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ABSTRACT
Current hot issue of networked control systems(NCSs) remains
how to optimize the signal transmission in imperfect links, espe-
cially, data missing(between the controller and actuator) is a po-
tential source of poor performance of the control system. Here,
stochastic variables satisfying markov jump process are used to
describe the fading channel. Considering the uncertainty factor
of plant, a practical compensation technique is utilized to mini-
mize the effects caused by data dropout. Attention is paid to de-
signing a useful control law to drive the closed-loop system sta-
ble and preserve a guaranteed infinite-horizon performance func-
tion, where the infinite-horizon control moves are parameterized
as a free control move. Furthermore, the corresponding prob-
lems about recursive feasibility and stochastic stability are estab-
lished by a set of linear matrix inequalities. Simulation results
are shown to verify the performance of the proposed approach.
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1. INTRODUCTION
With the continuous advancements of communication technology,
network has been inevitably induced in control zone because of its
advantages, such as low cost, simple installation, maintenance and
high reliability ([9],[8],[1],[10]). Networked control systems are a
class of feedback control system in structure, with control loops
over networks for signals transmission, specifically, observations
and feedback-control signals are transmitted through communica-
tion channels, computer can solve the complex optional algorithms,
control theory lies in the core situation, respectively. However, con-
sidering the real time networked environment, the phenomenon of
data loss are unavoidable due to the reasons of network congestion,
limited bandwidth, etc [28]. Therefore, the issue about the optional
performance and stability of NCSs becomes a hard work.
Research on data loss gets much attention. So far, many achieve-
ments have appeared. To mention a few. In [2], a self-triggered
sampling scheme is proposed for a networked control system with

consideration of data losses and communication delays, by mak-
ing use of this scheme, the next sampling instant does not depend
on on-line estimation of an event-triggered condition and the suc-
cessive measurement of the state. Paper [17] studies the exponen-
tial synchronization of complex dynamical networks with control
packet loss and additive time-varying delays, a novel Lyapunov-
Krasovskii functional (LKF) with triple integral terms is con-
structed and by using Jensen’s inequality and reciprocally convex
approach, sufficient conditions under which the dynamical network
is exponentially mean-square stable are derived. Considering both
uniform and random consecutive data losses induced by long peri-
ods of transmission failure, a novel approach using a combination
of prediction strategy and constant control gain based on gain error
ratio (GER) is proposed for solving the problem by [20]. However,
the above researches seldom use model predictive control method,
which is an advanced optional algorithm.
Model predictive control(MPC) has a well-earned reputation in re-
cent years, it provides on-line solutions to optimal feedback control
problems, so model predictive control can be seen as a circular op-
eration that a minimum problem is solved to calculated optional
control inputs for a time horizon, specifically, at every instant, it re-
quires the on-line solution of an optimization problem to compute
optional control inputs. Although more than one control sequences
are calculated, only the first one is implemented, at next instant, the
optimization problem is reformulated and solved with new mea-
surements obtained from the system [15]. Besides, another advan-
tage of model predictive is that it can be conveniently used to solve
the input and parameter constraints. In addition, several industrial
process models as well as many performance index of importance
can be handled by predictive control, for some references, the sta-
ble problems are studied in ([23], [14], [19]); the MPC for stochas-
tic system is investigated in ([13], [6],[26],[25],[21]); for MPC of
fuzzy system in([29], [4], [11], [18], [16]).
Moreover, model predictive control shows the advantages in deal-
ing with the model uncertainties, the problem of designing predic-
tive controllers that explicitly optimize and stable the uncertainty
system has obtained much interests from researchers and many
great results have been made. see, e.g. Due to many of the robust
model-predictive controllers developed to-date suffer from exces-
sively conservative control, paper [12] presents a model predic-
tive controller that uses a closed-loop model to estimate the un-
certainty in future process inputs and outputs, the new controller
solves a stochastic program at each execution in order to determine
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the set of control moves. A note ensured recursive feasibility in
robust model predictive control with multiplicative uncertainty by
applying terminal constraints to the degrees of freedom available
to the controller while constructing polytopic tube cross sections,
the technique in [24] by bounding the tube parameters in norm and
constructing a terminal set based on this bound,which reduces the
online computational load and so allows longer prediction hori-
zons to be used.[7]propose an approach to design robust distributed
model predictive control for polytopic uncertain networked control
systems with time delays,An augmented polytopic uncertainty de-
scription is invoked to handle the input delays and the conservative-
ness of distributed predictive control algorithm is reduced by using
a sequence of feedback control laws. In [27], robust model predic-
tive control(RMPC) is compared with nominal predictive for the
purposes of fore-aft tower damping of large wind turbines,the two
controllers are identical save for their handling of the multiplicative
and additive uncertainty in the prediction horizon.State and input
constraints are applied to a control model that is identified by data-
driven methods.
From above all, although, a great achievements on networked con-
trol systems have been made in recent years, however, how to
solve the unreliable networks remains difficult and the problem of
stability of stochastic system also brings obstacles to researches.
This paper, therefore, focus on the stochastic networked system
wherein controller outputs are transmitted via communication net-
works. Data loss inevitably happens in the communication link and
stochastic variables satisfying the Markov process are used to de-
scribe the imperfect channel. Attention is devoted to derived a suit-
able controller such that the closed-loop system is stability and pre-
serves a guaranteed optional performance.

