
International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

22

Empirical Analysis and Performance Evaluation of

various GPU Implementations of Protein BLAST

Sita Rani
Ph. D. Research Scholar

I.K.G. Punjab Technical University
Kapurthala (Punjab) INDIA

O. P. Gupta
Associate Professor

Punjab Agricultural University
Ludhiana (Punjab) INDIA

ABSTRACT

Bioinformatics applications are compute and data intensive by

nature. As the size of molecular databases is growing from

day to day experiments performed in the field of molecular

biology, thoughtful steps need to be taken to exploit various

methods to accelerate bioinformatics applications. Many

efforts have already been put in the field to optimize most of

the bioinformatics algorithms. By incorporating Graphical

Processing Units (GPUs), many bioinformatics applications

have benefited hugely. Compute Unified Device Architecture

(CUDA) is a hardware and software platform, used to exploit

multi-threaded architecture of GPUs. Basic Local Alignment

Search Tool (BLAST) is one of the most frequently used

algorithms for bioinformatics applications. Different GPU

implementations of protein BLAST have already been

proposed by different authors. For each implementation, the

authors claimed different speedups. But these

implementations are on different hardware platforms and also

were experimented with different databases, so it’s difficult to

compare their performance accurately. In this paper four

different GPU implementations of protein BLAST are

explored in detail. To compare their performance, these GPU

versions of BLAST are implemented on a common hardware

platform, i.e. NVIDIA M2050 GPU with 448 processing

cores, 3GB of memory and two hex-core Intel, Xeon 2.93

GHz processors. Experiments are performed on 2.38 GB

protein database. Performance is analyzed and compared with

standard NCBI-BLASTP. Parameter considered for

performance analysis and comparison is the execution time. In

the current environment speedup obtained by different

implementations varied from 2.3X to 9.8X.

Keywords

BLAST, Bioinformatics, CUDA, GPU, Sequence Alignment,

Thread.

1. INTRODUCTION
To compare a new genome sequence with existing sequences

in the database is one of the most frequently used tasks in

majority of bioinformatics applications [1]. This activity is

performed to identify the extent of similarity between the new

sequence and existing sequences. The degree of similarity

identifies the biological analogy between the sequences.

Smith-Waterman algorithm was the very first algorithm

proposed to find local similarities among query sequence and

database sequences [24]. But this algorithm had high values

for time complexity. So a new algorithm BLAST, based on

heuristic approach was proposed. This tool is time efficient as

compared to Smith-Waterman algorithm [2], [3], [4] and [13].

With day-to-day research, size of molecular databases has

already grown immensely and is still growing. Because of its

heuristic approach, BLAST became popular very shortly and

now it is the most widely used tools for different

bioinformatics applications. Because of its popularity, many

researchers and scientists have already put immense efforts to

further improve its execution time and are still working.

With the incorporation of GPUs in general purpose

computing, a new era of parallel computing has started.

CUDA is a hardware and software platform provided by

NVIDIA, which is specially designed to explore the parallel

architecture of GPUs by using multithreaded code [5].

In most of the bioinformatics applications, there is a need to

deal with huge databases, so these applications are data

intensive [18], [19], [20] and [23]. By using the multithreaded

programming approach of CUDA on GPUs, these

applications can be accelerated greatly.

Many bioinformatics algorithms and tools have already been

optimized on GPUs. BLAST has also been implemented on

GPUs by different authors by using different approaches.

Authors of different implementations have claimed different

speedups.

Because all the proposed implementations are on different

hardware platforms, it’s difficult to compare the performance

mutually. In this paper four different GPU versions of protein

BLAST are implemented on a common hardware platform

and performance is compared. The scope of further

improvement is also analyzed and discussed.

