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ABSTRACT 
Big Data processing applications have become popular in the 

last few years. One of the main reasons is that the data 

generated by current systems and applications is more 

complex, have a higher speed and its volume increases 

exponentially. Another reason would be that the traditional 

methods for data processing and storage are obsolete and the 

new tools and frameworks brought a lot of advantages. 

Various social networks need to process big volumes of data, 

and users take into consideration the speed and quality of the 

process. We propose an initial approach for processing data 

from Twitter social network, in a system which allows a real-

time classification of tweets based on topics and user location. 

With this approach we argue that in a dynamic world, were 

data increases exponentially and the processing needs to be 

very fast, the proposed system is capable to determine 

trending topics in real time. 
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1. INTRODUCTION 
Over the last few years, both the volume of data that needs 

processing and storage, and the variety of sources that provide 

the data have increased exponentially. This phenomenon is 

due to technological evolution and was embraced by well-

known companies like Amazon, Google, Twitter, etc., under 

the name Big Data, due to the fact that the size and 

complexity of the data became difficult, even impossible to 

manage using traditional data processing systems. The speed 

at which data is created and need to be processed and stored, 

continuously increase in the last years. The most popular tools 

and frameworks for real time stream data processing in the 

Big-Data era will be presented. The paper presents the Big 

Data concept by defining it from different perspectives, the 

various processing models followed by an analysis of the 

currently industrial and research frameworks. The purpose of 

this paper is to present the necessary concepts regarding the 

different Big Data processing models, to propose and 

implement a system which make use of two new stream 

processing frameworks from Apache -Storm and Heron, in 

order to determine the most discussed subjects from the 

Twitter social network and their classification at the 

geolocation level. For obtaining relevant outcomes, the needs 

to be done in real time where the allowed latency is at the 

seconds level, using as input data, a real data stream from 

Twitter social network. In this respect, another objective was 

to propose and implement a classification method through 

which to obtain results as accurately as possible by selecting 

relevant information from the vast amounts of data produced 

by the social network. 

The processing model will involve the following steps: 1) 

reading the data stream, 2) processing the data in real time, 3) 

providing real-time data output and analytics. The frameworks 

Apache Storm and Heron represent two open-source, scalable 

systems developed for deployment in clusters, used recently 

in real-time big-data processing and analysis. A cluster 

represents an independent group of servers that collaborate as 

a unified system in order to offer greater availability and 

scalability. Horizontal scalability is obtained by allocating 

more nodes in the cluster, so the processing is based on 

multiple hardware resources. 

This paper is organized as follows: Section 2 encompasses the 

research we have done on existing stream processing 

conceptual frameworks and implementations, with focus on 

Apache Storm and Heron. Section 3 present the proposed 

system design and implementation, in terms of the 

architectural topology proposed, functional components 

description, the execution model, and implementation details. 

In Section 4, a validation of the system was done and Section 

5, contains conclusions and future developments.  

2. BIBLIOGRAPHIC RESEARCH  
The concept of Big Data is relatively new, which became 

popular in the last decade, and its definition is relatively 

complex due to the properties that characterizes the immense 

volume of data which are in a continuous growth.  

Despite the increased interest, a universally accepted 

definition for this concept is not established yet. According to 

MIT Technology Review (2013): "a data set, which is defined 

as high today, will be with a great certitude considered small 

in the near future" [1]. The size of the data sets is often 

reported to currently existing technology for processing it. In 

the absence of a well-established definition, representative 

players on the market have contributed to the Big Data 

phenomenon with their approach and implementation, for 

example Oracle says that "Big Data is derived significantly 

from business traditionally based on relational databases, 

correlated with new sources of unstructured data", Intel 

appreciate   as " Big Data Opportunities occur in organizations 

that generate an average of 300 terabytes of data per week " 

[2]. 

The most popular way to characterize Big Data is based on 

the 3 V’s: volume, variety and velocity. Volume refers to the 

size of the data, and has increased exponentially over the last 

few years and this trend continues. Velocity describes the 

frequency at which the data are generated and received. 

Variety is one of the most important characteristics, as it 

describes the diversity in content and representation. A forth 

V was added recently, namely veridicity which refers to 

reliability, accuracy and precision all together [3].  

Due to the increasing volume of data that needs to be created, 

processed and analyzed continuously, the traditional 

processing and storage methods and technologies became 

obsolete, and new models and their counterpart frameworks as 
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Storm, Spark, Flink or Heron [4] are used for data streaming 

processing. 

