
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

4

IAR: Improved Advance Reservation in IaaS Clouds

Vivek Shrivastava
International Institute of

Professional Studies
Devi Ahilya University

Indore, India

Payal Gupta
John Hopkins University
3101 Wyman Park Dr.,

Baltimore, MD

D. S. Bhilare
Computer Centre

Devi Ahilya University
Indore, India

ABSTRACT

Cloud data centers have a large number of resources.

Management of such huge amount of resources for a large

number of consumers requires fail-safe algorithms and leasing

policies. Advance Reservation (AR) leasing policy is a rigid

policy, which needs resource and consumer locking at a very

early point of time, while advanced reserved lease can be

rejected at actual point of time when resources are required.

This problem can be dealt with proposed Improved Advance

Reservation (IAR) algorithm and leasing policy , which uses

negotiation and provide half capacity of the requested number

of resources, instead of rejecting a lease if consumer agrees

for the same. Experimental results show that the proposed

work maximize resource utilization and acceptance of

requests in comparison with existing algorithms in Haizea.

General Terms

Cloud computing, Scheduling, IaaS Cloud, Algorithms

Keywords

IAR, Leasing Policies, Resource Management, IaaS Cloud

1. INTRODUCTION
Cloud computing is gaining popularity as it provides, on

demand services over the Internet in a very less amount of

time and at a very low cost. Users are not required to purchase

and install software or hardware in cloud computing model.

This supports minimum capital expenditures and operational

expenditures as users are free from cooling cost, maintaining

state-of-the-art software and hardware, and space required to

put required hardware and software.

 Clouds computing let users free to do their intended job

because, users are not required to hire and maintain a big IT

department for their computational requirements. Cloud

supports three service models with the help of four

deployment models. Three service models namely Software as

a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS) can be provided to users as

single individual service or as a package of combination of

more than one service models.

Deployment models of cloud provide it liberty to provide

services as a private service to public services at large. Private

deployment model of cloud confines services to only one user

or organization and that may be on-premise or off-premise.

Public deployment model of cloud provides better utilization

of resources at cloud service provider side by using same

resources for more than one users or organization so this

model provides multi-tenancy. Hybrid deployment model is a

combination of private and public deployment model, while

community deployment model allows sharing cloud services

among a group of users or organizations, which share same

concerns.

2. RESOURCE ALLOCATION IN

CLOUD
Cloud exhibits a pool of resources, sometimes infinite, put

together to serve a large number of users. Managing these

resources requires: registering new resources, allocating and

reallocating resources, monitoring and securing resources,

providing resources to consumers in a fail-safe and a zero

downtime manner. Resource management also requires load

balancing and load sharing so that resource utilization can be

optimized, throughput can be maximized and response time

can be minimized.

Computing resources can be allocated to users in the form of

virtual machines (VMs) in cloud computing. These VMs can

be provided by executing different kinds of leases. These

leases works under a service level agreement (SLA). Leases

have a nature based on their leasing policy and resource

management algorithms.

Most of the cloud providers work majorly on Best Effort (BE)

leases, immediate leases and a very few on AR leases [1].

Service providers like Amazon EC2 [2] provides a pay per use

model to general public for providing computing resources on

public cloud, Google Cloud platform [3] offers hosting of

infrastructure to its end users and provides a set of modular

cloud-based services, Microsoft Azure [4] provides platform

and infrastructure for designing, implementing and managing

applications and services through a global network on cloud.

Eucalyptus [5], Nimbus [6] and OpenNebula [1] are cloud

toolkits which are helpful in setting up a cloud on local

infrastructure.

Sometimes it is not possible for the cloud providers to satisfy

all the requirements of the user’s request due to cases such as

lack of resources (computing capacity and storage) which

eventually leads to rejection of such request and increases the

rejection rate of the system. Haizea is an open sources virtual

machine based lease management architecture which tries to

address such issues [7], [8], [9], [10]. It performs resource

allocation and implements user’s computational resource

requests in the form of one or more virtual machines called as

lease. This lease is accepted by Haizea if it can assure the

resources allocation policy requested by the user. In order to

assure the resource allocation it requires requested resources

for a finite duration and the start time. It then reserves the

resources for the particular lease in the specified time interval.