1.1 BLAST
BLAST is the most widely applied tool to compare a query

sequence (protein sequence/ nucleic acid) with the database

sequences in numerous bioinformatics applications [6], [21],

[26] and [27]. Various tasks performed for this search are

executed in four different stages of protein BLAST, discussed

below [7]:

 Hit Detection: Here, the comparison is done

between the query sequence and database sequences

to locate words matches for specified word length

and each identified word match is called a hit.

 Un-gapped Extension: In this stage, the score for

each word match is compared against the threshold

value after extending the word match in both the

directions without gaps. Matches, which score

higher than the threshold value are called High

Scoring Pairs (HSPs), are considered for next stages

and all other word matches are discarded.

 Gapped Alignment: In this stage, un-gapped

alignments retained in the previous stage are

extended by inserting gaps. Alignments with a score

higher than the threshold value are called High

Score Alignments (HSAs).

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

23

 Gapped Alignment with Trace- back: Here trace-

back path is determined for the final alignments and

results are displayed to the user.

Various BLAST variants [5] are available for different type of

query and database sequences. These are:

 Blastn: In Blastn, nucleotide queries are executed

on nucleotide databases for alignment. In this

variant of BLAST, short sequences of nucleotides

also called oligonucleotides are compared with long

sequences to identify characteristic of unknown

nucleotide sequences.

 Blastp: In Blastp, both query sequences and

database sequences are proteins. In this a query

sequence of unknown features is compared with

protein sequences of known functionality in the

databases. Functionality of the unknown sequence is

identified from best aligned sequences from the

database.

 Blastx: In Blastx, a nucleotide sequence is aligned

with protein databases. Before the alignment

nucleotide query sequence is converted to protein

sequence. Three protein sequences are generated

for each nucleotide sequence. The first sequence is

obtained by converting three nucleotides to a

protein. Then another two protein sequences are

generated in the same method, but leaving first and

then first two letters of the original nucleotide

sequence. The Blastx is mainly used in genomic

DNA to identify protein coding genes.

 tBlastn: In tBlastn, a protein query sequence is

executed on a nucleotide database. To obtain

accurate alignments, before query execution, each

database sequence is converted to three protein

sequences as explained above in Blastx. Then query

sequence is aligned with different protein sequences

in resultant database. Its application is in protein

mapping of the genome.

 tBlastx: In tBlastx, both query sequence and

databases, both are of nucleotide type. So both

query sequence and database sequences are

converted to protein sequences first (as explained

above), then query sequence is processed in the

database. tBlastx is used to determine transcripts of

unknown functions.

These different blast variants are summarized in Table 1.

Table 1: BLAST variants, type of query and database

sequences

BLAST

Variant

Type of

Database

Type of Query

Sequence

Blastn Nucleotide Nucleotide

Blastp Protein Protein

Blastx Protein Translated Nucleotide

tBlastn
Translated

Nucleotide
Protein

tBlastx
Translated

Nucleotide
Translated Nucleotide

In this paper protein BLAST i.e. BLASTP is being used for

study and analysis.

1.2 BLAST Parameters
Some important parameters of protein BLAST are discussed

below [8]:

 Word size (w): It specifies the length of the

match. This parameter is defined by the user. The

algorithm is executed with specified word length to

find the matches in the sequences. The smaller the

value of w, more the number of matches will be

identified during the alignment and vice-versa.

 Threshold (t): It is also a user defined

parameter. It is the minimum defined value for a

word match. Matches with score less than the

threshold are assumed to occur by chance and

discarded. Lesser the value threshold, there is

probability of higher number of hits.

 Drop-off (x): Score in an alignment, is

permitted to fall by drop-off value as compare to

already available highest score value.

 Lambda (ƛ): ƛ is matrix specific constant.

The score is normalized using matrix specific

constant.

 Adjustment (k): It is called Adjustment factor. It

is assumed that alignments at different locations and

their scores may be co-related.

 Gap penalty: Gap penalty reduces the effect of

idles in an alignment.

During our analysis of different GPU versions of protein

BLAST, the values used for different parameters are the

default values as shown below in the Table 2.