2.1 Batch processing using MapReduce 

model 
Majority of batch processing systems were based on the 

programming paradigm known as MapReduce processing 

model, which was introduced by Google and first 

implemented in Apache Hadoop [4], a framework which 

integrates various batch processing technologies. MapReduce 

is based on dividing the processing in two major stages: Map 

and Reduce, each receiving as input data a key-value pair, 

whose type is established by the programmer and also return a 

key-value pair as a result. Batch processing based on the 

MapReduce model presume reading a set of data of the 

dimension of the batch. When the batch is full (or when the 

execution of some processing is forced by the planner) data 

will be submitted for processing, obtaining a “framed” model 

of execution, either in terms of time (at some imposed 

intervals), or in terms of the volume of data (imposed by the 

dimension of the batch). Although, Hadoop is a good 

framework for what it was developed, the model has some 

limitations as for example the possibility that the problem and 

data cannot be transposed in key-value pairs, or the specific 

delay of producing the output data determined by the 

dimension of the data that has to be processed and the 

computing power of the system. 

2.2 Stream processing  
As an alternative, the recent data stream processing, also 

known as processing in real time, involves a continuous 

processing of the input data. In this context, real-time can be 

analyzed from two points of view: the data and the final user 

point of view. From the data perspective, the term real time 

refers the data processing as soon they are received, so the 

results obtained after the analysis will be always current. 

From the perspective of the final user [5], the definition of the 

big-data concept correlated with real time, will be made based 

on the necessary time for the system to respond to an 

interrogation, so that the user could have immediately the 

response to the request. From this point of view the notion of 

real time can be compared to a call to a REST service or any 

other call of RPC type.  

2.3 Lambda architecture  
The Lambda architectural model [6] requires the integration 

of two levels: a fast processing level, based on streams and a 

massive processing system, using the batch model which 

keeps the advantages of the two methods, and the 

disadvantage of the latency is solved by the layer that 

processes the data in real time  

The Lambda architecture includes three levels: 

1. The batch level which manages the master data type 

and calculates in advance the batch views. A 

possible implementation is one using Apache 

Hadoop or an OLAP system (online analytical 

processing) like Vertica or Netezza. 

2. Speed level: realizes an analysis in real time of a 

subset from the total of collected data, being used to 

offer immediate access to the most current results,  

3. Service level: which represents a caching 

mechanism of the obtained results from the analysis 

made by the batch level. 

Therefore, Lambda defines a big-data architecture which 

allows predefined and arbitrary interrogations. He includes the 

advantages of the MapReduce model for simultaneous 

processing of a big volume of data, and the latency introduced 

by that is resolved through de service level in real time. It can 

be observed that both models: the batch model and the stream 

processing, bring advantages and disadvantages. Batch 

processing allows the analysis of a big volume of data, but 

introduce latency in obtaining results, problem which was 

solved by the stream processing at the price that data is 

available only for a definite period of time. The hybrid 

lambda architecture offers a combined approach, in trying to 

overcome all these disadvantages, but at a price of a 

significant complexity. 

2.4 New stream processing frameworks 
The main reason that led to the development of a great 

number of frameworks for stream processing was mainly the 

inherent limitations of the batch processing, namely the high 

latency introduced. Real-time processing requires the 

processing of a continuous flow of data, so that the results 

obtained can be available with a minimum latency accessible 

to the final user. The well-known systems that offer stream 

processing data are Apache Storm, Heron, Apache, Splunk-

Streaming, Spark and many others [8]. As we will describe in 

more details the first two as being of interest, the rest will be 

only shortly presented. 

Splunk is a platform that can be used for real –time analysis 

for machine generated big data, and for processing structured 

and unstructured files. Splunk captures, indexes and correlates 

real-time data in a searchable repository from which it can 

generate graphs, reports, alerts, dashboards and visualization. 

Spark streaming is an extension of the base framework Spark 

that offers a high level API in Java, Python, R for the Big 

Data processing. 

Apache Storm [9,10] is a distributed system, open-source of 

Big Data type. Storm includes a series of features like 

horizontal scalability, tolerance to failure, ensuring data 

processing and support for different languages.  

Basic concepts in Storm are topology, tuple, stream, bolt and 

spout and their functional definition will be presented. 

Topology: represents the top level abstractization which is 

used for describing the workflow of a Storm application. 

