
International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

10

Design Pattern and Security Influence on Application

Development

Zia Ahmad
National Textile University

Faisalabad

Adeel Rauf
Virtual University of Pakistan

Mian Ali Asghar
Global Institute Lahore, Lahore

ABSTRACT
It‟s common among developers when they start coding for an

application, a specific design pattern not found in the road

map of development and it becomes a vulnerable point to

exploit. Applications developed without design pattern

difficult to change and understand. It is possible to reduce

vulnerability at minimum level and it results in the reduction

of maintenance cost. An application was developed for this

paper using design patterns, two pages visitor information

page and school member verification form were build using

Factory design pattern and Interpreter design patter. SFDP

and SIDP are the two secured design patterns proposed for

making application secure and more reliable than before using

encryption-decryption hashing algorithm encoding scheme.

The points expressed in proposed model clearly explain the

expected vulnerable points. A secure design will keep

application more reliable and available as it was before.

Keywords
Software design patterns; vulnerability; security pattern;

refactoring; secure software design; secure pattern.

1 INTRODUCTION
Internet users are growing day by day and due to this rapid

increase sensitive information becomes insecure because

some people use this service for negative purposes. There is

consistently billions of dollars loss when an application

compromised due to a vulnerable point in an application.

Hackers build things, crackers break them[1]. Crackers,

consistently trying to find weak points from the application

where security is compromised. These points are actually

vulnerable in the application. Attackers cause problems by

exploiting vulnerabilities in code[1]. Vulnerability is also

known as a fault in the security of an information system that

some time may be known or unknown[2]. Vulnerability is

simply a design flaw or an implementation bug that allows a

potential attack on the software in some way[1]. A threat is a

possible exploit of vulnerability where an attack is the actual

use of such an exploit[1]. Some of the most serious and well-

explored vulnerabilities and corresponding threats include the

following characteristics: a) Lack of input validation, b)

insecure configuration management, c) Lack of bounds

checking on arrays and buffers and Unintentional

disclosure[1]. This definitely becomes the reason of

application to be compromised. Attackers are more inventive

by making more complex attacks.

Malicious website steals important credentials from the victim

or installs malware on the victim‟s machine to use it as a

spring board for further exploits[3]. It is therefore, becomes

vital to invent new technologies for counter and detect attacks

on applications. There are too many limitations in the present

available techniques for removing vulnerable points. It is not

only the part of coding but design issue must be considered in

mind while constructing sketch of application after gathering

requirements. Antiviruses, and firewalls are used for blocking

and removing attacks but this is not sufficient in this modern

emerging world of World Wide Web. Today thousands of

developers are writing code for multiple applications. While

coding they do not think about vulnerable points in the

application so they are compromised.

Web applications are used by many people via internet

services. Wide varieties of web service are available on the

internet with the expansion of computer networks. This

variety of web application provides services like information

searching, online commerce and social network services. The

activities that support people become intertwined with the

Internet, vulnerable applications are progressively attractive

targets for malicious attacks and data theft. Several user

authentication methods are used to avoid misuse or illegal use

of highly sensitive data, therefore cyber security is a vital

issue to address. The institutes and organizations increase

utilization of security technology and regularly train security

professionals. The criminals are working on research and

development of latest cracking methods that may be helpful to

steal money and valuable information. An error of software

security is the exact cause of vulnerability.

It is essential to eliminate compromised point to prevent an

attack when vulnerability is detected. Most of the developers

while developing did not think about the pros & cons of the

programming and they continuously write code so this is the

real reason of vulnerability, even the developer did not know

about the compromised point and it becomes point of

attraction for a cracker. Software cannot be made completely

secure because it is ongoing battle between developers and

crackers. The development technology is progressing towards

security as well as crackers are becoming powerful in finding

weaknesses in development and security is yet in danger. The

malicious software or malware which attempts to harm system

or software‟s always trying to find weaknesses and

compromised security measures from the system such as

passwords and cryptographic data. Another reason of threat

agent is human unintentional, ruptured security through

carelessness or accidental, a backdoor in software caused by

poor coding.

