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ABSTRACT 

In this paper we investigate the numerical solution of two 

dimensional Volterra - Fredholm integralequations by 

Variational iteration method. Two numerical examples are 

given to illustrate themethod.   
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1. INTRODUCTION 
Many works have been focusing on the development of more 

advanced and efficients methods for the two dimensional 

nonlinear Volterra integral equations such as Collocation 

method , Legendre polynomials,Tau method , Iterative 

method ,Extrapolation methods and others see [1 - 10 ] . 

In 1987 Inokuti in [17 ] proposed a general Lagrange 

multiplier method for solving nonlinear operator 

forms as follows :   

Lu + NU = g(x)                                     (1) 

where L is a linear operator , N is a nonlinear operator , g(x) is 

a known analytic function and u is 

an unknown function that to be determind. Also on the 

supposition that u0 is the solution of LU = 0 , 

It can be found via Variational theorem in [12 ,17 ] .The 

Inkuti method is modified by he which it can 

be written 

𝑢𝑛+1 𝑥0 = 𝑢𝑛   𝑥0 +  𝜆 𝐿𝑢𝑛 + 𝑁𝑢𝑛 − 𝑔 

𝑥0

0

𝑑𝑠     2  

where u0 is an initial approximatation and un is are stricted 

variation , in other words δun = 0 in[12] , for arbitrary of x0 

,author has converted Eq.(2) to the following equation [13 , 

14]. 

𝑢𝑛+1  𝑥 = 𝑢𝑛   𝑥 +  𝜆 𝐿𝑢𝑛   𝑠 + 𝑁𝑢𝑛   𝑠 − 𝑔 𝑠  
𝑥

0

𝑑𝑠 (3) 

the above integeral in Eq.(3) is called a correction function 

and index n denotes the nth approximation. Also Eq.(3)is 

called Variational iteration method (VIM). In [15 , 16] this 

method is used for solving nonlinear problems .The 

Variational iteration method is effective and easy for linear 

problem because 

exact solution can be given by one iteration . In the above 

process Eq.(3) is written in following form 

𝑢𝑛+1 𝑥 = 𝑢𝑛 𝑥 +  𝜆(𝐿𝑢𝑛 𝑠 + 𝑁𝑢𝑛 𝑠 − 𝑔(𝑠))
𝑥

0

𝑑𝑠 (4) 

In Eq.(4) by using u0(x) as an initial approximation , we 

obtain a sequence of approximations of exact solution of 

Eq.(1). for illustration of effectively , easily and accurately a 

large class of nonlinear problems with approximations which 

converge quickly , Exact solution of integral equations is 

approximated by (VIM) in [18] .Also in [11] ,(VIM) is 

applied for solving nonlinear system of ordinary differential 

equations . Thus , we can say Variational iteration method is a 

well known method to solve nonlinear equations . The 

convergence of (VIM) is discussed in [20]. In this work use 

(VIM) for solving nonlinear of mixed Volterra -Fredholm 

integral equations , for convenience we consider mixed 

Volterra – Fredholm integral equations as follows in [10] , 

  𝑢 𝑥, 𝑦 

= 𝑓 𝑥, 𝑦 +   𝐺(𝑥. 𝑦, 𝑠, 𝑡, 𝑢(𝑠, 𝑡))
Ω

𝑦

0

 𝑑𝑠𝑑𝑡         (5)        

 𝑥, 𝑦 ∈ Ω × [0, 𝑇] 

where ,we suppose that  Ω  is colsed subset of R ,      f(x, y) 

and G(x, y, s, t, u(s, t)) are analytic on 

D =Ω × [0 ,T ] , 

𝑫   respectively such that : 

𝐷 = { 𝑥, 𝑦, 𝑠, 𝑡 0 ≤ 𝑡 ≤ 𝑦 ≤ 𝑇(𝑥, 𝑠) ∈ Ω2} × 𝑅 

 

2. NONLINEAR OF MIXED 

VOLTERRA -FREDHOLM 

INTEGRAL 
The nonlinear intergral or differential equations are important 

in applied sciences and engineering. In [11 ] linear and 

nonlinear of ordinary equations are solved by using he is 

Variational iteration method and in [19 ] the exact solution of 

nonlinear of mixed Volterra -Fredholm integral equations , is 

approximated by Variational Iteration method .Now we 

consider this problem as follows : 

𝑢 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 +   𝐺(𝑥, 𝑦, 𝑠, 𝑡, 𝑢(𝑠, 𝑡))
Ω

𝑦

0

𝑑𝑠𝑑𝑡      (6) 

 𝑥, 𝑦 ∈ Ω × [0, 𝑇] 
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we try obtain an effective method for solving nonlinear of 

mixed Volterra -Fredholm integral equations , 

so we suppose  Ω=[0,1]  

and by differentiating form both sides of Eq.(6) respect to y , 

we have                                         

𝝏𝒖

𝝏𝒚
−

𝝏𝒇

𝝏𝒚
−  𝑮 𝒙, 𝒚, 𝒔, 𝒚, 𝒖 𝒔, 𝒚  𝒅𝒔 −   

𝝏𝑮

𝝏𝒚

𝟏

𝟎

𝒚

𝟎

𝟏

𝟎

𝒅𝒔𝒅𝒕

= 𝟎                                                                                                      (𝟕) 

now ,we use (VIM) for Eq.(7) , so we obtain following 

𝑢𝑛+1 𝑥, 𝑦 = 𝑢𝑛 𝑥, 𝑦 +  𝜆[
𝜕𝑢𝑛(𝑥, 𝜏)