Contains as elements spouts, bolts and streams of tuples.  

Tuple: an identifiable data structure which contain an ordered 

list of values   

Stream: basic abstraction from Storm, which represents an 

infinite sequence of tuple, which are created and processed in 

parallel.  

Bolt:  reads the tuples of one or more streams and processes 

them 

Spout: defines a source of tuples in Storm, reads an external 

source and sends data in the topology. 

A Storm cluster is dedicated to the execution of a topology 

and can be compared to a Hadoop cluster. While Hadoop 

executes jobs of type MapReduce, Storm runs topologies the 

major difference being represented by the fact that the 

execution of a Hadoop job is finite and the topology is 

executed infinitely or until is eliminated. A Storm topology is 

illustrated in Figure 1. 

The Storm architecture is based on master-slave pattern. The 

coordination of the master processes and the slave processes 

are made through a third-party component called ZooKeeper. 

The master node called Nimbus is responsible for the task 
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distribution in the cluster and their assignment to the 

processing nodes similarly to an operating system scheduler, 

and also used for the system monitoring. 

Each node involved in processing, contains a supervisor and 

every supervisor has control over one or more logical workers 

in that node, their coordination being resolved by the 

Zookeeper component.  

  

Apache Heron [10,11] Along with the tremendous increase 

in data produced especially in the social apps domain, many 

limitations of the Strom framework where visible, like the 

overuse of functionally for the Nimbus component. Form the 

efficiency point of view were identified the following 

drawbacks: suboptimal replays due to the failure of a tuple in 

a tree and long cycles of garbage collection determined by the 

topologies which consume too much RAM memory.  

Due to the increase volume of processed data and also 

determined by the large diversity of data, improvements 

brought by Heron over Apache Storm, are highlighted in the 

architectural model where the final user submits the tasks to 

the planner, tasks which are executed as a job in more than a 

single container, one of them running the so called Topology 

Master (equivalent to Nimbus) and being responsible for the 

topology management.  

Each container runs a Stream Manager which executes the 

routing of the data, a manager for every metrics which 

collects and reports different metrics and a number of 

processes called Heron instances, which run spouts and bolts 

defined by the user and specific to the application. The 

metadata of a topology which contain the physical plane and 

the execution details are kept in the Zookeeper. This new 

architecture was designed with more support for flexibility, 

versatility and dynamism. 

After a set of benchmarks made by the architects from Twitter 

to evaluate the system, Heron proves superior performance 

over Storm, both in terms of execution speed and simplicity in 

troubleshooting and detecting the failed or lazy component 

from the topology.  

3. DESIGN AND IMPLEMENTATION  
The solution proposed is an application implemented using 

the Apache Storm framework and written entirely in Java. The 

application creates a real time analysis of all tweets send on 

the Twitter social network which can be used to determine the 

so called trending topics, a term associated to the most 

discussed subjects from the social network, at a specific time. 

The system initially, was implemented in the Apache Storm 

framework and then migrated to the new real-time processing 

framework proposed by Twitter, named Heron.  

This section will present the proposed method for the topics 

classification, trending topics, having a hashtag based 

algorithm as main classification mechanism. For the 

implementation, running, testing and integration of the 

application, the following tools and frameworks were 

adopted: Eclipse Mars as IDE, Apache Maven for the 

integration management and the compilation Twitter4J and 

Bing Maps API as libraries used for the real-time analysis of 

tweets and their classification, JUnit for testing the 

framework, the log4j libraries for the logging files, and finally 

for running in a simulated and real cluster we used Apache 

Storm and Heron. 

3.1 Input data format 
The input data used by the application to determine the most 

discussed topics from the Twitter social network, represent 

the read tweets accessed in the application using Twitter 

Stream API. 

The first necessary step in order to access the data is the 

authentication using a specific key created as a combination 

of: a consumer key, a consumer secret, an access token and 

the secret access token. 

Once authenticated, the developer has access to the real public 

streams, which are divided in three categories: POST statuses 

/ filter, GET statuses / sample and GET statuses. The first 

endpoint returns all the tweets that match to at least one filter 

as a parameter. It is possible to specify multiple number of 

filters, but at least one needs to be present. The endpoint 

“GET statuses / sample” returns a number of public status 

randomly chosen and is the chosen one for implementing the 

classification of the tweets. The application takes into 

consideration all the tweets read and does not need an initial 

filtering, but as the data advance in the topology, the ones that 

are irrelevant were removed. 