Right people and the right tools can develop software

efficiently, rapidly with rework and reuse. A comprehensive

development process must be able to acclimate change

according to emerging technology and business needs for this

system completion consistently and predictable.

1.1 Design Pattern History
 1977/79 – Architect Christopher Alexander

introduced the concept of design patterns with

respect to the design of buildings and towns[4].

 1987 – Beck and Cunningham experimented with

applying patterns to programming and presented at

OOPSLA[5].

 1994/95 – The “Gang of Four” (Erich Gamma,

Richard Helm, Ralph Johnson, and John M.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

11

Vlissides) published a book containing a large

number of design-level patterns aimed at object

oriented programming languages[6].

 1997 – Yoder and Baraclow published a paper

outlining several security patterns[7].

 2009 – Chad Dougherty et al. published technical

report on Secure Design Pattern[8].

 2011 – Ko, Andrew J., et al. "The state of the art in

end-user software engineering." [9].

 2014 – K. Lano work on Design Patterns:

Applications and Open Issues[10].

 2015 – Zia Ahmad et al. worked on Implementation

of Secure Software Design and their impact on

Application[2].

1.2 Important Terms
Software: A set of instructions provided to the computer to

achieve a specific task. SDLC: It is a conceptual model used

in project management and it defines steps elaborated in an

information system development. Use case: A model to

perform a specific task describes how end user interacts with

system. Model: A model is a simplification of reality it

provides blueprints of a system[11].

Secure Software: Software is secure when under malicious

attack if it can provide certain operational features.

Confidentiality, only authorized people can get access.

Integrity, The data that is presented is unchanged.

Availability, The system and its data is available even under

hostile conditions. Authenticity, Users is who they claim to

be.

Programming: English dictionaries states that the process of

planning or writing a program. Unified Modeling Language

(UML): is a general-purpose, developmental, modeling

language in the field of software engineering that is intended

to provide a standard way to visualize the design of a

system[11, 12].

Design Processes: They constrain how requirements are

translated into design specifications and then

implementations[9]. Pattern: A pattern is a general reusable

solution to a commonly occurring problem in design[8].

Design Pattern (DP): They provide solutions to common

software design problems, in object-oriented programming,

design patterns are generally aimed at solving the problems of

object generation and interaction, rather than the larger scale

problems of overall software architecture[6]. DP provides

solutions of real-world problems.

Strategy Design Pattern: or policy pattern selects algorithm‟s

behavior at runtime. It defines a family of algorithms,

encapsulate algorithms and make them interchangeable within

that family.

Builder Design Pattern: It is an object creation design pattern.

Factory Design Pattern: an interface for creating an object,

but let subclasses decide which class to instantiate. Factory

Method lets a class defer instantiation to subclass[6].

Hackers: A person who is proficient with computer,

particularly in the field of network, and they were the

foundation of what has led to the technology revolution in

which we all find ourselves[1].

Crackers: People who wish to use technical proficiency to

exploit weakness and break systems in almost every case[1].

Encryption: In it a single key is used to run an algorithm to

transform plain-text to cipher-text[1]. Decryption: The same

key is used to transform data back from cipher-text to plain-

text[1]. Cipher-text: Information that is encrypted[1].

Zero-day vulnerability: is a hole in software exploited by the

cracker before the developer aware of it. Zero-day attack: An

attack that is previously unknown depending on the scale and

target[1].

Zero-day threat: A known vulnerability that has yet to be

exploited but which has not been mitigated[1]. Zombie: A

machine that is compromised and works on the instructions of

some other user instead of its appropriate user.

1.3 Related Work
The use of Design Patterns also encourages design exploration

and experimentation[13]. Computer programming is

becoming a practical skill of millions from first computer

program in 1940‟s to today‟s speedily rising software

business. Today programming is not only done by

professionals but people with some knowledge about it.

Software designing is too difficult, but secure software

designing is more than difficult. For a design problem there

may be many solutions but it is difficult to decide which one

is the best and is able to reuse for future design. Each solution

having pros and cons it is the reason to select best existing

design solution. It is up to the non-functional requirements

and goals of the application to choose best available solution.

