
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

6

Generating Random Data using 3 Nonlinear Functions

Sharaf A. Alhomdy, PhD
Associte Prof.

Dept. of IT, Faculty of
Computer and

Information Technology,
Sana'a University, Yemen.

Saleh N. Abdullah, PhD
Associate Prof.

, Dept. of Comp. Science,
Khawlan College,

Sana'a University, Yemen.

Malek N. Algabri, PhD
Asst. Prof.,

Dept. of Comp. Science,
Faculty of Computer

and Information Technology,
Sana'a University, Yemen

ABSTRACT
In recent years, security systems are built on increasingly

strong cryptographic algorithms. Hence, most of the

applications which require a high level of security system

should include the random number generators (RNGs).

Furthermore, most RNGs use nonlinear functions to generate

secret quantities for protecting the information that need high

level of the security for these applications. Unfortunately, the

main deficiencies in the available RNGs are the short period

of its repeat cycle length and also the predefined values

determined by the static factors. Therefore, this paper

describes a new technique to generate random data using 3

nonlinear functions which will extend the periodic cycle

length of the repetition that enhances the system security.

Keywords
Seed; Period; Static or Dynamic Factors; RNG; Security;

Nonlinear Function

1. INTRODUCTION
Recently, a lot of developments have taken place in security

systems using RNGs. The RNGs are nothing more than

deterministic algorithms that produce numbers with certain

distributional properties. In general, the idea behind a good

generator supposes that it is not computationally easy to

distinguish the output of the generator from truly random

numbers, if the seed is not known. Commonly, there are

many techniques of RNGs; some of them can use the linear

and the others have used nonlinear functions that are used to

create a good cryptographic security for the system [1], [2],

[3], [4], [5]. For doing so, those techniques have been used

by many applications to generate secret quantities for

protecting the information that need high level of the

security. For instance, the data generated for credit cards,

bank account numbers, etc.

Therefore, in the liner RNGs functions the sophisticated

attacker of these security systems may find it easier to

reproduce the environment to locate secret quantities in the

whole of the number space. Whereas, on the other hand, the

nonlinear RNGs are useful during the process of creating the

randomized data. Commonly, in these functions it is difficult

to detect generate random number if the seed changes

periodically. Also it is difficult to detect the next generated

random number based on the first one. Hence, indeed the

nonlinear function is the cornerstone of any random numbers

generator, because the input to the nonlinear function(s)

cannot be easily extracted from the output and vice versa.

Unfortunately, there are some drawbacks of the available

nonlinear RNGs which can be mentioned as follows [1], [2]:

 The short period of its long cycle length.

 The predefined values of static factors may reduce

the associated security.

 Sometimes, the RNG uses one or two nonlinear

function(s) during its operation.

 Sometimes, such available of RNGs doesn't

satisfied the desire needs for specific applications

like change of start and the end of data in the

crypto text.

For these reasons, this paper presents a new technique that is

called generating random data using 3 nonlinear functions,

which are used to generate the data randomly. The technique

encourages the extension of the long period cycle length of

the repetition and also can be used for specific applications

by determining the specific number of digits required to

enhance the system security. The rest of the paper is

organized as follows. Section (2) presents some remarks on

literature review. Main part of the paper (Section 3) is

dedicated to several issues related to the proposed technique

by combining different operations. This enhances the system

security. Section (4) explains the analysis & complexity.

Section (5) shows the experimental results. Conclusion &

future research assignments will be highlighted in Section

(6).

2. LITERATURE REVIEW
This section presents an overview of previous work in

RNGs. In general, there are many techniques of RNGs that

have been developed by different researchers [1], [5], [6],

[7], [14] that may be used in different applications. Some of

them used linear functions and the others used nonlinear

functions.

To the best of our knowledge, in the exact linear function, it

is possible to obtain the output if both the input & operation

are known. Moreover, the second input can be obtained if

one input & output are known. For instance, the logical

operation XOR which acts as a linear function; if one of the

inputs is known, then the other inputs can be extracted by

performing XOR operation between the known input and

output. For instance, if the following output 11010110, and

one of the input is 10010100, then the other input is

01000010.