Whenever the start time of the lease comes it allocates

resources to the user in form of VMs, which are deployed on

physical machines. The requested lease is stored using two

main data structure called Lease and SlotTable. Lease stores

the information regarding an accommodated lease and

SlotTable will store information about the physical nodes and

the reservation made on it. The submission of a lease causes

the scheduler adding entries to the slot table. The start and the

end of an allocation in the slot table are also treated as an

event that causes the scheduler to re-evaluate the schedule.

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

5

Haizea supports four kinds of leases: BE, Immediate, AR and

Deadline Sensitive (DLS) [11]. BE lease are preemptable

lease and do not have a time constraint. These leases are

splitable. Immediate and AR leases are non- preemptable and

have a specific time constraint like start time and end time. A

DLS lease is also a preemptable lease but with certain time

constraint i.e. it must be executed before its deadline is

reached. In order to execute an AR and an immediate lease,

BE leases are pre-empted to provide resources to these leases.

There is no guarantee when a BE lease will have enough

resources for its execution. When the system is flooded with

number of AR and immediate leases then BE lease have to

wait for long to be executed. In order to avoid longer waiting

period the user prefers to resubmit its lease in the form of an

AR lease. This increase in number of AR leases will cause the

system to reach a bottleneck condition where the system

performance will degrade. In such situation, most AR lease

will be rejected due to unavailability of demanded resources

in a given time period. In order to handle this type of

situations, an option to run the lease at half capacity can be

associated with the AR leases. Those AR leases, which can be

executed at full capacity will be executed as such like in the

original system, but those leases which are rejected at full

capacity are given an option to run at half capacity with the

user’s consent while keeping the other parameters same. Thus,

it assures the user that their requests are executed even when

the system is flooded with a lot of leases.

3. LITERATURE SURVEY
To minimize rejection of deadline sensitive resource

scheduling in IaaS cloud computing by experimenting in

Haizea, Dynamic planning based scheduling algorithm has

been proposed in [12] which can admit new leases and

prepare the schedule whenever a new lease can be

accommodated.

Decision making algorithms and extending the current AR

algorithms in IaaS cloud computing, a negotiation based

allocation of resources has been proposed in [12]. If the

system has lots of AR and immediate leases then priority will

be given to these leases. BE leases have to wait for a long

time and will be served when resources are free from AR &

immediate leases.

To protect BE leases from starvation of resources which is the

main problem when dealing with heterogeneous request

environment, Starvation-removal algorithm was proposed in

[13]. This algorithm controls increased rate of lease

suspensions by increasing priority of leases by aging

mechanism. BE leases take long period of time to complete

due to presence of so many AR and immediate leases. This

may lead to more requests to AR leases which in turn may

cause internal fragmentation of free resources.

Proper load should be provided with virtual machines on a

server, so that they can be protected from overloading.

Measurement of computing power can be done by CBUD

Micro [15] for very little computing power devices.

Resource request and acceptance rate also fall due to heavy

request traffic for resources and slow response, and the

completion time of requests for resources. These situations are

handled by consumer rating index (CRI) as given in [16] and

modified Earliest Deadline First algorithm (mEDF) as given

in [17]. In [16] an algorithm and a leasing policy for

prioritizing consumers on the basis of CRI score was

provided. Authors showed policy to maintain order of

execution of users’ task on the basis of some parameters and

claimed their result is an improvement over existing policies

and algorithms under some conditions. A security aware

leasing policy and resource management algorithm: SAFETY

was proposed and implemented in [18], [19] for isolation of

users’ task in multitenant cloud.

4. NEED OF CONVERSION OF AR

LEASE TO IAR LEASE
AR is the process of requesting resources to be used at any

specified interval in future. Users submit a request i.e. a non

preemptable lease by specifying a series of parameters such as

number of resources, and time constraints such as start time

and duration time. The lease manager checks for the

feasibility of each request. If one or more parameter cannot be

satisfied then the request is rejected. This type of lease offers

rigidity and does not allow the user to change the parameters.

The rigidity thus offered increases the rate of rejection for this

type of lease. In order to overcome this problem, negotiation

can help by decreasing the number of resources to half if the

user agrees for the same. This will allow the AR to be

accepted at half capacity thus eventually increase the

acceptance rate. Moreover, a lease requesting more than the

maximum number of hardware resources can also be accepted

if they run at half capacity.