The requirements are gathered in first phases of SDLC so they

specify the functionality of the application, qualities (non-

functional requirements) and goals of stakeholders. The

pattern methods have been adapted and tested in various

disciplines including the field of object-oriented design

(software development)[13].

A design pattern cannot be transformed directly into a source

code or machine code because it is not a finished design. DP

is a guide line, template or description to solve a problem that

might adopted in various situations. During designing an

application patterns are best practices used to solve common

problems. Object-oriented DP represents relationships and

interactions between classes / objects. Web pages in web

applications are commonly described using computer

languages such as HTML code and JavaScript[14]. In this

work including both of these applications ASP.NET, C#,

„Microsoft® SQL Server is also used. In classical design

patterns: (Behavioural) Template, Observer, Strategy,

(Structural) Facade, Adapter, (Creational) Singleton,

Builder[10]. The pattern has potentially negative implications

for efficiency[10]. It‟s a common problem with many design

patterns, improvements in the logical structure of a system

may reduce efficiency[10].

The attack surface on a web application is typically much

larger than thick client application and standalone system[1].

To protect a web application a practical application was

developed that showed a path to protect an application to be

compromised. To reduce accidental addition of vulnerability

Secure Design Pattern (SDP) are used. Secure Strategy

Design Pattern (SSDP) and Secure Builder Design Pattern

(SBDP) were introduced and implemented in a web

application[2]. SSDP is actually addition in working of

Strategy design pattern and SBDP is extension in Builder

design pattern. The working in these design patterns is to

show a way for programmers to keep in view design structure

when working on an application.

http://searchcio-midmarket.techtarget.com/definition/project-management
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Software_engineering
http://www.blackwasp.co.uk/CSharpObjectOriented.aspx
https://en.wikipedia.org/wiki/Best_practice
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Interaction
https://en.wikipedia.org/wiki/Class_%28computer_science%29
https://en.wikipedia.org/wiki/Object_%28computer_science%29

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

12

1.4 Critical Analysis
The nature of software has changed rapidly toward complex,

often distributed and rapidly evolving systems[15]. The

number of errors and vulnerabilities can be controlled if a

secure software development process is adapted. Having

broader scope in nature Architectural patterns (AP) are similar

to DP. They address various issues in software engineering,

like hardware performance limitations, reduction of a business

risk, high availability etc. Some AP applied within software

frameworks. The same pattern may be implemented by a

number of different architectures that share related features. A

concept that solves and represents necessary elements of

software architecture is AP. An AP conveys an image of a

system not architecture. Examples of Architectural-Level

Patterns are a) Dis-trustful Decomposition b) PrivSep

(Privilege Separation) c) Defer to Kernel etc.

Design pattern (DP) better explains object-oriented

programming (OOP). By using design pattern object-oriented

programming can easily be learned. DP made development

easier than before because by following patterns coding is

much easier. DP‟s are much easier to secure than AP‟s. The

security class when attached with a set of classes called

pattern, it becomes secure as it was free in past. The security

class keeps some strong algorithm according to the demand

and requirement of security. Secure Hashing Algorithm can

be used for this purpose. There are SHA-1, SHA3, SHA-256,

and SHA-512 etc. These encoding schemes encrypt data and

compare with the code stored in the database if it matches

then they allow to work or otherwise they close or sign-out or

break session. Examples of DP are Strategy design pattern,

Builder design pattern, Factory design pattern, Façade design

pattern, Adapter design pattern, Decorator design pattern,

Observer design pattern etc.

2 PROPOSED MODEL

2.1 Problem Statement
Progress in software development is a fact of life. The

researchers have suggested hypotheses how software change

over many years. After the first version deployment

software‟s evolution starts. The developers progressively

working on availability, reliability and reusability but ignoring

design of application frequently. It is the main problem which

became reason of a weak point that is being compromised and

may provide imaginable attraction for attackers. One of the

biggest issues that are compromised is software design issue

and it attracts as a comfortable point for vulnerability. As a

result organizations and developers have to pay more for

removing the system vulnerability and its concomitant risk

after the system installation. After understanding sources of

security flaws it indicates to the importance of taking security

in Software_Development_life_cycle (SDLC). Now a day‟s

best available security techniques focus on implementation

and deployment issues but not at all phases.