𝜕𝜏

𝑦

0

−
𝜕𝑓 𝑥, 𝜏 

𝜕𝜏

−  𝐺 𝑥, 𝜏, 𝑠, 𝜏, 𝑢 𝑠, 𝜏  𝑑𝑠
1

0

−   
𝜕𝐺

𝜕𝜏

1

0

𝜏

0

𝑑𝑠𝑑𝑡]𝑑𝜏                                (8) 

                              n=0,1,2,….                 

by using the Variational theorem and effect  δ  in both sides of 

Eq.(10) and also with assume   

𝛿𝑢𝑛+1 𝑥, 𝑦 = 0, 

 and 

𝛿  − 𝐺 𝑥, 𝑦, 𝑠, 𝑦, 𝑢 𝑠, 𝑦  𝑑𝑠 −   
𝜕𝐺

𝜕𝑦

1

0

𝑦

0

1

0

𝑑𝑠𝑑𝑡 = 0 

We have 

𝒖𝒏+𝟏 𝒙, 𝒚 =  𝟏 + 𝝀 𝒚  𝜹𝒖𝒏 𝒙, 𝒚 −  𝝀  
𝟏

𝟎

 𝝉 𝜹𝒖𝒏 𝒔, 𝝉 𝒅𝝉

= 𝟎 

By considering 

𝛿𝑢𝑛+1 𝑥, 𝑦 = 0 

optimal value of  λ is given by the following differential 

equation : 

1 + 𝜆 𝑦 = 0                       , 

𝜆  𝜏 |𝜏=𝑦 = 0                (9) 

so , we get the Lagrange multiplier as follows : 

       λ=-1 

by substituting  λ= −1 in Eq.(8) , we obtain an algebraic for 

finding solution of Eq.(5). 

3. NUMERICAL EXAMPLES 
In this section ,we solve two examples of the nonlinear of 

mixed Volterra - Fredholm integral equations which have 

solved in [19 ] by using Collocation method numerical results 

show that our proposedmethod has a high accuracy and also 

VIM better than Collocation method. 

Example 1. 
Consider the following nonlinear of mixed Volterra -

Fredholm integral equations: 

𝑢 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 +   𝑢2
1

0

𝑦

0

(𝑡, 𝑠)𝑑𝑡𝑑𝑠 

where  

𝑓 𝑥, 𝑦 = −
1

5 
𝑦5 +

1

2
𝑦4 −

4

9
𝑦3 − 𝑦2 + 2𝑥𝑦 

with the exact solution 

𝑢 𝑥, 𝑦 = −𝑦2 + 2𝑥𝑦 

for solvin the above equation , when  λ = −1 we find the 

iteration sequences as follows: 

𝑢𝑛+1 𝑥, 𝑦 =

𝑢𝑛 𝑥, 𝑦 −  [ 
𝜕𝑢𝑛  𝑥 ,𝜏 

𝜕𝜏
−

𝜕 −
1

5
𝜏2+

1

2
𝜏4 −

4

9
𝜏3−𝜏2+2𝑥𝜏 

𝜕𝜏
−

𝑦

0

 𝑢𝑛
2 1

0
 𝑡, 𝜏 𝑑𝑡 −   

𝜕

𝜕𝜏
[𝑢𝑛  

2 (𝑡, 𝑠)]𝑑𝑡𝑑𝑠
1

0

𝜏

0
] 𝑑𝜏           

                           n=0,1,2,…. 

by choosing u0 = 0 as an initial approximation . 

𝑢1 =  
𝜕

𝜕𝜏

𝑦

0

(−
1

5
𝜏5 +

1

2
𝜏4 −

4

9
𝜏3 − 𝜏2 + 2𝑥𝜏)𝑑𝜏 

= −
1

5
𝑦5 +

1

2
𝑦4 −

4

9
𝑦3 − 𝑦2 + 2𝑥𝑦 

𝑢2 == −
1

5
𝑦5 +

1

2
𝑦4 −

4

9
𝑦3 − 𝑦2 + 2𝑥𝑦

−  [
𝜕

𝜕𝜏
   −

1

5
𝜏5 +

1

2
𝜏4 −

4

9
𝜏3 − 𝜏2

𝑦

0

+ 2𝑥𝜏 

−
𝜕

𝜕𝜏
  −

1

5
𝜏5 +

1

2
𝜏4 −

4

9
𝜏3 − 𝜏2 + 2𝑥𝜏 

−  (−
1

5
𝜏5 +

1

2
𝜏4 −

4

9
𝜏3 − 𝜏2

1

0

+ 2𝑡𝜏)2 𝑑𝑡

−   
𝜕

𝜕𝜏
 (−

1

5
𝑠5 +

1

2
𝑠4 −

4

9
𝑠3 − 𝑠2

1

0

𝜏

0

+ 2𝑡𝑠)2 𝑑𝑡𝑑𝑠] 𝑑𝜏 

𝑢2 = −
8

45
𝑦5 − 𝑦2 + 2𝑥𝑦 +

1

275
𝑦11 −

1

50
𝑦10 +

77

1620
𝑦9

−
1

80
𝑦8 −

487

2835
𝑦7 +

17

54
𝑦6 

Numerical results fpr example 1 , is shown in Table 1. for N = 

4 and figures 1,2 and 3. 