Table 1 Lease Requests Arrivals

Lease

Number

Nodes Arrival

Time

Start

Time

Duration

Time

1 2 11:10 12:00 30

2 3 11:20 12:30 10

3 4 11:30 12:00 20

4 6 11:40 12:40 40

5 1 11:50 12:40 10

4.1 System Description
To request resources from Haizea, user has to submit lease in

specific format. Main parameters must include virtual nodes,

amount of physical resources for each node, start time and

duration time. CPU and memory are two computational

resources which are requested by user. It also has a software

field, where a user can specify the software to be deployed on

allocated resources. In this experiment, only those leases are

considered in which CPU and memory are fixed for all nodes.

It is assumed that the lease request number of virtual nodes

with the same hardware for each node. This is done for

simplicity of experiment. The proposed model can handle the

leases demanding more than the available/ fixed (4) number

of virtual nodes. The software specified in software field of

the request is considered as VM image. These VM are stored

in a central repository. If a lease is pre-empted, it is suspended

by suspending its VM. These VMs may be resumed on the

same nodes or on other nodes. When a VM is suspended, a

memory stale file is created on the node where the VM was

running. When a VM is resumed, the VM image is transferred

to the original node on which it was running and the memory

stale file is read into memory whereas when a suspended VM

is migrated to a different node, its image gets transferred to

the new node on which it will run. Suspending multiple VMs

communicating with each other can cause the system to enter

into a deadlock state. All these assumptions are made based

on the assumptions made in combining batch execution.

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

6

Figure 1 Resource Allocation in 4 nodes.

4.2 Task Characteristics
 As previously defined Haizea supports four type of

lease (tasks) to schedule.

 All tasks are periodic.

 Deadline and BE tasks can be executed in parts.

 All tasks are independent and the scheduling

algorithm assumes no communication between

them.

 Haizea accepts new tasks if all the old tasks that are

accepted can be feasibly scheduled in accordance

with the new task.

5. THE HAIZEA VM SCHEDULER
This class is responsible for taking a lease and scheduling

VMs to satisfy the requirements of that lease. This class has

an algorithm named schedule exact in VM Scheduler. This

algorithm schedules VMs/ leases that must start at an exact

time i.e. AR lease. This type of lease is easy to schedule

because exact start time is known, which means that’s the

only starting time that have to check for resources. This

method is responsible to call the mapper. If no mapping is

possible, it indicates that there are not sufficient resources for

the requested lease. This raises an exception and rejects the

lease. The proposed algorithm checks if mapping is possible

or not. If the mapping is not possible it creates a dictionary

with the same lease number but reduces the number of virtual

nodes to half. This new AR thus formed is called IAR

(Improved Advance Reservation). This new dictionary is

again given to the mapper for mapping. Now if no mapping is

possible again this lease gets rejected.

5.1.1 Algorithm 1.

athalf = 0
 # a new parameter that indicates

if the dictionary is modified.
if mapping == None
new_dict = dict(lease.numnodes/2)

athalf =1
#indicates that there is a change
in dictionary

#Marks that an AR has been
converted into a IAR.
mapping, actualend, preemptions =

self.mapper.map(lease,
requested_resources, start, end,
strictend = True)

#call the mapper function

if mapping == none
 raise exception;

This class has one more algorithm under the Slot table Event

Handler named handle start vm. It is responsible for handling

the start of a VM Resource Reservation. This is the part where

Slot table event handler works. It marks the beginning of a

resources reservation from a dictionary. In the proposed

algorithm it checks if for a lease a new dictionary is formed

then Resource Reservation (rr) requested resource is also

updated.

5.1.2 Algorithm 2

if lease_state ==
Lease.STATE_READY:

l.set_state(Lease.STATE_ACTIVE)
 rr.state =

ResourceReservation.STATE_ACTIVE
 now_time =
get_clock().get_time()

 l.start.actual =
now_time
 if athalf != 0

#indicating a IAR has been formed
and we need to update resource

reservation
 rr. requestedresources =
rr. requestedresources/2

 try:

self.resourcepool.start_vms(l, rr)

 except EnactmentError,
exc:

self.logger.error("Enactment error
when starting VMs.")
 # Right now, this

is a non-recoverable error, so we
just
 # propagate it

upwards to the lease scheduler
 # In the future,
it may be possible to react to

these

 # kind of errors.
 raise

5.1.3 The Haizea Action

Haizea has one more algorithm in Actions named from rr

which overrides the function EnactmentAction. This

algorithm performs the enactment operation. In the proposed

algorithm if there is a difference found between the original

lease submission dictionary and new dictionary for that

particular lease, the enactment action is done by considering

the IAR.