Whereas, in the nonlinear functions, it becomes difficult to

obtain the input in a suitable time. The nonlinear functions

have been used on the basis of specific mathematical

algorithms, which are repeatable and sequential. So, to be

useful in simulation, a sequence of random numbers R1 & R2

must have two important properties: uniformity and

independence. That is, each random number Ri is an

independent sample drawn from a continuous uniform

distribution between 0 and 1(mean standard deviation 1/2).

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

7

Mainly, in the most methods the number m modular divisor

should be as large as possible, because a small set of

numbers makes the outcome easier to predict. Therefore, the

reader can be refereed to some of them which are described

as follows [2], [3], [4], [5]:

2.1 Linear Congruential Method (LCM)
This method uses to generate a sequence of integers X1,

X2,…Xn values between 0 and m-1 by the following

recursive relationship as shown in Eq. (1):

 Xi= (aXi-1 + c) mod m (1)

Such that the four parameters are described as:

 X0 =seed (or starting value)

 m =modulus(or divisor)

 a =multiplier

 c =increment

 Where m > 0 and a < m, c < m, X0< m

The selection of the values for a, c, m, and X0 drastically

affects the statistical properties and the cycle length. The

random integers Xi are being generated in the interval [0, m-

1]. The main drawback in the LCM is that if an opponent

knows the knowledge of a small part of sequence, it is

sufficient to determine the parameters of the algorithm.

2.2 Combined Linear Congruential

Generators
This method obtains the longer period generator because it

combines two or more multiple congruential generators.

 Let Xi,1, Xi,2, …, Xi,k be the ith output from k

different multiplicative congruential generators.

 The jth generator X0,j:

 Xi+1,j = (aj Xi +cj) mod mj (2)

 Such that mj is a prime modulus, aj is multiplier,

and mj -1 is a period.

 Produces integers Xi,j approximate ~ Uniform on

[0, mj – 1].

 Wi,j = Xi,j - 1 approximate ~ Uniform on integers on

[0, mj - 2].

2.3 RNG using Cipher Text
This method uses any cipher text to generate random

numbers by converting the cipher text to binary digits and

selects suitable numbers of binary digits to be converted to

decimal digits. This method needs more calculation [2].

2.4 Dynamic Circular Left/Right Shift
The dynamic circular Left Shift is known as the nonlinear

function. The main objective of this function is to perform

variable circular left/right shift to the mixtures of the data

and the secret key. The number of the circular shift/right

depends on the position y (i.e. 4 bits) pointed by the value of

x, where x in turn depends on the decimal value of the first

'say' five binary bits of the mixture inputs to the function.

Because the value of y changes according to the

corresponding values of the first five bits of the input, the

number of shifts also will change. The value of y ranges

from 0 to 15, i.e. the number of shift ranges from 0 to 15. So

this function performs variable circular left/right shift which

performs variable circular left/right shift operations.

3. PROPOSED TECHNIQUE
This section discus an overall structure of the proposed

technique. The main idea of the technique is to combine

three nonlinear functions that are used to generate the data

randomly by passing an initial value entered by the user as a

seed in addition to selected value taken from the buffer. Both

of these inputs go through different processes. Firstly, such

inputs enter into the XOR function. Then, the output of the

XOR operation enters into the combination of three

sequential nonlinear functions. One copy of the XOR

function output is saved in the buffer which replaces the

selected value to be used in next iteration. The output of the

combination of the 3 nonlinear functions is divided into the

suitable binary digits and converted to data. One copy of the

output can be used as a seed to the next round and so on. Fig

(1) illustrates the proposed technique block diagram which

shows the different operations that have been used. The

following subsections describe the 3 nonlinear functions for

this technique.

3.1 Dynamic Permutations
The first nonlinear function that is used in this technique is

the dynamic permutations, i.e. the permutations are replaced

by transpositions which are based on non-predefined

positions. This function constructs a suitable hash table along

with suitable hash key that divide the binary data into groups.