Table 2: Different parameters of protein BLAST with
their values for current analysis

Parameter Value

Word size 3

drop-off value for un-gapped extension 7

drop-off value for gapped extension 15

drop-off value for triggering gaps 22

drop-off value for final gapped alignment 25

open gap penalty -7

extension gap penalty -1

1.3 GPUs and CUDA
GPUs were initially designed to accelerate the speed of

graphical operations because in graphical computations same

operation is performed on similar type of data. But later on,

GPUs was started to be used in general purpose computing.

GPUs work on the principal of Single Instruction Multiple

Data (SIMD). A GPU consists of many streaming

multiprocessors (SMs) where each SM further consists of

some scalar processors (SPs) [16] and [17].

In 2007 NVIDIA launched CUDA. CUDA is a software and

hardware environment. Since then many compute intensive

applications in different domains have taken the advantage of

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

24

GPU computing. Even many bioinformatics applications have

also been implemented on GPUs and have achieved a

considerable speed up [22].

CUDA is an extended version of C/C++. It is used to program

GPUs. A CUDA program contains a kernel which consists of

sequential executable part of the program. It is used to code

the part of a program which can be processed by a single

thread. Then kernel is called to execute multiple threads

concurrently. These threads are organized as thread blocks

and further as grids [9], [14] and [25]. One SM executes all

the threads of a thread block. These threads are processed in

Single Instruction Multiple Thread (SIMT) fashion and all the

threads executed in parallel by an SM is called a warp [15] as

shown in Figure 1.

Figure 1: Threads organized as Blocks and Grids

2. RELATED WORK
In the very first GPU implementation of protein BLAST by

Ling et al., the authors used two-hit method for gapped-

BLAST. Two kernels were designed in this implementation.

First kernel was used to perform the steps up to un-gapped

alignment and last two steps were implemented by second

kernel. It was discussed that seeding stage of BLAST plays

main role in the performance of a GPU implementation of

BLAST. When there are fewer matches identified, lesser

number of threads are executed in parallel. GPU memory is

utilized to store different data structures. Experiments were

performed by the authors against Swiss-Prot protein database.

The authors claimed a speedup of 1.7X to 2.7X as compare to

standard NCBI- BLAST. It was also highlighted that for

smaller query sequences, speedup achieved was high as

compare to longer query sequences [10].

 In another implementation by Xiao et al., it was demonstrated

that 99% of the execution time is consumed by first three

stages of BLASTP. So authors focused on these stages in their

implementation. They also explained that the first two stages

cannot be isolated from each other. In this implementation, for

hit detection words were picked from the database sequence

one by one and compared with query sequence. In the next

step, multithreading was used to align sequences, where each

thread aligned a query sequence and a database sequence. In

their implementation, they also optimized the performance of

the algorithm by placing different data structures in suitable

memories of the GPU. Scoring matrix and query sequence

were placed in constant memory because of the fast access

time and small size of these structures. Subject sequence and

word lookup table were stored in texture memory because

they are large in size and faster to access. In this

implementation, sequences were assigned to different threads

using a greedy algorithm.

 In this implementation, parallelization was done only for first

two stages i.e. hit detection and un-gapped extension. They

demonstrated with their experiments that when first two

phases were implemented on the GPU, a speedup of 7X was

obtained for these two phases only. But when both, execution

of Dual core CPU and GPU was pipelined then a speedup of

6X was obtained in total execution time [7]. To provide these

speedup figures, following five different implementations

were tested by the authors:

 Serial execution on CPU.

 The GPU was used to implement all the stages

(three).

 The GPU was used for first and second stage and

the third stage was implemented on the CPU.

 The GPU was used for first and second stage and

third stage executed on two threaded CPU

 The GPU is used for first and second stage in

parallel to two threaded CPU for the third stage.