The most relevant fields from the content stream, used by the 

system are: 

Text: contains the text of a tweet posted by a user of the 

social network 

GeoLocation: represents the coordinates of longitude and 

latitude of the user that posted the tweet. The coordinates are 

represented under the form of an object of type GeoLocation. 

Place: which represents specific locations and the 

corresponding geo-coordinates. They can be attached to a 

tweet, but the fields are optional. The objects of type Place 

contain a series of attributes used for a more detailed 

description of the location. With respect to the system, the 

most relevant attributes are the name, for example: 

name=”Paris”, country=”France” and the type of the location.  

HashtagEntities: represent a list of all mentioned hashtags in 

the current tweet. The values of type hashtag are extracted 

from the text of the tweet and are represented as a character 

string, without the specific ”#” symbol, like in the initial 

message 

3.2 Determining the trending topics   
A method for determining the most discussed subjects, also 

named as “trending topics” became a tough challenge with the 

explosion of the number of users in different social networks 

and of importance for various fields as online marketing, 

social interest surveys, product promoting. The proposed 

method and associated metrics are used in order to compute a 

set of most discussed subjects based on  [12]. 

Fig 1. Topology in Storm 
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In order to determine the set, a basic method implies the 

counting of the most mentioned terms in the poster tweets in 

the Twitter social network. In the first step are removed all the 

words which are presumed to be irrelevant, after that is 

counted the apparitions of every word, where the word 

frequency is related to a series of subject categories. The 

major problem encountered was that when applying this 

method, a lot of tweets contain words relevant to more than 

one category are present in the selection. Moreover, the 

classification is made at the word level and not at the semantic 

level. 

In TwiTrends, the proposed method for classification used to 

determine the trending topics over an interval of time is based 

on extracting and counting the hashtags from a tweet. A 

hashtag is represented by a word or more words concatenated, 

which start with the symbol “#”. The hashtag symbol is used 

in a social relationship like Twitter to identify a message that 

belongs to a certain topic. So, a topic is represented through a 

set of hashtags associated to it. The method is known in the 

domain of data analysis for social network as “Trending 

Hashtags” method. Suppose two subjects A and B, the fact 

that A is more popular than B is equivalent to the fact that the 

number of mentions of the subject A is greater that the 

number of mentions of the subject B. This relationship can be 

described in the following formula presented in Figure 2.   

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡y(𝐴) ≥ 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖ty(𝐵) ⟺  

𝑛o_𝑚𝑒𝑛𝑡𝑖ons(𝐴) ≥ 𝑛o_𝑚𝑒𝑛𝑡𝑖𝑜𝑛s(𝐵)  

Fig 2. The relationship between the number of mentions 

and their popularity 

Applying the semantics of a hashtag on which the method of 

“Trending Hashtags” is based, we can deduce that the number 

of mentions of a subject it actually represents the number of 

hashtags associated to it, the hashtag identifying the topic to 

which it belongs. So, the identification of a subject becomes 

equivalent with the identification of the number of hashtag 

that represent that subject. Also, for a more accurate analysis 

we have to take into consideration a new dimension: the time. 

The popularity of a subject is related to a period of time, so 

this is defined on a bounded interval t1 – t0, denoted with Δt. 

The time t1 is the current time, and t0 represents a moment 

from the near past. As an example, we consider the term “big-

data” as being a trending topic at the time moment t1, if the 

number of hashtags that are associated to that subject 

identified by a predetermined time interval of the order of 

hours is of certain size. Therefore, using the notation, in 

which A and B represent two different subjects and, in 

addition, #A represents a hashtag which determines the 

subject A, and #B is associated to the subject B, the formula 

can be rewritten in the following manner, presented in Figure 

3 . 

3.3 The TwiTrends topology 
Implementing a real-time processing system in Apache Storm 

or Heron assumes the design of an architectural topology, 

which will be implemented and then run on a cluster. Thus, 

the implementation of the TwiTrends begins with the design 

and implementation of the topology architecture at the level of 

components, also it involves the definition of the relationships 

between topology elements named spouts and bolts through 

specific data streams. At each bolt we must specify the 

potential parallelism and the description of the mapping 

model of the tuples for every stream at every instance.  We 

will describe the topology components for TwiTrends, which 

represents the basic architecture of the system used to 

determine the most discussed subject from the Twitter social 

network. The topology can be represented as a directed 

acyclic graph (DAG), consisting from a single spout node, the 

one that issues the tweets accessing the Twitter4J library, a set 

of bolts type nodes used for processing, filtering and 

forwarding data and the streams of tuples which link together 

all components. 

