET PATTERNS';

RUN;

PROC PRINT DATA=PATTERNS (OBS=10);

RUN;

Now, this code works to determine the contents of one data

set. To increase modularity, generalize the code and enhance

its usage macro can be implemented with the same. It can be

rewritten. %Let defines the macro variable whose value needs

to be changed in accordance with the requirement.

%LET ABC = PATTERNS;

PROC CONTENTS DATA=&abc;

TITLE "DATA SET &abc";

RUN;

PROC PRINT DATA=&abc (OBS=10);

RUN;

The value of the macro variable can be changed by issuing a

new %LET statement because the most recent definition is

used at any time.

Displaying macro variable

The %PUT statement is analogous to DATA step. It writes

text and value of macro variable into current SAS System log.

The quotation marks are not required for the statement

because there is no need to distinguish between a variable

name and text string.

%LET abc = patterns;

 %PUT **** selected data set is &abc;

To see the current value of all the variables created we can

make use of the following:

%PUT _user_;

4.2 MACRO PARAMETERS
Creating modular code with Macros

SAS allows to create package of bug-free codes and use it

repeatedly within a single or many SAS programs.

Syntax:

%MACRO macro-name;

Text…

%MEND macro-name;

%MACRO tells the beginning of a macro, while %MEND

indicates the end. Marco-name can be up to 32 characters

long. The macro-name with MEND is optional but is a good

practice as it makes the code easier to debug.

Invoking a macro

Once the macro has been defined it can by invoked by the

following:

%macro-name

Following is the example of macro usage:

%LET abc = PATTERN;

%LET OBS = 10;

%MACRO DEMO;

PROC CONTENTS DATA=&abc;

TITLE "DATA SET &abc";

RUN;

PROC PRINT DATA=&abc (OBS=&abc);

TITLE2 "FIRST &obs OBSERVATIONS";

RUN;

%MEND DEMO;

The above macro can be invoked by %DEMO. Combination

of macro with %LET increased the efficiency. It gets

enhanced further when macros are parameterized.

Adding parameters to macros

The value of parameters can be set when a macro is invoked.

To add parameters a list of macro variables is specified in

parenthesis.

Syntax:

%MACRO macro-name (parameter1=, parameter2=

,...parameter n=);

Text…

%MEND macro-name;

The above program can be coded using parameterized macro

as:

%MACRO DEMO (abc,obs);

PROC CONTENTS DATA=&abc;

TITLE "DATA SET &abc";

RUN;

PROC PRINT DATA=&abc (OBS=&obs);

TITLE2 "FIRST &obs OBSERVATIONS";

RUN;

%MEND DEMO;

The macro call for %DEMO could be

%DEMO(PATTERNS,10).

It is not required to give all parameters a value. Alternative

invocations of the %LOOK macro might include:

 %DEMO()

 %DEMO(PATTERNS)

 %DEMO(,10)

The difference in these two versions of %DEMO is in the

%MACRO statement. The parameters allow us to create &abc

and &OBS as local macro variables and we are not required to

modify the macro itself. The first value in macro call is

assigned to the macro variable that is listed first in the macro

statement’s parameter list because of the positional feature.

Multiple parameters need to use commas to separate their

values.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.9, September 2016

38

4.3 Iterative %Do
%DO loops in macro are analogous to the DO loop in DATA

step. %DO indicates the beginning of the macro section and

% END is the end. This section is treated as a unit and is

called a %DO Group.

Differences between iterative %DO and DO statement

are:

• The %WHILE and %UNTIL specifications cannot be added

to the increments

• Increments are integer only

• Only one specification is allowed.

Syntax:

 %DO macro-variable = start %TO stop

Text . . .

%END;

The iterative %DO defines and increments the macro variable.

The following program generates a series of data steps:

%macro generate(times);

 %do i=1 %to ×

 data month&i;

 infile in&i;

 input product cost date;

 run;

 %end;

%mend generate;

%generate(3)

On execution of the generate macro, it creates:

DATA MONTH1;

 INFILE IN1;

 INPUT PRODUCT COST DATE;

RUN;

DATA MONTH2;

 INFILE IN2;

 INPUT PRODUCT COST DATE;

RUN;

DATA MONTH3;

 INFILE IN3;

 INPUT PRODUCT COST DATE;

RUN;

In the above example a stopping value for variable i has been

provided. When times reaches the maximum limit the

iteration stops.

It is used to write dynamic programs that define the path and

logic of execution on its own and is data independent. The

dynamic functionality makes the code more reusable.

4.4 Into Inproc Sql
PROC SQL writes macro directly into symbol table. The

value is put from data set into macro variable. INTO has the

ability to populate macro variable with delimited list of

multiple values. It overcomes limitations in hard coding

values, including the possibility of resource constraints,

typographical errors, and does not account for dynamic data.

Syntax:

INTO: macro-var-specification-1 <...,: macro-var-

specification-n>

Here, the INTO clause performs a role similar to SYMPUT

routine and follows the scoping rules for %LET statement.

INTO clause can assign the value of data to macro variable

for the SELECT statement and creates the variable if it does

not exist. With the SELECT statement INTO clause can only

be used in outer query. It cannot be used with creation of a

table or a view.