Liu et al., gave another GPU implementation of BLAST for

protein databases. In this implementation, the authors focused

on data structure design. Hit detection information was stored

with compressed Deterministic Finite State Automaton

(DFA). The GPU was used by the authors to implement stage

1, 2 and 3, whereas stage 4 was implemented on the CPU.

Two different kernels were designed for the GPU

implementation of this approach. Stage 1 and 2 were

implemented with one kernel and a second kernel for stage 3.

During algorithm execution, each thread worked on one

database sequence to identify word matches. For each word

match, first un-gapped extension was performed by taking

threshold value. Then gapped extension was performed by the

GPU. Final results were compiled using trace-back by the

CPU in stage 4 and are displayed. This implementation was

memory optimized and all the data structures were placed in

best possible memories by considering the size of data

structure and memory and frequency of access.

The authors claimed a speedup of 10X as compared to

standard NCBI-BLAST. But alignments generated did not

match with standard NCBI-BLAST, so there is a doubt for its

use by other researchers [9].

GPU-BLAST by Vouzis et al., is the most reliable among all

the discussed implementations because this was designed on

the top of standard NCBI-BLAST’s source code. Input and

output format were also same. Alignments generated exactly

matched with NCBI-BLAST.

The authors explained that the majority of the data structures

used in their implementation were the same as NCBI-BLAST.

Only some optimization was done to exploit the GPU. Along

with GPU, even multi core CPU was also utilized to its

maximum level. And load was well distributed between the

CPU and GPU, so that when GPU is in execution CPU should

not be idle.

GPU’s global, constant and shared memories were used in

this design. Authors have told that local and texture memories

were not being used in their approach. Some of the important

data structures used by the authors in this implementation are:

 Substitution matrix

 Presence bit vector

 Query index table

 Overflow table

These data structures were also optimized by considering the

size and frequency of usage. In this implementation, GPU and

CPU both were used during seeding and extension phases in

parallel. After calculation of High Scoring Pairs by the CPU

and GPU, the results were given back to the CPU and the rest

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

25

of the execution was performed by the CPU as done in

standard NCBI-BLAST.

The authors claimed a speedup between 3X and 4X in

comparison to standard NCBI-BLAST. There is a special

feature of this implementation; both the options are available

for CPU BLAST as well as for GPU BLAST. This feature is

not provided in any previous implementation [11].

3. PRESENT WORK

3.1 Hardware and Software Environment
Hardware used in the present work for analysis of

performance of different GPU implementations of BLASTP is

NVIDIA M2050 GPU with 448 processing cores, 3GB of

memory and two hex - core Intel, Xeon 2.93 GHz

processors. Operating System used on the system is Red Hat

Enterprise Linux 5.6 All the experiments are performed with

CUDA 5.5.

3.2 Experimental Data
Protein database of 2.38 GB was collected from National

Center for Biotechnology Information (NCBI) site. The

database was converted into FASTA format. Different sized

protein sequences were used to perform the different

experiments and gather results.

4. RESULTS AND DISCUSSION
All the four different GPU- implementations of protein

BLAST, discussed above, were implemented on a common

hardware platform, so that their performance can be analyzed

and compared accurately. Experiments were performed with

the query sequences of different lengths ranging from 100

characters 4000 characters to derive the inferences. The

parameter taken for analysis and performance comparison of

these implementations is the execution time. The results

collected with the queries of varying length for all the four

GPU implementations and standard NCBI-BLAST are shown

in Table 3.

Table 3: Execution Time with different GPU

implementations of protein BLAST and standard NCBI-

BLAST for queries of different lengths

Query

Length

Execution Time (Sec)

NCBI-

BLAST

Imp -I

(C.Ling)

Imp-II

(S.Xiao)

ImpIII

(W.Liu)

Imp -IV

(P.D. Vouzis)

500 2023 880 316 206 547

1000 2084 906 326 213 563

1500 2101 910 328 214 568

2000 2203 960 344 229 600

2500 2286 994 357 233 618

3000 2327 1012 364 237 629

3500 2735 1189 427 279 739

4000 3739 1627 587 382 1011

Figure 2 shows the graph depicting the execution time of four

different GPU-implementations of protein BLAST on the

discussed hardware platform for different query sequences of

varying length.