2. PROBLEM FORMULATION
The structure of NCSs concerned in this paper is shown in fig.1.

Fig. 1. The structure of networked control system(NCSs)

In fig.1, the plant, sensor, controller and actuator are spatially sep-
arated. x(k) ∈ Rn×n is the state vector, u(k) ∈ Rm×m is the
control outputs and v(k) ∈ Rm×m is a signal received by actuator,
and k ≥ 0 is sampling time( or time step).
Now, the models of the physical plant, controller and transmission
links are as follow.
Plant: the plant selected in this paper is a discrete linear time vary-
ing(LTV) system sampling periodically with T > 0, which can be
modeled as follow:

x(k + 1) = A(k)x(k) +B(k)v(k)

y(k) = Cx(k)
(1)

Where the uncertainties are expressed by allowing the state-space
matrices A(k), B(k) to be arbitrarily time varying and lying in a
polytope [A(k) B(k)] ∈ Θ = Co{[A1 B1], · · · , [Al Bl]}, and Co
represents the convex hull, [Ai Bi] means vertices of the convex
hull and any [A B] lying in Θ is a linear combinations of vertices

[A(k)B(k)] =
∑l
i=0 σi[Ai Bi] for some non-negative σ1, . . . , σl

summing to one.

In this paper, the input constraints considered are the Euclidean
norm constraints, that is, v(k + i|k)T v(k + i|k) ≤ vmax.

Controller: Here a state-feedback control law is adopted.

u(k) = Kx(k) k ≥ k0 (2)

Therefore, the corresponding predictive control law is:

u(k + i|k) = Kx(k + i|k) k ≥ k0, i > 0 (3)

Communication links: communication links exist between the con-
troller and actuator, according to assumption, the controller only
sends data at each sampling time k ≥ 0, the actuator only receives
data at each sampling time k ≥ 0. All data are transmitted in a
single packet at each time. Because of the stochastic data loss, the
control outputs are no longer equivalent to the inputs of the actua-
tor, i.e u(k) 6= v(k), to deal with this phenomena, a compensation
strategy is as follow:

v(k) = λ(k)u(k) + (1− λ(k))τv(k − 1) (4)

Where λ(k) ∈ {0, 1} is a stochastic variable modeling the
imperfect nature of the link from the controller to the actuator,
τ ∈ [0, 1] is a forgetting factor selected by user. Assuming the
data loss process is a discrete-time Markov process(failure and
recovering), the corresponding probability is P{λ(k) = 0|λ(k) =
1} = α ∈ [0, 1], P{λ(k) = 1|λ(k) = 0} = β ∈ [0, 1], respec-
tively. According to the compensate strategy, at sampling time k,
if data are received, v(k) = u(k), otherwise, v(k) = τv(k − 1),
(zero-order hold effect).