6. EXPERIMENT AND RESULTS
To evaluate both the algorithms following parameters have

been used-

 System Throughput

 Number of leases accepted

http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html
http://haizea.cs.uchicago.edu/pydoc/haizea.core.scheduler.vm_scheduler-pysrc.html

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

7

 Number of leases rejected

 Number of leases running at half capacity

6.1 Experimental Setup
This proposed algorithm is implemented in Python and

simulated on Haizea by modifying its VM Scheduler and

Enactment Component. Haizea has been used in simulated

mode. For experiment purpose, four physical nodes each

having one CPU and 1024 MB memory are considered as the

total available resources. The number of leases is varied and

readings are noted for the parameters above. An AR lease has

basically three important parameters, namely start time,

duration and number of nodes. All the parameters are varied

randomly and manually.

6.2 Experiment 1: accepted lease, rejected

lease
The experiment is performed by considering leases in four

sets of 5,10,15,20 and 25 leases. A comparison between the

number of leases accepted and the number of leases rejected is

drawn in both existing and proposed algorithms.

Table 2 Leases accepted and rejected in set of 5 leases

Set of 5

leases
Algorithm Accepted Rejected

Set 1 Existing 3 2

Proposed 4 1

Set 2 Existing 4 1

Proposed 4 1

Set 3 Existing 3 2

Proposed 4 1

Set 4 Existing 3 2

Proposed 4 1

Average Existing 3.25 1.75

Proposed 4 1

Table 3 Leases accepted and rejected in set of 10 leases

Set of 10

leases

Algorithm Accepted Rejected

Set 1 Existing 5 5

Proposed 7 3

Set 2 Existing 5 5

Proposed 7 3

Set 3 Existing 5 5

Proposed 6 4

Set 4 Existing 5 5

Proposed 6 4

Average Existing 5 5

Proposed 6.5 3.5

Table 4 Leases accepted and rejected in set of 15 leases

Set of 15

leases

Algorithm Accepted Rejected

Set 1 Existing 6 9

Proposed 10 5

Set 2 Existing 8 7

Proposed 10 5

Set 3 Existing 8 7

Proposed 11 4

Set 4 Existing 9 6

Proposed 10 5

Average Existing 7.75 7.25

Proposed 10.25 4.75

Table 5 Leases accepted and rejected in set of 20 leases

Set of 20

leases

Algorithm Accepted Rejected

Set 1 Existing 8 12

Proposed 13 7

Set 2 Existing 10 10

Proposed 12 8

Set 3 Existing 11 9

Proposed 15 5

Set 4 Existing 10 10

Proposed 12 8

Average Existing 9.75 10.25

Proposed 13 7

Table 6 Leases accepted and rejected in set of 25 leases

Set of 25

leases

Algorithm Accepted Rejected

Set 1 Existing 11 14

Proposed 17 8

Set 2 Existing 13 12

Proposed 16 9

Set 3 Existing 12 13

Proposed 16 9

Set 4 Existing 13 12

Proposed 15 10

Average Existing 12.25 12.75

Proposed 16 9

6.2.1 Results of Experiment 1

Figure 2 Accepted Leases VS Submitted Leases

Figure 3 Rejected Leases VS Submitted Leases

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

8

6.2.2 Experiment 2: number of leases at half

capacity
This experiment is performed for four sets of 5, 10, 15, 20, 25

leases. This experiment shows the number of leases that are

accepted at half capacity.

Table 7 Leases that are running at half capacity

No. of

AR

leases

Leases that are running at half capacity

Set 1 Set 2 Set 3 Set 4 Average

5 2 3 2 3 2.5

10 6 4 4 6 5

15 8 6 6 8 7

20 12 8 8 12 10

25 14 12 12 14 13

Table 8.

6.2.3 Results of Experiment 2

Figure 4 Leases at half capacity VS Submitted Leases

Figure 5 Leases at Half Capacity

7. CONCLUSION AND FUTURE WORK
The complexity of this procedure is dependent on start time,

duration time, end time, number of requested resources, and

number of leases running at that time. By running the lease

along with a previous running lease on the remaining

resources increases the acceptance rate by a second order

polynomial function.

In this work number of resources has been divided to half in

order to execute the lease. In future the division of resources

can be done on dynamic or user selectable basis.