Each group consists of 8 bits, and each 8 bits can take values

from 00 to FF in the hexadecimal system. Each group should

be hashed into the corresponding value, which is used as an

index to store the group in the hash table. Since the values

stored in the hash table are based on random indices, each

group will take a dynamic position [8]. The output of this

function is divided into two parts. The first part can enter

into either AND || OR functions. The second part enters into

the other function.

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

8

 Fig 1: Proposed Technique Block Diagram

3.2 Logical Operations AND & OR
The second nonlinear function that is used in this technique,

is the logical operations AND & OR [2]. In the logical

operations 'AND' & 'OR' each of them acts as half nonlinear

function, that is because nearly half of the input can be

extracted from the output. For instance, in the logical AND

operation if the following output 10101101 the input is

1x1x11x1, such that x is either 1 or 0. Whereas, in the logical

OR operation if the following output 11010110, the input is

xx0x0xx0 such that x is either 1 or 0.

Since, the output data L from dynamic permutation is

divided into two parts (if one part enters into the AND

function, the other part enters into OR function randomly)

the size of each one is (L/2). Both functions will take the

selected value (L/2) from the buffer. The output from each

function is (L/2) concatenated together and then entered into

the 'mod' function as L's data input. One copy of the output is

saved in a buffer which replaces the selected value in order

to be used in the next iteration.

3.3 Mod Operation
The third nonlinear function that is used in this technique is

the operation 'mod' which acts as a nonlinear function. In

this function, if one input is known and the output along with

the operation „mod‟, the second input cannot be known. For

instance, 20 mod 6 =2, also 20 mod 9 =2, and 20 mod 3= 2.

The value 2 comes from different operations which are 20

mod 6, 20 mod 9, and 20 mod 3. The output of the 'mod'

function is divided into suitable binary digits and is

converted to data. One copy of the output recirculates

randomly through circulate-shift-right (CSR) and is used as a

seed to the next round instead of initial value that is entered

by the user as denoted in Fig. (1).

4. ANALYSIS & COMPLEXITY
This section explains the analysis & complexity of the

proposed technique. Fig (1) shows the block diagram which

denotes the process of generating random data using 3

nonlinear functions. The operations in the required technique

consist of logical XOR, dynamic permutations, logical AND

& OR operations, substitutions which act as 'mod' operation

and circulate-shift-right operation. The processes in these

operations are described as follows:

1. Passing L bits initial value (seed); if this value is

less than L bits, zeros should be appended to the

right most of the block to be L bits.

2. Performing the logical operation XOR between a

first L bits initial value entered by the user and L

bits predefined initial value from the buffer in the

initial iteration, or the value produced from the

output of the 3 nonlinear functions operation from

the previous iteration. The output of XOR function

enter into the dynamic permutations operation. One

copy of the output is saved in the buffer to replace

the first predefined initial value.

3. Performing the dynamic permutations operation to

the output that comes from the XOR operation.

4. Performing the logical operation AND & OR

between the output produced by the dynamic

permutations and the predefined initial value taken

from the buffer. The output will enter into the

'mod' operation. One copy of the output is saved in

the buffer to replace the predefined initial value.

5. Performing the mod operation. The output of the

mod operation is divided into a suitable number of

digits and converted into data. One copy of the

output is entered to circulate-shift-right to replace

the initial value in the next iteration.

6. Repeating these processes until the required data

are generated.

Therefore, as a result, it is clear that the technique consists of

logical XOR, dynamic permutations, logical AND & OR

operations, substitutions 'mod' operation and circulate-shift-

right operation, since each operation needs O(n) time

complexity. Then the total time complexity is O(n).

In addition, the selection of the predefined initial value is

critical, but it is required only one time during the writing of

the computer program.

5. EXPERIMENTAL RESULTS
This section presents the experimental results generated by

using our own simulation program for the technique that

have been described in the previous sections.