By(1), (3), (4), defining η̄(k) = [x(k)T v(k − 1)T ]T , where
η̄(k) ∈ Rm+n, according to all above equations, the model of
closed-loop stochastic-networked system with time delays can be
obtained.

η̄(k + 1) = ψ(k)λ(k)η̄(k) (5)

where

ψ(k)λ(k) =

[
A(k) + λ(k)B(k)K (1− λ(k))τB(k)

λ(k)K (1− λ(k))τI

]

Remark 1: For the closed-loop system(5), the uncertainties come
from the self-structure properties of the plant and stochastic
variable λ(k). Considering the requirements of real-time of the
physical plant, the sensor is clock-driven, controller and actuator
are event-driven.
Remark 2: The paper assumes that data missing has an upper
bound hmax (h successive loss), by the compensation strategy,
the control inputs {v(k)|v(k) = τhv(k − h), 0 < h < hmax}
stored in actuator buffer are applied to the system when failure
transmission.

Now, the design about controller for the system (5) is shown as:
Assuming that the system state is fully available, how to obtain a
control law based on packet dropout such that the system (5) is
stable and keep optional performance.
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3. ROBUST MODEL PREDICTIVE CONTROL
WITH WITH ONE FREE CONTROL MOVE FOR
NCSS

Given a common performance objective function as

minu(k+i) maxA(k),B(k) J
∞
0 (k) (6)

Where J∞0 (k) = J1
0 (k) + J∞1 (k), specifically, first stage cost

J1
0 (k) = η̄T (k|k)Sη̄T (k|k) +vT (k|k)Rv(k|k), and terminal cost
J∞1 (k) = Σ∞i=1{η̄T (k+ i|k)Sη̄T (k+ i|k) + vT (k+ i|k)Rv(k+
i|k)}, here, S = diag{S1, 0}, S1 > 0 and R > 0 are reasonable
weighting matrices.
Defining a quadratic Lyapunov function:

V (x(k + i+ 1|k), v(k + i|k)) = xT (k + i+ 1|k)Qλ(k+i|k)×
x(k + i+ 1|k) + vT (k + i|k)Gλ(k+i|k)v(k + i|k)

(7)

Satisfying V (0) = 0 , λ(k + i) = w ∈ {0, 1} and the following
constraint:

E{V (k + i+ 1|k)− V (k + i|k)}
≤ E{η̄(k + i|k)TSη̄(k + i|k) + v(k + i|k)TRv(k + i|k)}

(8)

Summing up the inequality(8) from i = 1 to∞, for the quadratic
function to be finite, taking limi→∞E{η̄(k + i|k)} = 0, so
limi→∞E{V (k + i|k)} = 0. Thus

J∞1 ≤ E{V (k + 1|k)}

Let

xT (k|k)S1x(k|k) + vT (k|k)Rv(k|k) + xT (k + 1|k)×
Qλ(k+1|k)x(k + 1|k) + vT (k|k)Gλ(k|k)v(k|k) ≤ γ(k)

(9)

Where x(k|k) = x(k) is the state of the system at sampling instant
k. Therefore, the minimization of J∞0 is converted to getting the
minimization of a variable γ subject to

minu(k+i) maxA(k),B(k) γ(k)

S.t (5), (6), (8), (9)
(10)

3.1 Stochastic invariant constraints about system
states

Lemma1:(Stochastic Invariant ellipsoid) Following ([5], [3], [22]),
the states are as follow.

