
International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

11

A Comprehensive Study of Software Product Line

Frameworks

Md. Mottahir Alam
(Ph.D. Scholar)

Department of Electronics &
Communication Engineering,

Singhania University,
Jhunjhunu, Rajasthan, India

Asif Irshad Khan
Dept. of Computer Science,

FCIT,
King AbdulAziz University,

Jeddah, KSA

Aasim Zafar
Dept. of Computer Science,
Aligarh Muslim University,

Aligarh, UP,
India

ABSTRACT

In today’s competitive software market, there is a constant

need to launch new features and products or enhance the

existing products in a flawless, accelerated and cost-effective

manner. SPLE (Software Product Line Engineering) refers to

engineering technique which reuses common set of features

and at the same time it has provisions to manage features

which are product-specific and not shared by other products in

the product line. A product line is a set of products that are

developed with a focus on specific market segment or

satisfying some specific business requirements. It is an

approach for implementing software variability and helps to

extend, customize or configure the products in order to use in

a specific context. Researchers have proposed several SPL

approaches. In this paper, we did a comprehensive study and

analysis of various existing SPL approaches and discussed the

outcomes of our review. We tried to present the backgrounds

of various SPL approaches, and identified key issues that need

to be focused in future research.

General Terms

Software Product Line Engineering, Variability Management.

Keywords

Software Product Line, feature coverage, variability,

comparison framework, product line methods, feature

modeling.

1. INTRODUCTION
Software Product Line Engineering (PLE) is considered as the

engineering approach of selection of tools and techniques that

shared set of engineering assets and an efficient means of

production, that together address a particular market segment

or fulfill a particular mission [1][2]. Fig 1 shows the concept

of Software Product Line Engineering and Management.

As given in the figure, Software engineering artifacts can

include requirement analysis, Software modeling, software

design, Coding, testing (Unit, integration and system) and

much more. all of these need to be managed and produced in

variants that match the product. “Assets” is a name given to

those artifacts which supports a product. The paradigm under

discussion utilizes the shared assets to instill with distinction

points i.e. places where the assets can be instantiated in

different ways to support each product in a product line. It is

an input (product specification) to the product configurator

and designs the assets appropriately for that product. [1]

Fig 1: Software Product Line Management [1]

The Software Engineering Institute Carnegie Mellon

University [2] listed the following benefits associated with

product lines:

i) enhance product quality

ii) increased productivity

iii) lowers time to market

iv) mitigate product risks

v) support market agility

vi) enhance customer satisfaction

vii) support mass customization

Some of the key benefits beside above benefit of SPL are that

it aligns engineering resources with business objectives to

ensure efforts are focused on the most profitable features and

functions. SPL is also helpful in managing increased product

diversity without a corresponding increase in resources.

Further, it improves productivity and efficiency and reduces

per-product development cost, resulting in higher profit

margins. It is also very helpful in reducing time to market for

new and updated products, while increasing agility to help us

react to new opportunities and changing market conditions.

SPL increases product quality and improve risk management

[3].

Various PLE case studies have shown momentous measured

improvements in time to market, cost, product quality,

product line scalability, and productivity, compared

to product-centric development [2]. A List of features

describes each product in SPL: "A prominent or distinctive

user-visible aspect, quality, or characteristic of a software

system or systems". Life cycle phase artifacts are defined by

differences in product and its features. This enables the

stakeholders to speak the same language and streamline the

engineering processes. A product that we are building needs

to be defined so that the shared assets (requirement analysis,

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

12

Software modeling, software design, Coding, testing (etc.) can

also be appropriately configured. Rather than devising a

mechanism and “language” for each artifact e.g. compiler

directives for code, text variables for documents, attributes for

requirements, and so forth, we use a variation mechanism

which is small but consistent.

The use of application engineering thus becomes

unsubstantial; industrial strength high-end automation is used

to produce products by configuring the shared assets

appropriately.