 The TwiTrends topology is a hierarchic one, composed of a 

top-level component from which diverge the set of elements 

and connections between them. Also, the architecture 

describes the interactions between these components, defined 

based on the streams of tuples through which they 

communicate. The main components of the TwiTrends 

architecture are: 

TwiTrendTolology: Represents the top-level component of 

the topology. Contains the spout used for issuing the tweets 

and the eight bolts used for processing them 

TweetSpout: Represents a component used for issuing the 

tweets in the TwiTrends topology. This was the only spout 

used, taking into consideration only the reading and the 

forwarding of a single stream  

TweetFilterBolt: Reads the tweets issued by the TweetSpout 

and executes the filtering. Only tweets that contain coded 

messages using the standard Unicode.  

ParseTweetBolt: Processes the filtered tweets issued as 

tuples by the component TweetFilterBolt. Taking into 

consideration that the tuple is filtered, at this level we have the 

guarantee that each tweet contains at least one hashtag 

CountHashtagBolt: Takes the tweets that are parsed through 

the component ParseTweetBolt and counts each hashtag. 

CountHashtagBolt uses a dispersion table as a buffer to map 

each hashtag to its counter. The table is updated at each read 

tuple, based on those values. The component issues an output 

stream which contains a corresponding pair as an entry in the 

dispersion table based on the hashtag and the counter 

associated to it  

 𝐶𝑜𝑢𝑛𝑡(ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝐴)𝑡1
𝑡0

𝛥𝑡
≥
 𝐶𝑜𝑢𝑛𝑡(ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝐵)𝑡1
𝑡0

𝛥𝑡
 

popularity(A)≥popularity(B) 

⟺ 

 
Fig 3. The popularity of a subject based on the number of hashtags in a time interval 
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IntermediateRankerBolt: Represents a generic intermediate 

component for determining the most N mentioned hashtags 

TotalRankerBolt: Makes a total ranking of all the counted 

hashtags. It uses an intermediate classification model, 

followed by the aggregation of the results that facilitate the 

parallel execution. 

GeoLocationBolt: It takes the hashtag issued by the 

ParseTweetBolt, with the location of the tweet. Taking into 

consideration that the location is encoded through coordinates 

of longitude and latitude, the transformation to a concrete 

location is necessary. 

CountLocationHashtagBolt: Presents a functionality similar 

to the component CountHashtagBolt but introduces a second 

dimension with regards to the counting. The counting is not 

reported to the text hashtag, but to the geolocation from which 

it was issued. In this case, it is not possible the extraction of 

the location of the tweet represented by the input tuple, the 

bolt uses a variable of type sentinel named “UNKNOW 

LOCATION” as a key in the dispersion table, this being 

issued by the responsible bolt for the calculation of the 

location. The structure of the buffer is represented through a 

key-value relationship, in which the key is composed from 

two fields: the location and the text of the hashtag  

RedisBolt: Is the final bolt of the TwiTrend topology and 

represents a component that groups the processing results at 

the global level. The component saves generically the most N 

discussed topics identified based on the hashtag and processed 

in the topology. Also, this bolt contains the counting of the 

hashtags at the geolocation level, obtained through the stream 

issued by the CountLocationHashtagBolt. Being the final 

component, RedisBolt needs to allow access to the data stored 

external to the application. To facilitate this functionality, the 

bolt will publish all the data contained in a Redis message 

broker, which represents a local storage space used as a 

database and which can be accessed in a publish/subscribe 

manner. RedisBolt makes an aggregation of the issued streams 

by the components TotalRankerBolt and the 

CountLocationHashtagBolt. 

The implementation of the topology implies the translation in 

Java code. Every component (spout or bolt) correspond to a 

class, and the level of parallelism, the streams through which 

the components communicate and the type of grouping are 

specified at class level which implements the topology. As a 

basic rule, bolt which needs a greater processing time needs to 

be processed at a greater level of parallelism, in order to 

maintain a flow of continuous data. The components that only 

process and forward data in the topology use a grouping of 

type shuffle, or random and they don’t save any intermediate 

data. To reduce the regrouping time of the issued stream, 

usage of grouping at the hashtag level or the location, avoid 

the presence of the same keys in the maps of different 

instances. So, two hashtags or identical geolocation contained 

in different tuples will be processed by the same bolt instance. 