η̄(k + i|k) ∈ Ω = {η̄ | η̄T diag{Q̄−1
1 , Ḡ−1

1 }η̄ ≤ 1}
λ(k + i|k) = 1 and V (k + i|k) ≤ γ

(11)

If there is a scalar γ(γ > 0), symmetric matrices
Q̄1, Ḡ1, Q̄0,s, Ḡ0,s, (s = 1, ..., hmax) and Y satisfy the fol-
lowing LMIs with i = 1, · · · l: Q̄1 ∗ ∗ ∗

0 Ḡ1 ∗ ∗
AiQ̄1 +BiY 0 Q̄1 ∗

Y 0 0 Ḡ1

 ≥ 0 (12)

 Q̄1 ∗ ∗ ∗
0 Ḡ1 ∗ ∗

AiQ̄1 +BiY 0 Q̄0,1 ∗
Y 0 0 Ḡ0,1

 ≥ 0 (13)

 Q̄0,s ∗ ∗ ∗
0 Ḡ0,s ∗ ∗

AiQ̄0,s τBiḠ0,s Q̄1 ∗
0 τḠ0,s 0 Ḡ1

 ≥ 0 (14)

s = 1, ..., hmax Q̄0,s ∗ ∗ ∗
0 Ḡ0,s ∗ ∗

AiQ̄0,s τBiḠ0,s Q̄0,s ∗
0 τḠ0,s+1 0 Ḡ0,s+1

 ≥ 0 (15)

s = 1, ..., hmax − 1

In this case, ζ = {η̄|η̄T diag{Q̄1, Ḡ1}η̄} is an invariant ellipsoid
for the predicted states of the uncertainty system with a desired
control gain K satisfying K = Y Q̄−1

1 .
Proof: By assumption, the solution from optional performance
problem can be transmitted successively at time k, based on the
model(5), η̄(k+1|k) = Ψ(k)1η̄(k|k). At time k+1, the paper only
considers the case 1 → 1, that is, λ(k|k) = 1, λ(k + 1|k) = 1, if
(12) satisfied, thus η̄(k + 1|k)T diag{Q̄−1

1 , Ḡ−1
1 }η̄(k + 1|k)T ≤

1}, which means η̄(k + 1|k) ∈ Ω for λ(k + 1|k) = 1.
At time k+2, two cases will be taken into account for λ(k+2|k) =
1. (i) 1→ 1→ 1,i.e, λ(k|k) = 1, λ(k+1|k) = 1, λ(k+2|k) = 1,
using (12), it’s easily get η̄(k + 2|k) ∈ Ω; (ii) 1 → 0 → 1,
i.e, λ(k|k) = 1, λ(k + 1|k) = 0, λ(k + 2|k) = 1, we define
η̄(k + 1|k) ∈ Ω0,1 := {η̄|η̄T diag{Q̄0,1, Ḡ0,1}η̄}. So only (13),
(14) hold, we have

η̄(k + 2|k)T diag{Q̄0,1, Ḡ0,1}η̄(k + 2|k) ≤ η̄(k + 1|k)T×
diag{Q̄1, Ḡ1}η̄(k + 1|k) ≤ 1

Then η̄(k + 2|k) ∈ Ω.
As for time k + i (i ≥ 3), the following conclusions are obtained
for λ(k+s|k) = 1: (i)λ(k+s|k) = 1, s = 1, 2, 3, ..., using (12), it
is easily to get η̄(k+ s|k) ∈ Ω; (ii)λ(k|k) = 1, λ(k+hmax|k) =
1, λ(k + s|k) = 0 (1 < s < hmax), we also define η̄(k + s|k) ∈
Ω0,s := {η̄|η̄T diag{Q̄0,s, Ḡ0,s}η̄}, (1 < s < hmax),if (13),
(14), (15) hold, it concludes η̄(k + s|k) ∈ Ω after h successive
delays. Proof end.

3.2 Predictive control law design for stochastic
networked system

In this subsection, the design of controller will be given, which
drives the stochastic system stable and minimizes the value of the
objective function. The following theorems shows a procedure
which converts the controller design to a solution of an convex
optimization problem.