The illustration below shows that a wide variety of shared

products are used to derived products by the configurator

automatically. Different features define the variations in

products which is supposed to tell the configurator the

characteristics of the product and how they were obtained by

configuring the shared assets [1].

Fig 2: Concept of SPLE [1]

The paper is organized as follows: Section 2 covers overview

of software product line. Section 3 provides current software

product line approaches. Section 4 evaluates the current

approaches. Lastly, section 5 draws conclusions and future

works.

2. OVERVIEW OF SOFTWARE

PRODUCT LINES
A software product line is a software-intensive engineering

technique sharing a common, managed set of features that

satisfy particular market requirement or mission, and that are

developed from a common set of core assets in a specific way

[4].

This definition helps in classifying main roles in a product

line organization. The role of core asset developers is to make

available a set of assets, such as architectures, specifications,

and implementations, which are then used by the team of

product developers to produce end-products.

Fig 3: Roles in a software product line [4]

The work of these two teams are facilitated and synchronized

by product line managers as demonstrated in fig 3. The role of

executives is to set strategic goals related to production and

delivery-time of products and assign responsibilities to

achieve these fixed goals.

2.1 Benefits of Product Lines
Requirements: The product line requirements are common to

other similar processes based on the established requirement

base. This saves extensive requirement analysis and also

assures better feasibility.

Architecture: Constructing architecture for a software system

is a huge investment of the best engineering manpower by the

company. The architecture is built keeping in mind the goals

of performance, reliability, modifiability etc. Architecture

forms the base of the process. The product line architecture is

unique for each product. A sound architecture saves a lot risk

and time.

Components: The core asset base components are used almost

exclusively in each product. Although the design, data

structures and algorithms are intact, we may have to make

some changes in the the components using inheritance or

parameters. The product line architecture provides component

specifications for all the common components in the product

line.

Modeling and analysis: For any product line, performance

models and the associated analyses are basic assets. With each

new product the quality of the product in the product line

increases and the bugs continues to decrease.

Testing: In a software product line, generic test plans, test

processes, test cases, test data, test harnesses, etc for all the

products will be similar and will be ready for future products.

It may need to make just few changes based on the variations

related to the specific product.

Planning: Previous product development projects provide a

baseline for the budgets and schedules. These provide a

reliable basis for the product work plans.
 Processes: For any future product, configuration control

boards, configuration management tools and procedures,

management processes, and the overall software development

process are already in place. Since they have been used

before, therefore have a proven robustness, reliability and

responsiveness to the organization's special needs.
 People: Because of the similarities in the processes fewer

people are required to build products and the work force can

adapt to newer processes easily.

2.2 Software Product Lines-Key Processes
The software product line engineering paradigm separates two

processes. This division is beneficial in the separation of the

two arenas i.e. to make an application in a short which caters

to the customer needs and to build a product which is robust.

For maximum effect the process must interact in such a way

that benefits both. For example, the platform should be able to

aid in the application development and the application

development must be aided in using that specific platform.

This split into two processes also shows a split of concerns

with regards to variability. Domain engineering ensures the

production of applications by making the variability available.

The correct amount of flexibility in reusable artifacts will

defines a platform. A considerable part of application

engineering is made up of reusing the platform and binding

variability for various applications as required [2].

Domain Engineering: domain engineering process aims to:

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

13

1. Define the variability and the commonality of the

product line.

2. Define the scope of the software product line and

3. how to achieve the desired variability by

constructing the reusable artifacts.

The domain engineering consists of several sub process. Each

of the sub-process has to detail and refine the variability by

following the engineering sub-process and providing the

practicability achieving the required variability of the

preceding domain engineering sub process.

The Application Engineering: This engineering sub-process

includes all undertakings required for application

requirements specification development. The development of

effective application requirements enables the achievable

amount of domain artifact reuse. Hence, the detection of

variation between application requirements and available

platform capabilities is a major hurdle. The domain

requirements and the product roadmap with the main features

of the corresponding application make the input to this sub

process. Also, there may be some other requests e.g., from a

customer that may not have been taken during the process of

domain requirements engineering. The output of the said

process of that specific application will be requirement

specification.