2.2 Model
No software is put to use without someone thinking about

what it should do and how it should do it[15]. For developing

good software the central part of activities is modeling. It is

necessary that the software must be developed in a secure

environment from its initial formation. To communicate

behavior and structure of a system models are constructed.

They control and monitor architecture of system and manage

risks. A database developer focuses on ER-model and thinks

about procedures and triggers. A structured analyst thinks

about algorithmic technique and data flow of processes. A

wild developer thinks about its goal and rapidly develops his

system. An object-oriented developer works with classes and

patterns and made the relationship of classes. Different

approaches can be used for developing a system depending

upon the system requirements but experience tells us that

object-oriented view is best in coding for all types of systems.

The application SIT (Step-in-Security) is a web application

which is developed for an organization which provides

residential facility to its staff. All member data have to be

collected because of high security risk. It keeps record of all

staff members and visitors who visits staff members as guest.

It is necessary to keep record of vehicle in application. The

organization offers school facility to children of staff

members and children of outsiders. So, due to security issue

all children record form outside colony is also maintained in

this application. All staff members, visitors, vehicle and

students from outside also provide passes for entrance and

exit form colony. This application is very useful in current

situation in which terrorism activities occurs randomly. By

using this application colony can be saved form expected

terrorism.

2.3 Secure Factory Design Pattern
An application SIT (Step-in-Security) was developed by using

design pattern. In this application a page used for keeping

record of a visitor was made, with the help of factory design

pattern. Factory design pattern was used to develop this page

and it became secure factory design pattern (SFDP). It was

made secure with used methodology and it is now known as

secure factory design pattern (SFDP). In this page guest‟s

proper record is entered who is coming to visit resident of

colony. Guest‟s identity is entered into web page e.g. CNIC #,

issue date, expiry date, date of birth, residence address etc.

The guest is asked by the security officer about the night stay

with the resident. If they say yes then they have to take special

permission, after data entry a visitor pass is issued to the

guest. The CNIC of the guest taken by the security officer will

be returned to the guest when they depart from the colony.

The use case diagram describes how to identify and mitigate

vulnerability. The points represented by normal operation are

internal working of the user with application. This is the valid

way of working while the points shown in security operation

are invalid ways adopted by the attacker. The points in use

case represented by E/C and I/C are critical points that are

always under consideration of attacker. These points are

highly critical according to the vulnerability point of view.

UML diagrams in this paper are used to show vulnerability;

Figure 1 is use case diagram, Figure 2 is sequence diagram

and Figure 3 is class diagram. The security officer enter

required information on web page and the system require the

security credentials at same spot attacker tries to gain access

as shown in Figure 1. For an attacker these are vulnerable

points. The working of the page starts from information

(Host-Id, visitor-name, address, E-mail, mobile#, Gender and

at the end type of visitor either night stay or day only) have to

select and the security code from the security officer entered

that is compared with the stored database encrypted code.

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Business_risk
https://en.wikipedia.org/wiki/Business_risk
https://en.wikipedia.org/wiki/Business_risk
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_framework

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

13

Admin Request to Submit VisitorInfo

System Provides Site Credentials

System Submit info Successfully

System Requests Credentials

Admin Attacker

Step-in-Security

Database

A

A

Page_Not_Found

No_Input_Retained

Incorrect_Credentials

No_System_Credentials_Reported

No_Remaining_Attempts_Information_Given

E

E

E C

E C

I C

CI

Normal Operation Security Operation

< Calls >

< Extends >

Figure 2-1:- Use Case Diagram with vulnerability (SFDS)

The matching security code with the database encrypted code

will submit the information. If given code not matches with

database encrypted code it requests the code 2 times more if

correct code not provided the system will logout, extra

attempts will not be provided to malicious user for using the

website or again may have to log-in. Any place where both

[E] and [C] are located on the same association, there must be

one of the most likely target for attack[1]. At the same time,

when [I] and [C] are located together, a level of protection

must be added to the data in transit; otherwise, there is no

protection from internal threats sitting on the same network or

attackers recording the transmission from the another node in

the network such as a wireless hub[1].