From Figure 2, it can be easily analyzed that implementation

proposed by C. Ling is the slowest among all and W. Liu

proposed the fastest GPU implementation of the protein

BLAST.

Figure 2: Query Length verses Execution Time of

different GPU- implementations of protein BLAST

Execution time of different GPU implementations of protein

BLAST, along with execution time of standard NCBI –

BLAST is shown in Figure 3 with the help of line-graph. In

Figure 3, results for more number of query sequences are

taken for more accurate comparison of different

implementations along with NCBI-BLAST.

Figure 3: Execution time comparison of different GPU-

implementations of protein BLAST with standard NCBI-

BLAST

When all the four GPU versions of protein BLAST were

implemented on common hardware platform, they have

shown varying speedup as compare to standard NCBI-

BLAST. Speedup obtained by each implementation is

depicted with a line graph in Figure 4. Average speedup for

different implementations varied from 2.3X to 9.8X in

comparison to NCBI-BLAST as shown in Table 4.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

26

Figure 4: Speedup obtained by each GPU implementation

of protein BLAST in comparison with standard NCBI-

BLAST

Minimum speedup is shown by the implementation proposed

by C. Ling and maximum speedup is obtained with the

implementation proposed by W. Liu as depicted in Figure 4.

But there is a major drawback of the implementation proposed

by W. Liu, alignments generated did not match with standard

NCBI-BLAST as it was highlighted by the authors.

Table 4: Average speedup obtained with different GPU

implementations of protein BLAST in comparison with

standard NCBI-BLAST

Implementation

Authors

Speed-up in

comparison

with

standard

NCBI-

BLAST

I

C. Ling and

K. Benkrid
2.3

II

S. Xiao, H. Lin

and W. Feng
6.4

III

W. Liu, B.

Schmidt and W.

Muller-Witting

9.8

IV

P.D. Vouzis and

N.V. Sahinidis
3.7

5. CONCLUSIONS
The prime objective of this research was to measure the

performance of different GPU-implementations of protein

BLAST on a common hardware platform and database. In

this research exhaustive experimentation is done to obtain

more accurate results. The parameter used for comparison is

the execution time to process the query sequence against

database. The experiments are performed by taking the

queries of different length ranging from 100 characters to

4000 characters. The comparison is also done with standard

NCBI-BLAST by calculating the speedup of different

implementations. Average speedup, in comparison to standard

NCBI- BLAST varied from 2.3X to 9.8X. Implementation

proposed by Ling et. al., is 2.3 times faster than NCBI-

BLAST. Whereas Liu. et. al. proposed fastest implementation

with a speedup of 9.8.

6. FUTURE SCOPE
During analysis, its being observed that in all the

implementation discussed, only one query sequence is

processed on all the threads GPU at a time. But each

streaming multiprocessor of the GPU can execute a different

query on complete database or on a part of the database by

following SIMT approach. So still a next level of parallelism

need to be exploited for BLAST on GPUs for multiple query

execution in parallel. Further BLAST can be implemented on

GPU enabled High- Performance Cluster (HPC) for multiple

query sequence processing to reduce execution time.

7. ACKNOWLEDGEMENT
The authors express deep gratitude to the Dean, Research,

Innovation and Consultancy Deptt. of I.K.G. Punjab

Technical University, Kapurthala for giving them the

opportunity to carry on this research work.

8. REFERENCES
[1] Isaza, S., Sanchez, F., Cabarcas, F., Ramirez, A. and

Gaydadjiev, G., “parameterizing multicore architectures

for multiple sequence alignmnet”, International

Conference on Computing Frontiers, May3-5, 2011,

Ischia, Italy.