Table 1: Numerical results of example 1.N = 4 

(x,t) Exact sol Approximate              

sol    

Abs.error 

(0,0) 0 0 0                       

(0.1,0.1) 0.01 0.0099999 1× 10−11 

(0.2,0.2) 0.04 0.03999999702 2.98 × 10−9 

(0.3,0.3) 0.09 0.08999992059 7.941×10-8 

(0.4,0.4) 0.16 0.1599992906 7.094×10-7 

(0.5,0.5) 0.25 0.2499965804 3.4196×10-6 

(0.6,0.6) 0.36 0.3599890815 1.09183×10-
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5 

(0.7,0.7) 0.49 0.4899743999 2.56001×10-

5 

(0.8,0.8) 0.64 0.6399535465 4.64535×10-

5 

(0.9,0.9) 0.81 0.8099333359 6.66641×10-

5 

(1,1) 1.000 0.9999245235 7.54765×10-

5 

Figure 1: Approximate solution of example 1 

 

 

Figure 2:Exact solution of example 1 

 

Figure 3: Absolute error of example 1 

Example (2) Consider the following nonlinear of mixed 

Volterra -Fredholm integral equations: 

𝑢 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + (𝑥 − 𝑦2)   𝑢2(𝑡, 𝑠)
1

0

𝑦

0

𝑑𝑡𝑑𝑠 

Where  

𝑓 𝑥, 𝑦 = 𝑦2 sin 𝑥 − 0.05453512866(𝑥 − 𝑦2) 𝑦5 

with the exact solution 

𝑢 𝑥, 𝑦 = 𝑦2 sin 𝑥 

for solvin the above equation , when  λ= −1 we find the 

iteration sequences as follows: 

= 𝑢𝑛 𝑥, 𝑦 

−  [ 
𝜕𝑢𝑛 𝑥, 𝜏 

𝜕𝜏

𝑦

0

−
𝜕 𝜏2 sin 𝑥 − 0.05453512866 𝑥 − 𝜏2 𝜏5 

𝜕𝜏

−   𝑥 − 𝜏2 𝑢𝑛
2 𝑡, 𝜏 𝑑𝑡

1

0

−   
𝜕

𝜕𝜏
[(𝑥 − 𝜏2)𝑢𝑛

2(𝑡, 𝑠)]𝑑𝑡𝑑𝑠
1

0

𝜏

0

]𝑑𝜏 

                   n=0,1,2,……. 

by choosing   u0 = 0  as an initial approximation 

𝑢1 =  
𝜕

𝜕𝜏

𝑦

0

(𝜏2 sin 𝑥 − 0.05453512866(𝑥 − 𝜏2)𝜏5)𝑑𝜏 

= 0.05453512866𝑦7 − 0.05453512866𝑥𝑦5 + 𝑦2 sin(𝑥) 

similarly u2. 

Numerical results for example 2. is shown in Table 2. forN = 

2 and figures 4,5 and 6 

Table 2: Numerical results of example 2,N = 2 
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 (x ,t) Exact Sol Approximate 

sol 

Abs.error 

(0,0) 0 0 0 

(0.1,0.1) 0.0009983341665 0.0009983341629 3.6×10-12 

(0.2,0.2) 0.007946771632 0.007946773232 1.6×10
-9 

(0.3,0.3) 0.02659681860 0.02659676827 5.033×10
-8 

(0.4,0.4) 0.06230693477 0.06230641571 5.1906×10
-7 

(0.5,0.5) 0.1198563846 0.1198536043 2.7803×10
-6 

(0.6,0.6) 0.2032712904 0.2032620438 9.2466×10
-6 

(0.7,0.7) 0.3156666667 0.3156468072 1.98595×10
-5 

(0.8,0.8) 0.4591078982 0.4590841580 2.37403×10
-5  

(0.9,0.9) 0.6344947968 0.6344940476 7.492×10
-7 

(1,1) 0.8414709848 0.8414709847 1×10
-10 

 

Figure 4: Approximate solution of example 2 

 

Figure 5: Exact solution of example 2 
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Figure 6: Absolute error of example 2 

4. CONCLUSION 
This paper concerns the numerical solutions of two 

dimensional volterra -Fredholm integral equations by using 

variational Iteration method, Examples 1 and 2 have been 

solve in [19] by collocation  method, we show that our 

method is better than collocation method. 
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