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

14

:System

Controller

:Multiple Input

Pane

:System

Server

addVisitor Info()

 getFull Details of Visitor()

:User Interface

<<GUI>>

:System

Database

getVisitor info list()

 Edit_do()

Set_Change_Since

LastSave ()

Show_MutiInput_Dialog()

 getVisit Type ()

[Not_Cancelled]

getVisitor Details()

 saveVisitor Info()

 delete_Visitor_details

 updateVisitorInfo()

Response_to_admin
System_response

 deleteVisitorInfo()

V

2

V

2

V

3

System_responseResponse_to_admin

Figure 2-2: - Sequence Diagram with vulnerability

The sequence diagram of secure factory design pattern

displays the vulnerability in Figure 2-2. In the diagram points

v2 and v3 define the likely target point of moderate level and

highest level of vulnerability respectively. These points must

be covered while developing project. V3 must be finished but

V2 can be compromised. There is another point V1 that can

be neglected but with the change of requirements there is

possibility of conversion V1 to V3 easily so this must be keep

in mind.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

15

Visitor

- HostRegistrationNo

- VisitorRegistrationNo

+AddVisitor

+ Visitor(+ 1 overload)

Encryption

+ DecryptPassword

+ EncryptPassword

DayOnly
Visitor

NightStay

+ DayOnly + NightStay

Visitor

+AddVisitor +AddVisitor

Figure 2-3: - Class Diagram of SFDP

The diagram 2-3 shows the working of application using to

the Factory design pattern. Base class “Visitor” asks from its

derived classes “DayOnly” and “NightStay” about its working

after verification from “Encryption” class. The “DayOnly”

and “NightStay” classes are inherited from the base class

Visitor and the Encryption class is aggregated to Visitor class.

The Encryption class keeps the codes encrypted and after

decryption the compare each other to allow the usage of the

application.

Figure 2-4: - Visitor Information Page

In fig 2-4 all of the information shown that must be entered to

generate visitor pass by the authority. First of all host-Id #

entered, after this name of visitor, address, contact #, gender

and most value able thing visitor stay type selected, then

visitor pass issued to the visitor. Here a security class is

placed which verify the code belongs to the night and day

stay. It firstly encrypts the code and then compares the code

stored in database and after verification it allowed to save

information otherwise it ask for correct code 2 times more, if

correct code not provided by the security officer then session

breaks and web application automatically log-off.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

16

2.4 Secure Interpreter Design Pattern
The second page for this paper was taken from the same

website SIT. This is named as school member verification

page. First of all if any member wants to enter in colony

school then he has to verify his identity from security officer

at gate. The security officer will check their record by entering

their member id. If it matches with the data base then he

allowed go in side in else he is rejected. In the class diagram

showed in figure 2-5 School-Member is the base class and

Member-Type is abstract class Encryption class is aggregated

with Member-Type while three classes are abstract classes

from Member-Type named as Student, Teacher and Staff. All

of these classed are assigned a code that is stored in data base

after encryption. This code is in the knowledge on security

officer. If authorized person using website try to use this page

he have to provide correct code if it matches with the stored

code in database then allowed to print permission pass

otherwise 2 more times asked to enter correct password, it is

provides correctly then task accomplished else session closed

for specific period of time at that node.

MemberType
- Designation
- MemberType

+Studied()

Encryption

+ DecryptPassword

+ EncryptPassword

Stuudent
MemberType

Staff

+ Studies() + Serves()

SchoolMembers

- MemberType

- MemberID

+AddMember()

+Member(+1overload)
+PromoteMembers()

- MemberID

+Teach()
+Serve()

MemberTypeMemberType

Teacher

+AddMember() +AddMember() +AddMember()

+ Teaches()