[2] Diaz, D., Esteban, F.J., Hernandez, P. , Caballero, J.A.,

Dorado, G. and Galvez, S., “Parallelizing and

optimizing a bioinformatics sequence alignment

algorithm for many-core architecture”,Parallel

Computing. vol. 37, 2011, pp. 244-259.

[3] Altschul, S.F., Gish, W. , Miller, W., Myers, E.W. and

Lipman, D.J. “ Basic Local Alignmnet Search Tool”, J.

Molecular Biology, 1990, vol. 215, pp. 403-410.

[4] Dematte, L. and Prandi , D. , “ GPU computing for

system biology” , Briefings in Bioinformatics. 2010, vol.

11. No. 3, pp. 323-333.

[5] Kindratenko, V.V., Enos, J.J. , Shi, G., Showerman,

M.T., Arnold, G.W., Stone, J.E., Phillips, J.C. and Hwu,

W., “ GPU Clusters for high performance computing” ,

IEEE International Conference on Cluster Computing

and Workshop, Aug, 31-Sep,4, 2009, New Orleans, LA,

pp. 1-8.

[6] Sharma , T.R., “ Genome Analysis and Bioinformatics” ,

2009, pp.67.

[7] Xiao, S., Lin, H. and Feng , W. “ Accelerating Protein

Sequence Search in Heterogeneous Systems” , IEEE

Parallel and Distributed Processing Symposium, May,

2011, Anchorage, AK, pp. 112-1222.

[8] Ree, E. J. and B. S., “Parallelization Methods for the

Distribution of High Throughput Bioinformatics

Algorithms” , Ph.D. Dissertation , Texas University,

2011 .

[9] Liu, W., Schmidt, B. and Muller-Witting, W., “ CUDA-

BLASTP: accelerating BLASTP on CUDA-enabled

graphics hardware”, IEEE/ACM Transaction on

Computational Biology and Bioinformatics , 2011, vol.

8, no. 6, pp. 1678-1684.

International Journal of Computer Applications (0975 – 8887)

Volume 151 – No.7, October 2016

27

[10] Ling, C. and Benkrid, K., “ Design and implementation

of a CUDA-compatible GPU-based Core for gapped

BLAST algorithm”, International Conference on

Computational Science , 2010 is available on Science

Direct Procedia Computer Science, vol. 1, no 1,pp.495-

504.

[11] Vouzis, P.D., and Sahinidis, N.V., “GPU-BLAST:

using graphics processors to accelearte protein sequence

alignment”, BIOINFORMATICS, vol.27, no. 2, 2011,

pp. 182-188.

[12] National Center for Biotechnology Information:

http://www.ncbi.nlm.nih.gov/

[13] Altschul, S.F., Madden, T.L., Schaffer, A.A. , Zhang, J.,

Zhang, Z., Miller, W., and Lipman, D.J., “Gapped

BLAST and PSI-BLAST: a new generation of protein

database search programs”, J. Nucleic Acid Research,

1997, vol. 25, no. 17, pp. 3389-3402.

[14] Luebke, D., “CUDA: Scalable parallel programming for

high performance computing”, Proc. 5th IEEE

International Symposium on Biomedical Imaging, Paris,

2008, pp. 836-838.

[15] Liu, Y., Maskell, D.L., and Schmidt, B.,“

CUDASW++: optimizing Smith-Waterman sequence

database searches for CUDA-enabled graphics

processing units”, BMC Research Note,2009, vol. 2, no.

73, pp. 1-10.

[16] Nickolls, J. and Dally, W.J. “ The GPU Computing

Era”, J. IEEE Computer Society Micro, 2010, vol. 30, no.

2, pp. 56-69.

[17] McClanahan, C., “History and Evolution of GPU

Architecture”, 2010, A paper Survey.

http://mcclanahoochie.com/blog/wpcontent/uploads/2011

/03/gpu-hist-paper.pdf

[18] Fenstermacher, D.,“Introduction to Bioinformatics”, J.

of American Society for International Science and

Technology, 2005, vol. 56, no. 5, pp. 440-446.