3. CURRENT SOFTWARE PRODUCT

LINE APPROACHES
In this section, a number of current Software Product Line

approaches are given as an overview. These approaches are

respectively FAST [6], FODA [7], FORM [10] RSEB [11],

FeatuRSEB [13], ConIPF [14], PuLSE [15], KobrA [28, 29].

While some of them have focus centered on Domain

Engineering, the others propose a complete software product

line approach.

3.1 FAST (Family-oriented abstraction,

specification and translation)
It is feature-based model proposed by Weiss et.al [6]. It helps

in applying product-line principles to software engineering

process. It can be used in cases where a range of products are

developed which have major share of common artifacts

among themselves. These common features can be common

behavior, common interfaces, or common code. The main

goal is to analyze common artifacts among a group of

products and then building potential software families. This

helps in making the software development more robust by

reusing the common artifacts, which in turn decreases the

development cost, and reduces the time-to-market as shown in

fig 4.

In this framework, the processes can be divided into following

three sub-processes:

1. Domain qualification: Under this, an economic

model of the software product line is generated by

cost analysis.

2. Domain engineering: In domain engineering, the

main agenda is to analyze the commonalities in the

potential product line, and then coming up with a

family definition and product line infrastructure as

well as reusable core assets.

3. Application engineering: In application engineering,

product line family is developed by using the

reusable core assets.

A family of products can be defined using a common

platform. This platform is built taking into account the

similarities between several products close to each other. As

per FAST, the variability’s’ within the product family

members can be managed and executed by using different

variation techniques such as conditional compilation. It gives

n scope to provide an iteration and reusability of future

processes in software engineering.

Fig4: FAST Flow Process [9]

The core objective of FAST is to provide a framework to

implement iteration and reusability for future processes in a

consistent, smooth and disciplined way which can help in

reducing the development time and cost.

As per report, FAST framework is already being successfully

implemented in industry.

3.2 FODA
FODA [7] or Feature-Oriented Domain Analysis has been

proposed by Kang to identify and model features. It is based

on domain analysis technique in which distinct features within

a product line are identified. These features combined

together to define the domain of the product family. This

approach is followed because the variability determination

mechanisms which are given within the components are

generated by means of a domain–specific language which is a

data–intensive extension of a textual version of the feature

diagrams. It involves three basic processes, namely,

i) analyzing of the domain of the product line,

ii) analyzing the features of the product line , and

iii) modeling the features of the product line.

The first step, which comes under domain analysis, is to

define the domain and finalize the products of the

product family. Next step is to analyze the features by

performing the commonality and variability analysis

.Finally, the modeling of the features is performed as per

the core and varied artifacts which helps in developing

the product line family are developed in a structured and

smooth fashion.

The three major phases in FODA which guides the

success of the process are as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

14

i) Context analysis

ii) Domain modeling

iii) Architecture modeling

In context analysis, we define the domain and build a context

model which contains all the requirements of the products. In

domain modeling, we try to model the requirements by using

the results of commonality and variability analysis which

gives feature models as the output. After this, architecture

modeling is performed to create the reference architecture by

using the feature models. The output of this phase is the

reference architecture which is used to develop the specific

products.

FODA uses state activity charts and state charts to model

functional and behavioral aspects correspondingly. These

charts are proposed by Structured Analysis and Design

Technique (SADT).

FODA provides both a process to determine common and

variable features of concept instances, including their

interdependencies, and a notation to represent them in feature

models consisting of feature diagrams with some additional

information such as short semantic descriptions of each

feature, constraints, default dependency rules, etc.

While FODA (feature oriented domain analysis) method is the

first input to manage variability in 1990 [8]. However many

problems still need to be resolved.

Fig 5 shows the basic elements which are used to model

functionality. These models are data model and control model

respectively. As previously explained in the major phases of

FODA, initially, context diagrams are created for both data

and control models. Data flow diagrams (DFD) and control

flow diagrams (CFD) which are alike DFDs are created after

the functions are decomposed.