Theorem1:Let x(k) = x(k|k) to be the state of stochastic uncer-
tainty system measured at time k and there are not any constraints
on the inputs. Supposing the communication link parameter α and
β = 1− α are given stochastically(satisfy 0 ≤ α ≤ 1, 0 ≤ β ≤ 1)
and the matrices S > 0 ,R > 0, 0 ≤ τ ≤ 1. For the structure un-
certainty system, suppose there exists a state feedback control law

3



International Journal of Computer Applications (0975 - 8887)
Volume 152 - No.3, October 2016

such that the worst case MPC objective function J∞0 is minimized
if there exist matrix Q̄0, Q̄1, , Ḡ0, Ḡ1, W̄0, W̄1, , T̄0, T̄1

and Y, such that the below convex minimization problem is feasible

min γ (16)

Subject to the following inequalities with i = 1, · · · , l
1 ∗ ∗ ∗ ∗

T (k) Q̄1 ∗ ∗ ∗
v(k) 0 Ḡ1 ∗ ∗

S
1/2
1 x(k) 0 0 γI ∗
R1/2v(k) 0 0 0 γI

 ≥ 0 (17)


Q̄1 ∗ ∗ ∗ ∗ ∗
0 Ḡ1 ∗ ∗ ∗ ∗

AiQ̄1 +BiY 0 W̄1 ∗ ∗ ∗
Y 0 0 T̄1 ∗ ∗
Q̄T1 0 0 0 γS−1

1 ∗
Y 0 0 0 0 γR−1

 ≥ 0 (18)


Q̄0 ∗ ∗ ∗ ∗ ∗
0 Ḡ0 ∗ ∗ ∗ ∗

AiQ̄
T
0 τBiḠ

T
0 W̄0 ∗ ∗ ∗

0 τḠT0 0 T̄0 ∗ ∗
Q̄T0 0 0 0 γS−1

1 ∗
0 τḠT0 0 0 0 γR−1

 ≥ 0

(19)
W̄1 ∗ ∗ ∗ ∗ ∗
0 T̄1 ∗ ∗ ∗ ∗

α1/2W̄T
1 0 Q̄0 ∗ ∗ ∗

(1− α)1/2W̄T
1 0 0 Q̄1 ∗ ∗

0 α1/2T̄T1 0 0 Ḡ0 ∗
0 (1− α)1/2T̄T1 0 0 0 Ḡ1

 ≥ 0

(20)


W̄0 ∗ ∗ ∗ ∗ ∗
0 T̄0 ∗ ∗ ∗ ∗

(1− β)1/2W̄T
0 0 Q̄0 ∗ ∗ ∗

β1/2W̄T
0 0 0 Q̄1 ∗ ∗

0 (1− β)1/2T̄T0 0 0 Ḡ0 ∗
0 β1/2T̄T0 0 0 0 Ḡ1

 ≥ 0

(21)

Where T (k) = Aix(k) + Biv(k), if the above the minimization
problem is feasible, the gain matrices of the predictive controller
are given by

K = Y Q̄−1
1 (22)

Proof: Based on the compensation strategy, if data dropouts at time
k, the control law that has been calculated at previous time is used.
In fact, the control law at time k is assumed to be transmitted
successfully, the quadratic function V that we choose is (7) with
Q̄1 = γQ−1

1 , Ḡ1 = γG−1
1 , using Schur complements, (9) is equal

to (18).

Also from the augmented model and the quadratic Lyapunov func-
tion , the contractiveness condition can be written as:

Eη̄(k){Eη̄(k+i|k)[η̄(k + i|k)TΨTΦλ(k+i+1|k)Ψη̄(k + i|k)]−
η̄(k + i|k)TΦλ(k+i|k)η̄(k + i|k)}+Eη̄(k){η̄(k + i|k)T×
Sη̄(k + i|k) + v(k + i|k)TRv(k + i|k)} ≤ 0

(23)

Where Ψ taking[
A(k + i) + λ(k + i|k)B(k + i)K (1− λ(k + i|k))τB(k + i)

λ(k + i|k)K (1− λ(k + i|k))τI

]
(24)

Φλ(k+s|k) = diag{Qλ(k+s|k), Gλ(k+s|k)}.
Φλ(k+i+1|k) = diag{Qλ(k+i+1|k), Gλ(k+i+1|k)}. When
λ(k + i|k) = 1, inducing the transition matrix P, we
have Eλ(k+i|k)=1{Φλ(k+i+1|k)} = αdiag{Q0, G0} + (1 −
α)diag{Q1, G1}, so the (23) is satisfied if the following inequali-
ties hold,[
A(k + i) +B(k + i) 0