Figure 2-5 Class diagram of SIDP

The figure 2-6 is the working website page of the SIDP in this

page first of all user have to select school member type from a

dropdown list from student, teacher and staff. At second step

he has to enter member type id and at the end its security code

must be entered accordingly, if the given code found correct

then permission letter will be provided to the member and

allowed to go in.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

17

Figure 2-6 School member verification form

3 CONCLUSION & FUTURE WORK

3.1 Conclusion
The systematic inclusion of the Design Patterns approach to

the learning strategy of programming in architecture and

design proves to be highly beneficial[13]. The gains are more

significant for software quality and therefore long-term

reductions in software maintenance costs than the loss of

optimal performance[10]. The identified security

vulnerabilities are removed by revisiting and correcting

requirements, design, and code[16]. A patch must have to be

delivered if a copy of software is deployed after identifying

the vulnerability. The security requirements should place

separate, they are not interweaved with design and functional

requirements. By using inheritance, DP improves the

extensibility and adaptability of the system. DP increases

designer‟s ability to reduce hurdles in programming and

become helpful for architects to implement algorithmic design

methods. Software design should also be considered along

with extensibility, reliability and availability because it is

valuable for reducing vulnerability. Usual development

method provides vulnerable points as compare with design

pattern and they became the cause of continuously increment

in maintenance cost that must be taken at low.

3.2 Future Work
Two more design patterns 1) Factory Design Pattern & 2)

Interpreter Design Pattern, used in this paper and proposed a

way to secure them. Now they are Secure Factory Design

Pattern (SFDP) &SIDP. In near future it is decided to

practically launch both applications on the internet and make

a comparison of applications by using secure design pattern

and random coding. For this purpose a team of expert

developers will be assigned a task of checking both types of

application using secure design pattern/simply developed

application thoroughly and try to find vulnerability.

Moreover, there will be more work on SDP‟s. The coding

techniques can be used are SHA-1, SHA-256 and SHA-512

etc. but an idea is there to introduce a new scheme or a new

algorithm for security purpose that will be ease to use and

more difficult to compromise. There is also an idea of

working on architecture design patterns and make comparison

on their security.

4 REFERENCES
[1] T. Richardson and C. Thies, Secure Software Design:

Jones & Bartlett Publishers, 2012.

[2] Z. Ahmad, M. Asif, M. Shahid, and A. Rauf,

"Implementation of Secure Software Design and their

impact on Application," International Journal of

Computer Applications, vol. 120, pp. 8-15, 2015.

[3] B. Eshete, A. Villafiorita, and K. Weldemariam,

"Malicious website detection: Effectiveness and

efficiency issues," in SysSec Workshop (SysSec), 2011

First, 2011, pp. 123-126.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern

language: towns, buildings, construction vol. 2: Oxford

University Press, 1977.

[5] K. Beck and W. Cunningham, "Using pattern languages

for object-oriented programs," 1987.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: elements of reusable object-oriented

software: Pearson Education, 1994.

[7] J. Yoder and J. Barcalow, "Architectural patterns for

enabling application security," Urbana, vol. 51, p.

61801, 1998.

[8] Dougherty. Chad, Sayre. Kirk, Seacord. Robert,

Svoboda. David, and Togashi. Kazuya, "Secure Design

Patterns," Software Engineering Institute, Carnegie

Mellon University, p. 118, 2009.

[9] A. J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M.

Burnett, M. Erwig, et al., "The state of the art in end-user

software engineering," ACM Computing Surveys

(CSUR), vol. 43, p. 21, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.1, October 2016

18

[10] K. Lano, "Design patterns: applications and open issues,"

in Cyberpatterns, ed: Springer, 2014, pp. 37-45.

[11] G. Booch, The unified modeling language user guide:

Pearson Education India, 2005.

[12] L. S. Jimmy Wales, "Wikipedia, the free encyclopedia,"

www.en.wikipedia.org, January 15 2001.

[13] A. Globa, "Supporting the use of algorithmic design in

architecture: An empirical study of reuse of design

knowledge," 2015.

[14] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M.

Chen, "Malicious web content detection by machine

learning," Expert Systems with Applications, vol. 37, pp.

55-60, 2010.

[15] A. Baker, A. van der Hoek, H. Ossher, and M. Petre,

"Guest editors' introduction: studying professional

software design," Software, IEEE, vol. 29, pp. 28-33,

2012.

[16] M. U. A. Khan and M. Zulkernine, "Activity and artifact

views of a secure software development process," in

Computational Science and Engineering, 2009. CSE'09.

International Conference on, 2009, pp. 399-404.

IJCATM : www.ijcaonline.org