As a result, several tests have been done to perform and

examine the technique based on different initial values (text,

number, and mix). Generally speaking, the results confirm

and generalize that the period cycle length is long. Therefore,

there are no repetition of the data item. Hence, the technique

increases the security of the system. Tables (1) & (2)

illustrates samples of the outputs data for limited digits.

Table (1) shows the result of the first initial value which is

entered by the user in size of L digits. It presents only the

first 10 values of the output. Whereas, table (2) shows the

result only for the first 20 values of the output using the

CSR

AND Operation

L/2 bits

L/2 bits

L/2 bits

 Initial value

L bits

L Bits Buffer

L bits

 L bits

L/2 bits

Dynamic Permutation Operation

L/2 bits

OR Operation

L/2 bits

L Bits Buffer

MOD Operation

L bits

Divided and Covert to Data

 L bits seed or

Output from the

CSR Operation

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

9

second initial value. The result of first line in table (1) show

that the generated digits seem as normally distributed to

some extent. For example, in other words, the zero appeared

8 times, the two appeared 8 times and so on.

Table 1. Data Generated by the System for 10 Values.

198544752890506180996 97417420088418738604

76246662880960970458 469254212624296498

1423 40332452524212774760 118512640592880576684

260616420912686178696 40069252032834263256

1169 458168396448716170240 566888302187482960

608940332480812364238 27039446076246548630

972 324600228369407428 102946800802736540354

5701321010736564836968 132940194848868870626

974 104372834518924130856 82784866562986184280

2841381019284264898 65016053286858424404

2781 160758850866860398406 56674422752670446182

824202414352792394384 9127941702285641016104

2538 26860222262978584236 66880834896518680354

888128800608654218242 79626832299294234562

3244 29627672699490416882 540452974338752924248

29820280768832960778 15836558424262784644

1430 230990386100050058446 2898578706534994840

94202372888490500810 1522002407805287280

1854 3249829421245686964 624934770672854678596

552264336728260710934 920132960988508164646

Table 2. Data Generated by the System for 20 Values.

1429 4185843886421014948792 16754958208946992822

7687266541768981014990 390578792300154498550

2789 1269446217032648214 5501000384946552388668

284366464632486564528 788686496848522240812

2120 252208994556258712104 1898438216882804852

824134542336590142244 6567981787847381002286

3457 33218416668447640134 538482534818532696510

264224850800710852686 146792452932622402672

2343 8378386972214988224 59495830453092238040

104206308768902798134 778384532812396198540

2560 482720556224768748116 610996896514688992640

8825786108562436062 156360278752688548750

297 35022686132578512654 68682336722720720622

4866097230487638824 392250116820956144770

983 228888508140204508380 78332494464812200216

34267899280824830298 091287464816996908

760 2429833890096497080 55427654222686282692

57437810071216054230 134726604681014788996

3271 8416616266258736826 654473435488068466

63250670112930666328 41417046494458630382

2096 198804570354832962602 40682432097026430

314308532920458340782 1506702055236552144

3679 9861293452412216550 626512526434692530526

256706606320684134856 412506436656932610864

3717 94152394290636140432 620482846256512928554

120700128674766238 398202420784766146994

3268 212958142300246628622 82796254160576742626

8401506287209766401018 26644449449698494296

3914 348476412452574208972 50984180896558224708

79437492488504418550 650452810308686436678

2342 322792461296896852 59047411484879228370

816988356648274534728 256772750344308938162

39 8132784520510332410 82796158466782114998

810366116640550960774 89870681244166662574

3474 661010792232150602506 94120434512558122170

3209009904721036814 148526146856446288804

1892 4328065566588162514 6383408528321012908266

284454624952384942446 384924306588308642984

3040 10071098496644678542 2914720994520170394

360338882776172158250 27875893811674612458

283 37820422242842342518 62690253664596706678

612804692528586118922 148958388728162682466

6. CONCLUSION AND FUTURE

WORK
Generally, a lot of development techniques have been taken

place in security systems use nonlinear RNGs to generate

secret quantities. Thus, the proposed technique is used to

generate the data randomly by using 3 nonlinear functions.