[19] Albayraktaroglu, K., Jaleel, A., Wu, X., Franklin, M.,

Jacob, B., Tseng, C.W. and Yeung, D. “ BioBench: A

Benchmark Suite of Bioinformatics Applications”, Proc.

IEEE International Symposium on Performance Analysis

of Systems and Soft- wares, Austin, TX,2005, pp. 2-9.

[20] Cohen, J. “Bioinformatics: An Introduction to Computer

Scientists”, ACM J. Computing Surveys, 2004, vol. 36,

no. 2, pp. 122-158.

[21] Baxevanisand D.A., and Ouellette, B.F.,

“BIOINFORMATICS A Practical Guide to the analysis

of Genes and Proteins,” John Wiley and Sons INC.,

U.K., 2006, pp. 82-102.

[22] Pang, B., Zhao, N., Becchi, M., Korkin, D. and Shyu,

C. “ Accelerating large-scale protein structure alignments

with graphics processing units”, BMC Research Notes,

2012.

[23] Lin, C., Hung, C. , and Huang, J., “Efficient GPU-

Based Algorithm for Aligning Huge Sequence

Database”, IEEE International conference on High

Performance Computing and Communications, 10th

IEEE International Conference on Embedded and

Ubiquitous Computing, Zhangjiajie, 2013, pp. 1758-

1762.

[24] Lee, S., Lin, C. and Hung, C.L. “ GPU-Based Cloud

Service for Smith-Waterman Algorithm using Frequency

Filtration Scheme”, BioMed Research International,

Research Article, vol. 2013, pp. 1-8.

[25] Zhu, X. , Li, K., Salah, A., Shi, L. and Li, K., “

Parallel Implementation of MAFFT on CUDA-Enabled

Graphics Hardware”, IEEE/ACM Transaction on

Computational Biology and Bioinformatics, 2015, vol.

12, no. 1, pp. 205-218.

[26] Zhang, J., Wang, H., Lin, H. and Feng, W.,

“cuBLASTP: Fine Grained Parallelization of Protein

Sequence Search on a GPU”, IEEE 28th Parallel and

Distributed Processing Symposium, Phoenix, AZ, 2014,

pp. 251-260.

[27] Gupta, OP. and Rani, S., “Accelerating Molecular

Sequence Analysis using Distributed Computing

Environment”, International Journal of Scientific and

Engineering Research, 2013, vol. 4, no. 10, pp. 262-266.

9. AUTHOR PROFILE
Sita Rani is pursuing her Ph.D. in Computer Science and
Engineering from I.K.G. Punjab Technical University,
Kapurthala. She received her B.Tech (Computer Science and
Engineering) and M.Tech (Computer Science and
Engineering) in the years 2002 and 2008 respectively from
Guru Nanak Dev Engineering College, Ludhiana. Currently,
she is working as Associate Professor cum Head of
Department at Ludhiana Group of Colleges, Chaukimann. Her
current research interests are Software Engineering, Data
Structures, Parallel Computing and Bioinformatics.

OP Gupta, Ph.D. (Computer Science & Engineering) is an

alumni of PAU, Ludhiana, Thapar University, Patiala and

GNDU, Amritsar has demonstrated his intellectual,

interpersonal and managerial skills in various domains. He is

the winner of PAU Meritorious Teacher Award for 2009-

2010. Having vast industrial experience of working in IT

industry with the role of Project Manager, currently he is an

Associate Professor of Computer Science and Deputy

Director, School of Information Technology at PAU,

Ludhiana. He is also approved Ph.D supervisor of I.K.G.

Punjab Technical University, Kapurthala. His areas of

interests include Parallel and Distributed Computing, Grid

Computing, Bioinformatics, Network Testing and Network

Management.

IJCATM : www.ijcaonline.org