The following code counts the number of observations that

contain a specified string in the table column name. The string

is placed in a macro variable (&abc) and the SQL COUNT

function is used to count the observations that match the

WHERE clause.

%let abc = TABLE;

proc sql noprint;

select count(*) into :nobs

from Repository(where=(name=:"&abc"));

quit;

%put number of Repository for &abc is &nobs;

The macro variable is preceded by the ampersand when used

within SQL step.

4.5 CALL SYMPUT
SAS does not know the value of data until execution phase.

Due to the timing issue of macro statement such as %Let, it

cannot be used to assign value in DATA step variable to

macro variable.

In following code, the requirement is to assign value of name

to variable &nameval:

data new;

 set old;

 %let nameval =name;

run;

Here, %Let executes long before DATA set completes its

compilation. Value assigned in nameval is name in lowercase.

To overcome this we use SYMPUT.

SYMPUT is DATA step call routine and not macro statement.

It directly assign values of data set variables to macro

variables.

Syntax :

CALL SYMPUT (macro_varname,value);

Where macro_varname should be enclosed in quotation

marks. Value can be the name of a variable whose value is

used.

International Journal of Computer Applications (0975 – 8887)

Volume 150 – No.9, September 2016

39

The title in the following program contains macro variable

shape that is defined in the previous DATA step. &shape will

contain the value of the data set variable shape.

data pattern1;

set patterns;

where reg='1';

call symput('shape',shape);

run;

title "Region 1 data for &shape";

It will reassign the value of &shape for each observation that

meets the WHERE criteria.The macro variable &shape will

contain the value of the DATA variable shape from the last

observation read from the data set patterns.

Caution:

A macro variable created with CALL SYMPUT cannot be

used in the same DATA step because SAS does not assign a

value to macro variable until DATA step executes.

5. DEBUGGING MACRO ERRORS
System options have made the debugging of macros easier.

There are five system options that affects the messages SAS

writes in log. The default setting is in bold.

1) MERROR|NOMERROR

When SAS has trouble finding a macro, and

MERROR option is on then the following message

is printed.

WARNING: Apparent invocation of macro not

resolved.

 2) SERROR|NOSERROR

When SAS trouble to resolve a macro variable and

SERROR option is on then the following message is

printed.

WARNING: Apparent symbolic reference not

resolved.

3) MLOGIC|NOMLOGIC

When MLOGIC option is on SAS prints the

message in log describing the actions of macro

processor.

 4) MPRINT|NOMPRINT

When MPRINT option is on SAS prints the

message in log showing the SAS statement

generated by macro.

 5) SYMBOLGEN|NOSYMBOLGEN

When SYMBOLGEN option is on SAS prints the

message in log showing the value of each macro

variable after resolution.

6. CONCLUSION
In this paper, the main focus is on SAS macros. It explains

how macro can be used to enhance the programs. Macro

enables to build complex and repetitive codes. Starting with

the %LET statement, to macro definitions macros enable to

build complex and repetitive code with ease. Macro variables

and macro definitions must be defined before they can be

invoked. Macros are essentially strings of data saved in a

buffer available to every subsequent data step or procedure in

the current SAS session. The execution of macros in code is

simply a replacement of the code generated by the macro

definition at the point where it is invoked. The use of macros

in SAS code can enhances the modularity of code. It generates

data driven programs that require less maintenance. SAS

provides system options for debugging any kind of errors with

macro. The facility helps generate reusable codes which can

be used to give stupendous results in specified time limits.

Macros can be used to provide and more robust and confident

products and solutions for business strategy and data analysis

in fields like banking, communication, health care, travel and

tourism.

7. REFERENCES
[1] Burlew, Michele M. SAS Macro Programming Made

Easy. SAS Institute, 2014

[2] Carpenter, Art. Carpenter's complete Guide to the SAS

Macro language. SAS Institute, 2004.

[3] Dimaggio, Charles. "Introduction." SAS for

Epidemiologists. Springer New York, 2013. 1-5.

[4] Slaughter, Susan J., and Lora D. Delwiche. "SAS macro

programming for beginners." Proceedings of the 29th

SAS (2004).

[5] Carpenter, Arthur L. "Five Ways to Create macro

Variables: A Short Introduction to the macro

language." Proceedings of the 8th Annual

Pharmaceutical Industry SAS Users Group Conference.

2005.

[6] Delwiche, Lora D., and Susan J. Slaughter. The Little

SAS Book: A Primer: A Primer. SAS Institute, 2012.

[7] Sadof, Michael G. "1Macros from Beginning to Mend A

Simple and Practical Approach to the SAS® Macro

Facility." (1999).

[8] SAS Institute. SAS Macro Language: Reference, Version

8. SAS institute, 1999.

[9] Slaughter, Susan J., and Lora D. Delwiche. "SAS macro

programming for beginners." Proceedings of the 29th

SAS (2004).

[10] Weise, Daniel, and Roger Crew. "Programmable syntax

macros." ACM SIGPLAN Notices. Vol. 28. No. 6. ACM,

1993.

IJCATM : www.ijcaonline.org