The experimental results for different values entered to the

system show that, there are no repetition value because the

proposed technique encourages the extension of the long

period cycle length of the repetition. Therefore, it enhances

the security of the system. In future, the technique needs a

software application to be compared with other methods.

7. REFERENCES
[1] L'Ecuyer, P. & Simard, R. (2007), "Testu01: A C

Library for Empirical Testing of Random Number

Generators", ACM Trans. on Mathematical Software

33(4), 22- 27.

[2] Bruce Schneier (2010) “Applied Cryptography” 3rd Ed.

John Wiley & Sons. (ASIA) Pvt. Ltd., Singapore.

[3] William Stallings (2009), “Cryptography and Network

Security: Principles and Practice” 3rd Ed. India Reprint.

Agrawal-M IETE-Technical-Review.

[4] Jerry Banks, etl. (2001), "Discrete-Event System

Simulation", 3rd Ed. Pearson Education, Singapore.

[5] Borosh. S. & Niederreiter H., (1983) "Optimal

Multipliers For Pseudo-Random Number Generation

By The Linear Congruential Method",BIT 23, 65-74.

[6] Figiel, K.D., and Sule. D.R. (Mar. 1985), "New Lagged

Product Test for Random Number Generators".

Comput. Ind. Eng. Vol. 9, 287-296.

[7] P. L‟Ecuyer, “Efficient and portable combined random

number generators”, Communications of the ACM 31

June 1988 Volume 31 Number 6, USA.

[8] Saleh N. Abdullah & Sharaf A. Alhomdy (2015)

"Dynamic Permutations", Global Journal of Computer

Science and Technology (C), Volume 15 Issue 1

Version 1, USA.

[9] Douglasr Stinson (2002) “Cryptography: Theory and

Practice”, 2nd Ed. Department of Combinatory and

Optimization University of Waterloo, Waterloo.

[10] Behrouz Forouzan (2007), "Data Communications &

Networking", 4th Ed., the McGraw-Hill Higher

Education, Singapore.

[11] Deborah Russell and G. T. Gangemi Sr (2009)

“Computer Security Basics”, O‟Reilly& Associates,

Inc., New York.

[12] Richard E. Smith. (2011) "Internet Cryptography",

Addison-Wesley.

[13] Wright-MA (1999) "Network-Security". Nov., p.11-14

PY: 1999 RT: Journal-article.

[14] Dr. Saleh N. Abdullah & Dr. Sharaf A. Alhomdy,

(2015), "Dynamic Random Number Generator based on

User Seed(s)" International Journal of Computer

Applications, Volume 118 – No. 3, May 2015, New

York, USA.

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

10

8. AUTHOR PROFILE
Dr. Sharaf Abdulhak Alhomdy, born in 20/01/1971, Alsena,

Taiz, Republic of Yemen. Ph.D. in Computer Scince, Pune

University, India, 2009. Assistant Prof. & Vice-Dean for

students' affare's, Faculty of Computer and Information

Technology (FCIT), Sana'a University, Yemen (since 2012).

He is an author's of a number of papers. He is promoted to

Associate Professor in June 2015, FCIT, Sana'a University.

Dr. Saleh Noman Abdullah Alasaly, born in 1969, Gabel

Habashee, Taiz, Republic of Yemen. Ph.D. in Infromation

Securty, SRTMU, India, 2005. Asst. Prof., Khawlan

College, Sana'a University, Yemen. Head of Information

Technology Department, Andlus University, Yemen. He is

promoted to Associate Professor in June 2015, FCIT, Sana'a

University

Dr. Malek Nasser Algabri, born in 10/4/1981, Alawasga,

Sanaa, Republic of Yemen. Ph.D. in Computer Scince,

Wuhan University of Tecnology, China, 2013. Asst. Prof. &

Head of Computer Science Department, FCIT, Sana'a

University, Yemen.

IJCATM : www.ijcaonline.org