8. REFERENCES
[1] Borja, S., Ruben, M.S. and Ignacio, M.T., 2009. An

Open Source Solution for Virtual Infrastructure

Management in Private and Hybrid Clouds. IEEE

Internet Computing.

[2] Amazon EC2, http://aws.amazon.com/ec2/ [accessed

Sep. 8, 2014].

[3] Google Cloud Platform, https://cloud.google.com/

[accessed Oct. 12, 2014].

[4] Microsoft Azure , http://azure.microsoft.com/en-in /

[accessed Aug. 18, 2014].

[5] Nurmi, D. Wolski, R. Grzegorczyk, C. Obertelli, G.

Soman, S. Youseff, L. and Zagorodnov, D. 2009. The

Eucalyptus Open-source Cloud-Computing System. In

Proceedings of the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid.

[6] Nimbus, http://www.nimbusproject.org/ [accessed Sep.

8, 2014].

[7] Sotomayor, B. Keahey, K. and Foster, I. 2006. Overhead

Matters: A Model for Virtual Resource Management. In

Proceedings of the 2nd International Workshop on

Virtualization Technology in Distributed Computing,

IEEE Computer Society.

[8] Sotomayor, B. Montero, R. Llorente, I. and Foster, I.

2009. Resource leasing and the art of suspending virtual

machines. In Proceedings of the IEEE International

Conference on HPCC-09.

[9] Sotomayor, B. Montero, R. Llorente, and I. Foster, I.

2008. Capacity leasing in cloud systems using the

OpenNebula engine. In Proceedings of the Workshop on

Cloud Computing and Applications.

[10] Sotomayor, B. Keahey, K. and Foster, I. 2008.

Combining Batch Execution and Leasing Using Virtual

Machines. In Proceedings of the 17th International

Symposium on High performance distributed computing

(HPDC '08). ACM.

[11] Nathani, A. Chaudhary, S. and Somani, G. Policy based

resource allocation in IaaS cloud. Future Generation

Computer Systems, 28(1), (Jan. 2012), 94-103.

[12] Akhani, J. Chuadhary, S. and Somani, G. 2011.

Negotiation for resource allocation in IaaS cloud. In

Proceedings of the Fourth Annual ACM Bangalore

Conference.

[13] Shrivastava, V. and Bhilare, D.S. Algorithms to Improve

Resource Utilization and Request Acceptance Rate in

IaaS Cloud Scheduling. International Journal of

Advanced Networking & Applications, 3(5), (Nov.

2012), 1367-1374.

[14] Shrivastava, V. Bhilare, D. S. 2014. COMMA: A Cost

Oriented Market and Migration Aware Leasing Policy

and Algorithm in IaaS Clouds. In Proceedings of the

2014 International Conference on Information and

Communication Technology for Competitive Strategies

(ICTCS '14). ACM.

http://aws.amazon.com/ec2/
https://cloud.google.com/
http://azure.microsoft.com/en-in%20/
http://www.nimbusproject.org/

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.2, October 2016

9

[15] Shrivastava, V. and Bhilare, D.S. CBUD Micro: A Micro

Benchmark for Performance Measurement and Resource

Management in IaaS Clouds. International Journal of

Emerging Technology and Advanced Engineering 3(11),

(Nov. 2013), 433-437.

[16] Shrivastava, V. and Bhilare, D.S. CRI: A Novel Rating

Based Leasing Policy and Algorithm for Efficient

Resource Management in IaaS Clouds. International

Journal of Computer Science and Information

Technologies, 3(2014), (Jun. 2014), 4226- 4230.

[17] Shrivastava, V. and Bhilare, D.S. mEDF: Deadline

Driven Algorithm for Minimizing Response Time and

Completion Time in IaaS Clouds. International Journal

of Application or Innovation in Engineering and

Management (Jun. 2014) 3(6), 16-22.

[18] Shrivastava, V. and Bhilare, D.S. 2015. SAFETY: A

Framework for Secure IaaS Clouds. International Journal

of Advanced Networking and Applications. (May 2015),

6(6), 2549-2555.

[19] Shrivastava, V. Bhilare, D.S. 2015. A Security Aware

Leasing Policy and Algorithm for IaaS Clouds.

International Journal of Engineering Research and

Technology (Jun. 2015) 4(6), 886-891.

IJCATM : www.ijcaonline.org