Fig 5: The functional model with the fundamental

elements. [9]

Process and control specifications are used to identify and

control functionality and behavior. The interactions between

these models are through control prompt and data condition.

In fig 6, the data flow is shown by solid lines and the control

flow is shown by dashed lines.

Fig 6: Economics of software product line engineering [9]

3.3 FORM (Feature-Oriented Reuse

Method for product line software

engineering):
FORM (Feature-Oriented Reuse Method)[10] is a method

based on feature orientation which analyzes the features of the

domain, and then use these features to provide the software

product line architecture .In other words, “FORM is a

systematic method that focuses on capturing commonalities

and differences of applications in a domain in terms of

“features” and using the analysis results to develop domain

architectures and components” [10].

Kyo C. Kang and his co-fellows in Pohang University of

Science and Technology, Korea, propose a Feature-Oriented

Reuse Method (FORM) as an extension to the Feature-

Oriented Domain Analysis (FODA) method [7]. FORM is an

extension of FODA to the software design and

implementation phases and is used in the analysis of domain

features which is further used to develop domain architectures

and reusable components.

FORM method is useful for applying domain analysis results

to reusable and adaptable domain components. It has specific

guidelines on which it works. FORM has found special

application as a software tool in many industrial processes.

FORM method is specifically used in the domains of

telecommunication engineering as well as information

technology. However it can be applicable to other specified

domains depending on the coherence of the feature model.

As a first step towards modeling for FORM, the

commonalities and variabilities of a product line are studied in

a detailed manner. Context analysis is an initial step towards

software development and starts with information on systems

and their features.

 Feature model is the product of this domain engineering. It

also creates the reference architecture as well as reusable

components as an output. Further application software is

developed using application engineering. For this features are

selected from the feature model, application architecture is

selected from the reference architecture and reusable

components are also enlisted.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

15

Feature model captures the commonalities and differences of

the process as reflected in the performance of the software.

There ought to be a common understanding between the

customers and developers as regards the features and

capabilities of the software.

FORM develops reusable and adaptable domain artifacts

which are constructed after a detailed analysis of domain

features. FORM is an extension of FODA.

3.4 RSEB
Reuse-Driven Software Engineering Business (RSEB) [11] is

a use-case driven systematic reuse process based on the UML

notation. It is an iterative and use-case-centric method which

facilitates the development of reusable object-oriented

software as well as software reuse. The main focus in this

process is on the use cases. Under this process, firstly we

describe the requirements for the product line domain with the

help of use cases. Then, the domain architecture and reusable

artifacts are designed. Lastly, object models are created with

the help of these architecture and artifacts which are mapped

to the use cases [12].

The Unified Modeling Language (UML) is used to capture the

variabilities which are identified in the use cases and object

models. The use cases and object models are structured using

variation points and variants.

 RSEB has a number of steps in which an engineering activity

takes place, namely requirements engineering, architecture

family engineering, component system engineering and

application system engineering. The outputs of these

engineering processes are as follows [12]:

i) Requirements Engineering: In this engineering

phase, variation points and variations that are

defined by use cases.

ii) Architecture Family Engineering: a layered

architecture is designed with the help of use cases.

iii) Component System Engineering: reusable

components are created

iv) Application System Engineering: In this

engineering phase, products are created using the

reusable components.

3.5 FeatuRSEB
Featuring Reuse-Driven Software Engineering Business

(FeatureRSEB) is derived by bringing the FODA [7] and

RSEB [11] methods together. It was suggested by Griss et al.

in 1998 [13]. Two more processes from FODA i.e. the domain

engineering and feature modeling are used to start the RSEB

process. There is no feature model created during the process

even though RSEB manages variability in use cases in an

informal way.

Though FeatuRSEB uses the feature models of FODA, these

feature models comprise of slightly different diagrams, which

are illustrated in a tree or a network notation. These variation

points are represented explicitly with the help of these new

notations [12].