K 0

]T [
W1 0
0 T1

] [
A(k + i) +B(k + i) 0

K 0

]

−diagQ1, G1 + diagS1, 0 + [K 0]TR[K 0] ≤ 0 (25)

αdiag{Q0, G0}+ (1− α)diag{Q1, G1} ≤ diag{W1, T1}
(26)

Pre- and post -multiplying (25), (26) using
diag{γ1/2Q−1

1 , γ1/2G−1
1 } and diag{W−1

1 , T−1
1 }, respec-

tively. Using schur complements with γQ−1
1 = Q̄1, γG

−1
1 =

Ḡ1, γQ
−1
0 = Q̄0, γG

−1
0 = Ḡ0, γW

−1
1 = W̄1, γT

−1
1 = T̄1, Y =

KQ̄1, we can get (18) and (20). When λ(k + s|k) = 0, by the
similar procedure using γW−1

0 = W̄0, γT
−1
0 = T̄0, we get (19)

and (21).
proof end.

As for the input constraints condition:we have maxs≥0||v(k +

s|k)||22 = maxs≥0||Kx(k+s|k)||22 ≤ maxxT x≤1||Y Q̄
−1/2
1 x||22 =

κmax(Q̄
−1/2
1 Y TY Q

−1/2
1 ) ≤ umax, using schur complements,we

get (27).

[
umax Y
Y T Q̄1

]
≤ 0 (27)

Finally, summarizing an LMIs solution as:

minu(k|k),Γ,Y γ(k)

s.t (5), (12)− (15), (17)− (21) and (27)

where Γ taking {Q̄0, Ḡ0, Q̄1, Ḡ1, W̄0, T̄0, W̄1, T̄1, Q̄01, Ḡ01,
Q̄02, Ḡ02, Q̄03, Ḡ03}.

3.3 Recursive feasibility and stochastic stability of
MPC

Theorem2: The uncertainty model is (1) and (5), for initial time
k = k0, it supposes that the control inputs are transmitted from
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the controller to the actuator successfully and the optimization
problem (10) is feasible. Then the optimization problem is feasible
for future time k ≥ k0.

Proof:Based on the assumption, the MPC optimization problem
is feasible at initial time k = k0 and λ(k0) = 1, the only LMI
in the problem that influenced explicitly by the measured state
η̄(k|k) = η̄(k) of the system is (17). Therefore, to prove the
recursive feasibility, it only proves (17) is feasibility for all future
states η̄(k + i|k), (i > 0).
Assuming that the optional solution in Theorem2 at time
k0 is {γ∗(k0)|V (k0|k0) ≤ γ∗(k0)}, an optional solution
{γ∗(k0)} is constructed at time k = k0 + 1. Using lemma1,
V (k0 + 1|k0) ≤ γ∗(k0), since the independent state measured
at time k0 + 1, that is, η̄(k0 + 1|k0 + 1) = η̄(k0 + 1), equals
η̄(k0 + 1|k0), for any [A(k) B(k)] ∈ Θ, which must satisfy
V (k0 + 1|k0 + 1) = V (k0 + 1|k0) ≤ γ∗(k0), thus the feasible
solution at time k0 is feasible at time k0 + 1.
At time k0 + 2, two cases will be considered: (i)λ(k) = 1, λ(k +
1) = 1, which means no delays.It assumes that the optional solu-
tion at time k0 +1 is {γ∗(k0 +1)|V (k0 +1|k0 +1) ≤ γ∗(k0 +1)},
using similar analysis at time k0 + 1, {γ∗(k0 + 1)} is also fea-
sible at time k0 + 2. (ii)λ(k) = 1, λ(k + 1) = 0, which
denotes delays. Since the data delays at time k0 + 1, the con-
trol input can not be transmitted to the actuator accurately,
according to the compensation strategy, the control input at
time k0 stored in actuator buffer will be applied, so the optional
solution {γ∗(k0)|V (k0|k0) ≤ γ∗(k0)} is constructed at time
k0 + 2 and V (k0 + 2|k0) ≤ γ∗(k0), Moreover, in such case,
the independent state η̄(k0 + 2|k0 + 2) = η̄(k0 + 2|k0)
satisfy the state space equation. Thus it can be derived
V (k0 + 2|k0 + 2) = V (k0 + 2|k0) ≤ γ∗(k0), that is,
{γ∗(k0)} is also feasible at time k0 + 2 .
As for k0 + i(i ≥ 3), similar conclusions can be derived in the
same way.