All the bolts in the topology are in the package 

com.twitrends.bolt. Sub-package com.twitrends.bolt.apache 

contain the classes taken from the open-source project “storm 

starter”. The spout used is in the package com.twitrends.spout. 

TwiTrends topology accesses a set of interfaces from the 

package com.twitrends.util, to obtain the constants used in the 

topology, the identifiers of the components it instantiates, 

name of the fields of each tuple and the necessary values to 

login in the Twitter Stream API. 

In the proposed topology, there exist processing nodes that 

cannot be executed in parallel.  For example, TotalRankerBolt 

which is represented through a single instance, it issues only 

one stream which represents the result of the aggregation of 

the obtained tuples from the IntermediateRanklisherBolt, 

Fig 4. The TwiTrends topology 
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similar to RedisBolt which is a data collecting bolt at the 

global level, and was made available to the external 

environment. 

The two frameworks, Apache Storm and Heron offer a series 

of implementation for the different grouping semantics of the 

streams to increase complementary the processing speed. The 

grouping methods used in the Twitter topology are the 

following:  

  

Shuffle grouping: The tuples are distributed randomly by the 

tasks of the elements of type bolt. The grouping ensures that 

the distribution is uniform, so that each task will receive an 

equal number of tuples  

Fields grouping: The stream of tuples is partitioned based on 

the fields specified in the grouping. For example, if the stream 

is grouped after the field hashtag, the tuples that contain the 

same hashtag will be processed in the same bolt instance, but 

the tuples that contain a different hashtag can be processed by 

other instances  

Global grouping: The entire system of data is transmitted to a 

single take corresponding to an instance of a bolt. In the case 

that there is more than one instance, is chosen the one with the 

smallest identifier. 

The components that only process and forward data in the 

topology use the shuffle or random grouping. They only save 

intermediate data, so they do not depend on the level of value 

that are contained in the stream tuple which they process. 

Bolts like CountHashtagBolt or CountLocationHashtagBolt 

save the value of the hashtag of the geolocation for a 

processed tweet. In order to reduce the regrouping time of the 

issued streams, usage of a grouping at the hashtag level or the 

location, avoid the presence of the same keys in maps from 

different instances. 

3.4 Reading, filtering and parsing of a tweet 
The reading, filtering and the parsing of a tweet is made 

through three main classes: TweetBolt, TweetFilterBolt and 

the ParseTweetBolt. 

In order to implement a component of type spout, Apache 

Storm imposes the extension of a class type spout 

implemented in the framework and the overwriting its method 

to be implemented in a personalized functionality. The 

implementation of a bolt is similar to one of a spout, but the 

class needs to be extended to one corresponding to the 

framework Apache Storm, what differs in respect to the 

overwriting of the methods. The component of the topology 

that read the real tweets accessing the Twitter Stream API 

trough the library Twitter4J is called TweetSpout. The Spout 

authenthicates to have access to the data stream, after it reads 

one tweet and it saves in a structure of type 

LinkBlockingQueue which is used as a buffer, and after that, 

each tweet from the queue is issued in the topology. 

Top N Hashtags: The determination of “trending topics” is 

based on a method which identify the hashtags that determine 

that topic. So, for determining the most discussed subjects, 

TwiTrends validates and parses a tweet, after it counts each 

apparition of every hashtag. Based on this, it counters a 

classification based on the most mentioned N hashtags, the 

value of N being a predefined constant in the application. In 

determining the most mentioned N hashtags three bolts of the 

TwiTrend topology are involved: CountHashtagBolt, 

IntermediateRankerBolt and TotalRankerBolt. [13] 

Fig 5. Simplified class diagram of the TwiTrends system 
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Geolocation module. In the stream analysis of the tweets, 

TwiTrends realizes also a classification at the geolocation 

level. The necessary information is obtained from the object 

of type Status, which represent a tweet.  This contain the 

coordinates of longitude and latitude of the location from 

where it was posted. Based on this coordinates, TwiTrends 

computes the name of the city and the country where the 

hashtag or hashtags contained in that message. This 

conversion is made using Bing Maps API, which returns the 

details of the location based on the specified coordinates in 

the  request sent. To obtain a better performance, TwiTrends 

uses a mechanism of caching all location already computed, 

avoiding the access to Bings Maps API for the identical 

locations, in order to a much faster execution.  