Domain engineering has been divided into a series of logical

steps under different heads. Step one to three belong to

domain analysis while steps four to seven are categorized as

component engineering according to Griss et al.

The steps have been named as follows [13]:

i) Domain identification and scoping

ii) Choosing and analyzing the requirements, examples

and trends

iii) Identification, factoring and classifying the feature

sets

iv) Developing the domain model and architecture

v) Representing the variability and commonality

vi) Exploiting the variability and commonality

vii) Implementing the reusable components and

packaging them

3.6 ConIPF
Its full form is Configuration of Industrial Product Families

and it is a European FP6 project [14]. This concept was put

forward by Eriksson in whose words ConIPF is “a project

which wants to integrate both the product line approach and

the structure-oriented configuration 35 technologies [12]”.

As is common with such software line approaches

development with reuse is the driving principle behind this

software product line. There is ample provision for adaptation

of configuration methodologies by using artificial intelligence

[14].

3.7 PuLSE
Fraunhofer Institute Experimental Software Engineering

(IESE) designed the Product Line Software Engineering

(PuLSE) in late 1990s [15]. According to the PuLSE approach

the focus of software product line should be on the products

rather than on the organizational aspects.

Knauber et al. state that [16], not only large organizations but

also relatively small companies can benefit from this

methodology.

The overall philosophy of PuLSE has been put forward by

Eriksson in the following words- [12]:

i) PuLSE provides a complete framework that covers

the whole software product line development life

cycle, including reuse infrastructure construction,

usage, and evolution.

ii) PuLSE is modular and customizable: It consists of

six technical components that can be selected and

instantiated in order to satisfy the needs of specific

companies.

iii) PuLSE can be introduced incrementally by

augmenting existing software development

processes and products with product line specific

aspects step by step.

PuLSE is composed of three major components viz. the

deployment phase, the technical components and the support

components in that order. These have been depicted in fig 7.

The principle of this method is that the deployment phases use

the technical and support components with the purpose of

detailing a particular software product line [15].

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

16

Fig 7: The main phases of PuLSE [17]

3.8 KobrA
The KobrA (Komponentbasierte Anwendungsentwicklung)

method that has been developed by Fraunhofer Institute

Experimental Software Engineering (IESE). It is a

component-based software product line approach [18]. This is

a novel approach in the fact that it is a combination of reuse in

small concept in component-based approaches and reuse in

large concept in software product line methodology [12].

Atkinson et al. have put the argument that "the product-line

and component-based approaches to software development

seem to have complementary strengths. They both represent

powerful techniques to support reuse, but essentially at the

opposite ends of the granularity spectrum [19]”. Apart from

being a software product line methodology KobrA is also a

single system development approach.

The two major activities that form the backbone of KobrA are

framework engineering and application engineering. These

activities are further described as follows:

i) Framework Engineering: This is the phase in which

a generic framework is created. This framework

defines the common and variable features in an

explicit manner. To construct the framework, a set

of KobrA components are used statically. The

outputs of this phase can be measured in the form of

number of framework models which are described

in text and UML notations. In this phase product

line approach is used.

ii) Application Engineering: To initialize the generic

framework, a component based approach is applied.

That is the hallmark of this phase. The components

are specified and realized in two levels. In

component specification, the externally visible

behavioral aspects and properties are defined.

Decomposition of the components into

subcomponents is described in component

realization. The end objective of this approach is to

build products with particular variations in terms of

the specific customer needs. Hence the output is

product models which are described in text and

UML notations.

Muthig et. al in their technical report demonstrate application

of KobrA approach by developing a library system product

line.

4. EVALUATION OF CURRENT

APPROACHES
Going through different approaches, we found that the

abstraction level is very high for all of the approaches and

there is no detailed guideline to apply these approaches.

The commonality among all the approaches is that they all

follow similar processes. The starting point in all the cases is

context analysis. Context analysis is followed by domain

engineering as well as application engineering. Exploiting the

commonalities and variation is one main concern of these

processes. However, there are no detailed guidelines for the

application of these approaches owing to the immense level of

abstraction.