Theorem3: For the model in (1) and (5), this paper proves the
stability of polytopic system and it will refer the previous Lya-
punov function V (k + i|k) = η̄(k + i|k)TLk+iη̄(k + i|k), where
Lk+i = diag{Qλ(k+i|k), Gλ(k+i|k)} > 0 is obtained from op-
tional problem at time k0 + i. Further, the function V is a strictly
decreasing. Considering the real time network with data loss, the
optional solution at time k0 is solved in Theorem2 and control sets
can be transmitted successfully, due to the recursive feasibility, the
optional problem is feasibility for k > k0. Moreover, the convex
optimization has a unique minimum and a set of optional solution
(γ∗(k), Lk) at k > k0.
At time k0 + 1, for λ(k0 + 1) = 0, which means the optional solu-
tion {γ∗(k0 + 1)} failure. According to the compensation strategy,
the input at time k0+1 is dependent on {γ∗(k0)}, then upper bound
of γ(k0 + 1) is γ∗(k0). As for λ(k0 + 1) = 1, the optional results
from Theorem2 can be transmitted successfully, so

η̄(k0 + 1|k0 + 1)TLk0+1η̄(k0 + 1|k0 + 1) ≤
η̄(k0 + 1|k0 + 1)TLk0 η̄(k0 + 1|k0 + 1)

(28)

where Lk0+1 is obtained from Theorem2, whereas Lk0 is only
feasible at time k0 + 1. According to the predictive control law
u(k0 + s|k0) = Kη̄(k0 + s|k0) and Lemma1, for [A(k) B(k)]
lying in polytope, we have

η̄(k0 + 1|k0)TLk0 η̄(k0 + 1|k0) ≤ η̄(k0|k0)TLk0 η̄(k0|k0) (29)

Because the independent state η̄(k0 +1|k0 +1) = η̄(k0 +1) equals
(A(k) + B(k)K)η̄(k|k), which must satisfy (29). From (28) and
(29), we conclude

η̄(k0 + 1|k0 + 1)TLk0+1η̄(k0 + 1|k0 + 1) ≤
η̄(k0|k0)TLk0 η̄(k0|k0)

(30)

Therefore, η̄(k|k)TLkη̄(k|k) is decreasing function ,in another
words, γ(k) is decreasing with k, that is, γ∗(k0 + 1) ≤ γ∗(k0).
At for time k0 + 2, based on the above similar analysis,the follow-
ing conclusions can be obtained:
(i)for λ(k0 + 1) = 0, λ(k0 + 2) = 0, from Lemma1, the upper
bound of γ(k0 + 2) is γ∗(k0);
(ii)for λ(k0 + 1) = 0, λ(k0 + 2) = 1, based on the optimization
principle , we have γ(k0 + 2) ≤ γ(k0) = γ∗(k0);
(iii)for λ(k0 + 1) = 1, λ(k0 + 2) = 0, from Lemma1 the upper
bound of option value γ(k0 + 2) is γ∗(k0 + 1) ≤ γ∗(k0);
(iiii) for λ(k0 + 1) = 1, λ(k0 + 2) = 1,based on the optimization
principle γ(k0 + 2) = γ∗(k0 + 2) ≤ γ̄(k0 + 1) = γ∗(k0 + 1) ≤
γ∗(k0);
As for time k0 + i(i ≥ 3), similar results can be obtained. Specif-
ically, if there exist h successive data time-delay, the upper bound
of {γ∗(k0 + i)} is {γ∗(k0 + i − h)}, if transmitted successfully,
γ(k0 + i) = γ∗(k0 + i) ≤= γ∗(k0 + i−1), because the maximum
data time-delay is bounded by hmax,so {γ(k0)} is decreasing with
k. According to the contractiveness condition, the following equa-
tion can be obtained.