The classification of a hashtag at the geolocation level 

represent in TwiTrends the most expensive operation from the 

execution time point of view. In the case that every location 

would be computed using Bing Maps API, the latency will be 

increased substantially. Using a cache memory to store the 

values already computed, will improve the execution time 

considerably.  Moreover, the initialization of the memory 

before the actual execution of the topology, bring an increase 

in performance for the cases mentioned before.   

The model of execution of the TwiTrends topology can be 

resumed to the following steps for a tweet: read tweet, verify 

if is valid, parse it, process it and store the results. Finally, the 

results obtained after the analysis are aggregated and 

classified according to the model “Top N hashtags”. For this 

comparative performance analysis, 200 different pairs 

(longitude and latitude) for computation of the location were 

realized, choosing 1000 times, a random pair from this set. 

3.5 The execution model  
The execution model of the topology can be resumed to a set 

of necessary steps to process a tweet. In the first step, the 

tweet is read by the application and issued further in the 

topology after validation. A valid tweet represents a tweet 

whose message is encoded according to the validation 

realized by the TwiTrends topology. A tweet whose content 

does not correspond to that criteria is ignored by the topology, 

and the processing is finished. A valid tweet is issued further 

under the form of a tuple in the stream and arrives to the 

parsing state. The parsing of a tweet involves the extraction of 

all tweets from the message and the information relating to 

the location of the issued tweet  

 

 

Fig 6. Performance for the calculation of the twit-geolocation 
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It should be noticed that after the validation, the presence of a 

hashtag is guaranteed, but the information of the geolocation 

is not. Whether it occurs or not, a tuple is issued for every 

hashtag accompanied by its location data. After the parsing of 

the tweet, the hashtags are processed in two parallel states: 

one for determining the most discussed subject and one for the 

classification of the hashtag at the geolocation level. For 

determining the trending topics, the hashtag contained in the 

read tweets to which initially is assigned the value 1. In the 

case the TwiTrends has encountered this hashtag, the 

associated counter is incremented, and after that, the pair 

(hashtag, counter) is issued for the classifying itself. In the 

case of a bug report at the geolocation level, the information 

about the geolocation is extracted from the tuple, and the city 

and also the country from where are issued are computed. If 

the information extracted from the tuple is not present or not 

enough for determining the concrete location, TwiTrends 

considers that the hashtag comes from an unknown location. 

The classification of a hashtag takes place after the association 

of a counter with. Each is received from the previous state, 

and the aggregated results are obtained through analysis up to 

that moment. Analogous with the counting of hashtags, 

reporting to a location takes place through associating a 

counter to each hashtag, but based on the location from where 

they are issued.   Even if the hashtag was already mentioned, 

if it comes from another city, or country, a new counter will be 

assigned and initialized. In the case when the hashtag was 

already analyzed for the same city and the same value of the 

hashtag, the existing counter will be incremented.  

The data resulted in the states “Count Location Hashtag” and 

“Rank Hashtag” are aggregated in the terminal state. If a 

hashtag was duplicated in the parsing state, the results of the 

two alternative processing are grouped in that moment. After a 

tweet was read, validated, parsed, processed and stored, its 

execution is over, and this reached the final state as in Figure 

6. The execution model is continuous, so more than one tweet 

is executed simultaneously, and the state that a tweet is in the 

execution flow presented does not determine the status of 

another tweet, as long as it does not cause processing delays 

for it, which is isolated from the rest of the data in processing. 

3.6 TwiTrend in a Storm cluster  
To scale the system for a massive parallel execution, in a 

context of high volume input data and in a low latency 

manner, Apache Storm offer the execution of a topology in a 

cluster, this being dedicated to the developing and testing of 

complex applications. 

In order to execute a topology in a cluster, it is necessary the 

installation and the configuration of the following components 

from its architecture : Server Zookeeper, Nimbus, Supervisor, 

Framework Apache Storm.  