FODA and FeatuRSEB guarantees to solve the issues

primarily in domain engineering phase. On the other hand,

FAST, FORM and KobrA promises to provide a

comprehensive solution for all the phases of software product

line engineering. However, infact, the domain engineering

phases have more attention than application engineering

phases in all of these approaches [17].

In terms of variability, it is observed that some of these

approaches use the feature models. Although all of FODA,

FORM and FeatuRSEB uses feature models but FODA was

first to use it. On the other hand, PuLSE, and KobrA use

decision models. FAST method manages the variability in a

text format by using commonality analysis [17].

5. CONCLUSION AND FUTURE WORK
Software Product Line has been an area of research and

innovation for the last two decades. Common assets which lie

at the core of this development comprise of requirements,

design, architecture, test plans, reusable software components,

test cases and other artifacts. Utilizing common assets for

product development increases the productivity, reduce cost

as well as marketing time. Hence they decrease the overall

development effort.

This paper deals with different product line concepts and

approaches. Starting with general principles of Software

Product Lines, other aspects of Software Product Line viz

organization, requirements, feature and functional model,

reference architecture, costs and benefits and variability

management techniques have been explained. The paper also

enumerates a number of Software Product Lines projects and

methodologies.

Background research has found that abstraction level is so

high for all of the approaches that there is no detailed

guideline for practically applying these approaches. Also,

there is no tool that creates reference architecture using both

feature modeling and functional modeling.

There are more models of software product lines available in

the academics as compared to that in the commercial

category. The industry needs to make more efforts in this area

to offset this deficiency. One remarkable feature of the SPL

model is that there are no standards available to manage

variability among family of products.

In maturity phase the software product line has many

challenges viz management of variability, lack of

standards for variability management, deficient tool support.

It is important that the industry and academicians lay

emphasis on product line to bring new methods for variability

management and improve the existing approaches and

innovate professional tools to provide support to the entire

development life cycle of product line.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.3, October 2016

17

6. ACKNOWLEDGMENTS
Our sincere thanks to all the researchers or individuals who

helped us with their valuable comments and suggestions.

7. REFERENCES
[1] BigLever Software, Inc, "What Is Product Line

Engineering?" 2016, Product Line Engineering

Overview. N.p., n.d. Web. 26 Aug. 2016.

[2] Günter Böckle Klaus Pohl Frank van der Linden , A

Framework for Software Product Line Engineering

[3] C. W. Krueger, 2011, Introduction to Product Line

Engineering for Systems and Software, IBM Technical

Seminar: Empowering the Embedded Systems

Developer, BigLever Software

[4] John D. McGregor, 2004 Software Product Lines,

Clemson University and Luminary Software, U.S.A.

JOURNAL OF OBJECT TECHNOLOGY, Published by

ETH Zurich

[5] Peter A. MSE. 1994 Introduction to the SEI’s Software

Product Line Framework,

www.star.cc.gatech.edu/documents/PeterAbowd/SEI.pdf.

N.p., 2016. Web. Aug. 2016.

[6] David M. Weiss and Chi Tau Robert Lai. 1999 Software

product-line engineering: a family-based software

development process. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[7] M. Eriksson 2003 An Introduction to Software Product

Line Development, Proceedings of Ume's 7th Student

Conference in Computing Science, UMINF-03.05, ISSN

0348-0542, pp. 26-37.

[8] Chastek, G., Donohoe, P., Kang, K. C., and Thiel, S.

2001 Product Line Analysis: A Practical Introduction.

Technical Report CMU/SEI-2001-TR-001, Software

Engineering Institute (SEI)

[9] MERT B. 2013. Component-Based Reference

Architecture Tool For Software Product Line

Engineering, Faculty of Engineering and Physical

Sciences University of Manchester.