Σ∞i=0Eη̄(k0){η̄(k + i|k)TSη̄(k + i|k) + v(k + i|k)TR×
v(k + i|k)} ≤ γ∗(k0)

(31)

Without loss of generality,it takes k0 = 0, from above

Σ∞i=0Eη̄(0){η̄(k + i|k)TSη̄(k + i|k)} ≤ ∞ (32)

Let z = λmin(S1),so

Eη̄(0)Σ
∞
k=0{η̄(k)TSη̄(k)} ≤ (1/z)

Eη̄(0)Σ
∞
k=0{η̄(k)TSη̄(k)} <∞

(33)

So the stochastic stable of closed-loop system is proved from [30].

4. ILLUSTRATE EXAMPLE

Fig. 2. Angular positioning system

In this section, a classical angular positioning system (fig.2) is used
to prove the effectiveness of proposed design. The system consists
of a rotating antenna at the origin of the plane,driven by an electric
motor,the aim is to find the input voltage to the motor to rotate the
antenna such that it points in the direction of a moving object in the
plane. Defining x(k) = [xT1 (k) xT2 (k)]T = [θT (k) θ̇T (k)]T and
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sampling time T = 0.1s, the closed-loop model can be written as
follow:

x(k + 1) = A(k)x(k) +B(k)v(k)

Where

A(k) =

[
1 0.1
0 1− 0.1π(k)

]
And B = [0 0.1o]T , where o = 0.787rad−1V −1s−2,
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Fig. 3. data status

the parameter π(k) ∈ [0.1, 10] is proportional to the
coefficient of viscous friction and is time varying. So
[A(k) B(k)] ∈ Θ = Co{[A1 B], [A2 B]}, and
A1 = [1, 0.1; 0, 0.99], A2 = [1, 0.1; 0, 0], the uncertainty
set Θ is a polytope.

Here, it takes S1 = I2 and R = 10−6, the forgetting factor
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Fig. 4. system state x1

τ = 0.2 and initial value x0 = [0.05 0.04]T , Vmax = 2. Then,
consider the upper bound of data loss, it has hmax = 3, showing
as fig.3.
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Fig. 7. option value

First, for stochastic network links, it gets the following results
by proposed design consider the different missing rate {α β}.
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Specifically, it takes α is 0.06, 0.20, 0.40 and corresponding β
is 0.94, 0.08, 0.60. Fig.4 and fig.5 are the trajectories of system
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state x1, x2, respectively. Fig.6 is the system inputs and fig.7 is the
option value γ. It is easily to see that the system state trajectories
is closed to equilibrium points. So the proposed design is practical
to the stochastic NCSs.
Another, the missing rate is fixed for a period of time from
large scale statistics. To improve the controller performance,
different forgetting factors will be selected. Here, missing rate
α = 0.40, β = 0.60. For forgetting factor τ , it gives different
value 0.2,0.6 and 0.8, therefore, the following simulation results
can be obtained. Fig.8 and fig.9 represent the trajectories changes
of system state x1, x2, respectively. Fig.10 is the control inputs.
Thus, the system is stable.
Therefore, the following conclusions are obtained: the control law
computed by this paper is effectiveness for networked control sys-
tem with missing data,where missing rate is varying,furthermore,
a smaller forgetting factor will improve the performance of
controller,that is,the Speed of convergence of system is better.

5. CONCLUSION
For the stochastic-networked control system, this paper has pre-
sented a robust MPC algorithm for uncertainty models with guar-
anteed stochastically stable under the bounded data loss. The ad-
vantage of this algorithm is providing a state feedback law con-
sidering the four aspects as polytoic uncertainty models, stochastic
invariant sets, recursive feasibility and stochastic stability. The ef-
fectiveness are shown by simulations. Furthermore, the research on
robust model predictive control have remained a popular issue for
networked control system closed-loop system.
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