The prerequisites for the configuration of a Storm cluster 

which have to be met are resumed to a pre-installed Java 

version over 1.7, and Python 2.6.6. The configuration of the 

cluster was realized using the Ubuntu 14.04.4 operating 

system, but according to the Storm documentation, the 

compatibility is not limited only to those. The drawbacks of 

the framework Apache Storm and the improvements brought 

by Heron, lead to the migration of the topology to the Heron 

architecture, the new created topology being TwiTrends-

Heron. The migration process of the application was relatively 

simple, taking into consideration that the new framework is 

fully compatible with Apache Storm. For transposing the 

topology TwiTrends on the new Heron architecture, the 

necessary changes were the following: removing the 

dependencies for the Closure plugin, adding the dependencies 

for the Heron API and adding the dependencies for Heron-

Storm 

Fig 7. TwiTrends system execution steps 
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4. TESTING AND VALIDATION 
The functional testing of the TwiTrend topology was made 

from the point of view of the functional behavior at the 

component level and at the topology level. Also, a type of 

truthfulness testing was made for the results obtained, after the 

analysis and the classification of the tweets. The mechanism 

proposed for computing the geolocation was tested 

extensively, because it represent the most complex 

computations made by the topology. For testing, the 

conversion of the coordinates was made with a precision of 

0.05 degrees, for a set of pairs (longitude and latitude) on 

which the conversion and the build of a geolocation object 

was applied.  

The classification method of a hashtag was tested based on 

39.000 randomly chosen tweets, using the Twitter Streaming 

API. The running of the test was made in the 25 June 2016 at 

the 21:00 hour. The major events which characterize that time 

moment were, the withdraw of the Great Britain from the 

European Union (#Brexit) and European football 

championship Euro 2016(#EURO2016), and followed by the 

confrontation between Northern Ireland and Wales (# NIR 

#WAL #WALNIR). The results obtained running the 

TwiTrends topology where the expected ones, through the 

most discussed subjects form the social network being the 

ones mentioned above in Table 1. 

Table 1 The most mentioned hashtags (25 June 2016) 

Place Hashtag  Mentions  

2  #EURO2016  629  

4  #WAL  458  

6  #Brexit  353  

7  #WALNIR  311  

8  #NIR  301  

5. CONCLUSIONS AND FURTHER 

DEVELOPMENTS 
In this section we will underline the objectives that were 

achieved through this project and a set of improvements that 

can be brought to the TwiTrends system as further 

developments. 

The purpose of this paper was to introduce the basics of Big-

Data concepts and the currently processing methods in the 

context of a real-world system . Based on the bibliographic 

study realized, the paper presents the fundamental concepts 

necessary in understanding the domain, the current data 

stream processing methods and two Apache frameworks for 

big-data processing. The paper presents different technologies 

of real-time analysis and it described in detail the Apache 

Storm framework, which exhibits a better performance for the 

last several years in the industry, for various applications. 

Moreover, even if recently introduced tool - Apache Heron 

was only in few projects integrated, the proposed 

implementation confirmed the results published by Twitter. 

The system proved to be scalable, tolerant to failure, and with 

a response time of the order of milliseconds which can say 

that the processing of data is made in real time. Moreover, 

according to the proposed objectives, the results obtained 

showed the truthfulness and reflected a realistic determination 

of the most discussed subjects. As expected, both Apache 

Storm and Heron proved their abilities to process the streams 

in real time. The Twitrends system has a set of characteristics, 

through which the important ones are a good processing 

speed, the reduced latency, the horizontal scalability, the ease 

of development of application, and also the code reusability. 

Although the obtained results confer a validation for the 

proposed approach, a number of improvements can be 

brought to the system. Regarding the reporting of a hashtag to 

a geolocation, TwiTrends considers a zone of a certain radius, 

the dimension of this is given by the precision chosen for the 

coordinates. To obtain a more relevant reporting, the 

geolocation module ca be extended, to reports this values to 

different interest zones. Another improvement can be at the 

level of determination of the most discussed subjects form the 

Twitter social network. The method chosen was based on the 

hashtag criteria proved to be a good one, taking into 

consideration that the results obtained running the application 

TwiTrends determined the most discussed subjects globally. 

However, TwiTrends resumes the analysis at the hashtag 

level, not at the level of a set of hashtags which represents the 

same topic. By making more runs , the conclusion was that 

certain hashtags , as for example #Euro2016, #EURO2016, 

#Euro16 refer to the same discussed subject, but they are 

classified independently. Even if there are a a lot of further 

developments and improvements that can be brought to the 

system,it can be considered that with TwiTrends system it was 

obtained a reliable solution for determining automatically the 

“trending topics” for a twit-message in one of the most used 

social network –Twitter. 
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