[10] Kyo C. Kang , Sajoong Kim , Jaejoon Lee , Kijoo Kim ,

Euiseob Shin , Moonhang Huh, 1998 FORM: A feature-

oriented reuse method with domain-specific reference

architectures, Annals of Software Engineering, 5, p.143-

168.

[11] M. Griss, J. Favaro, and M. d’Alessandro. 1998

Integrating Feature Modeling with the RSEB. In

Proceedings of the 5th International Conference on

Software Reuse, pages 76-85, Vancouver, BC, Canada.

[12] M. Eriksson 2003 An Introduction to Software Product

Line Development, Proceedings of Ume's 7th Student

Conference in Computing Science, UMINF-03.05, ISSN

0348-0542, pp. 26-37.

[13] M.L. Griss, J. Favaro, and M. d'Alessandro. 1998

Integrating feature modeling with the rseb. In Software

Reuse, 1998. Proceedings. 5th International Conference

on, pages 76-85.

[14] L. Hotz, T. Krebs and A. Gunter. 2002 Knowledge-based

configuration for configuring combined

hardware/software systems. In Proceedings of Workshop

Planen, Scheduling und Konfigurieren, Entwerfen Puk

pages 61–70.

[15] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K.

Schmid, T. Widen, and J. DeBaud. 1999 Pulse: a

methodology to develop software product lines. In

Proceedings of the symposium on Software reusability,

SSR '99, pages 122-131, New York, NY, USA, ACM.

[16] P. Knauber, D. Muthig, K. Schmid, and T.Widen.

Applying Product Line Concepts in Small and Medium-

Sized Companies. IEEE SOFTWARE, September 2000.

[17] E. Yourdon and L.L. Constantine. Structured design:

fundamentals of a discipline of computer program and

systems design. Yourdon Press, 1978.

[18] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O.

Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst,

and J. Zettel. 2002 Component-based product line

engineering with UML. AddisonWesley Longman

Publishing Co., Inc., Boston, MA, USA.

[19] C. Atkinson, J. Bayer, and D. Muthig. 2000 Component-

Based Product Line Development: The KobrA

Approach. In Proceedings of the 1st Software Product

Line Conference, pages 289-309.

[20] Khan, A. I. and Qurashi, R. J. and Khan, U. A. 2011. A

Comprehensive Study of Commonly Practiced Heavy

and Light Weight Software Methodologies,

IJCSI International Journal of Computer Science Issues,

8(4).

8. AUTHOR PROFILE
Mr. Md Mottahir Alam: is a PhD Scholar in Computer

Science & engineering in Singhania university. He has around

six years of experience working as Software Engineer

(Quality) for some leading software multinationals where he

worked on projects for companies like Pearson and Reader‟s

Digest. He is ISTQB certified software tester. He has received

his Bachelors degree in Electronics & Communication and

Masters in Nanotechnology from Faculty of Engineering and

Technology, Jamia Millia Islamia University, New Delhi.

His research interest includes Software Engineering esp.

Software Product Line Engineering, Software Reusability,

Component-based and Agent-based Software Engineering.

Dr. Asif Irshad Khan received his Bachelor and Master

degree in Computer Science from the Aligarh Muslim

University (A.M.U), Aligarh, India in 1998 and 2001

respectively. His PhD degree in Computer Science and

Engineering from Singhania University, India.

Dr. Asif is working as faculty member in the Department of

Computer Science, King AbdulAziz University, Jeddah, Saudi

Arabia. His current research interest includes Software

Engineering with a focus on Component Based and Software

Product Line Engineering. He is member of editorial board

and reviewer of several journals.

Dr. Aasim Zafar is working as Associate Professor in

Computer Science Department, AMU, Aligarh. In research,

his current interests include e-learning, mobile learning,

virtual learning environments and mobile ad hoc networks. He

received his PhD degree in Computer Science from Aligarh

Muslim University, India and has a number of research papers

to his credits. Dr. Zafar is member of Internet Society (ISOC).

He is member of editorial board and regular reviewer of

several journals.

IJCATM : www.ijcaonline.org

