
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

16

Twitrends: A Real Time Trending Topics Detection

System for Twitter Social Network

Cosmina Ivan
Department of Computer Science

Technical University of Cluj-Napoca
Cluj County, Romania

Andrei Moldovan
Department of Computer Science

Technical University of Cluj-Napoca
Cluj County, Romania

ABSTRACT
Big Data processing applications have become popular in the

last few years. One of the main reasons is that the data

generated by current systems and applications is more

complex, have a higher speed and its volume increases

exponentially. Another reason would be that the traditional

methods for data processing and storage are obsolete and the

new tools and frameworks brought a lot of advantages.

Various social networks need to process big volumes of data,

and users take into consideration the speed and quality of the

process. We propose an initial approach for processing data

from Twitter social network, in a system which allows a real-

time classification of tweets based on topics and user location.

With this approach we argue that in a dynamic world, were

data increases exponentially and the processing needs to be

very fast, the proposed system is capable to determine

trending topics in real time.

Keywords
Twitter; trending topics; real-time; geolocation; Big Data

1. INTRODUCTION
Over the last few years, both the volume of data that needs

processing and storage, and the variety of sources that provide

the data have increased exponentially. This phenomenon is

due to technological evolution and was embraced by well-

known companies like Amazon, Google, Twitter, etc., under

the name Big Data, due to the fact that the size and

complexity of the data became difficult, even impossible to

manage using traditional data processing systems. The speed

at which data is created and need to be processed and stored,

continuously increase in the last years. The most popular tools

and frameworks for real time stream data processing in the

Big-Data era will be presented. The paper presents the Big

Data concept by defining it from different perspectives, the

various processing models followed by an analysis of the

currently industrial and research frameworks. The purpose of

this paper is to present the necessary concepts regarding the

different Big Data processing models, to propose and

implement a system which make use of two new stream

processing frameworks from Apache -Storm and Heron, in

order to determine the most discussed subjects from the

Twitter social network and their classification at the

geolocation level. For obtaining relevant outcomes, the needs

to be done in real time where the allowed latency is at the

seconds level, using as input data, a real data stream from

Twitter social network. In this respect, another objective was

to propose and implement a classification method through

which to obtain results as accurately as possible by selecting

relevant information from the vast amounts of data produced

by the social network.

The processing model will involve the following steps: 1)

reading the data stream, 2) processing the data in real time, 3)

providing real-time data output and analytics. The frameworks

Apache Storm and Heron represent two open-source, scalable

systems developed for deployment in clusters, used recently

in real-time big-data processing and analysis. A cluster

represents an independent group of servers that collaborate as

a unified system in order to offer greater availability and

scalability. Horizontal scalability is obtained by allocating

more nodes in the cluster, so the processing is based on

multiple hardware resources.

This paper is organized as follows: Section 2 encompasses the

research we have done on existing stream processing

conceptual frameworks and implementations, with focus on

Apache Storm and Heron. Section 3 present the proposed

system design and implementation, in terms of the

architectural topology proposed, functional components

description, the execution model, and implementation details.

In Section 4, a validation of the system was done and Section

5, contains conclusions and future developments.

2. BIBLIOGRAPHIC RESEARCH
The concept of Big Data is relatively new, which became

popular in the last decade, and its definition is relatively

complex due to the properties that characterizes the immense

volume of data which are in a continuous growth.

Despite the increased interest, a universally accepted

definition for this concept is not established yet. According to

MIT Technology Review (2013): "a data set, which is defined

as high today, will be with a great certitude considered small

in the near future" [1]. The size of the data sets is often

reported to currently existing technology for processing it. In

the absence of a well-established definition, representative

players on the market have contributed to the Big Data

phenomenon with their approach and implementation, for

example Oracle says that "Big Data is derived significantly

from business traditionally based on relational databases,

correlated with new sources of unstructured data", Intel

appreciate as " Big Data Opportunities occur in organizations

that generate an average of 300 terabytes of data per week "

[2].

The most popular way to characterize Big Data is based on

the 3 V’s: volume, variety and velocity. Volume refers to the

size of the data, and has increased exponentially over the last

few years and this trend continues. Velocity describes the

frequency at which the data are generated and received.

Variety is one of the most important characteristics, as it

describes the diversity in content and representation. A forth

V was added recently, namely veridicity which refers to

reliability, accuracy and precision all together [3].

Due to the increasing volume of data that needs to be created,

processed and analyzed continuously, the traditional

processing and storage methods and technologies became

obsolete, and new models and their counterpart frameworks as

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

17

Storm, Spark, Flink or Heron [4] are used for data streaming

processing.

2.1 Batch processing using MapReduce

model
Majority of batch processing systems were based on the

programming paradigm known as MapReduce processing

model, which was introduced by Google and first

implemented in Apache Hadoop [4], a framework which

integrates various batch processing technologies. MapReduce

is based on dividing the processing in two major stages: Map

and Reduce, each receiving as input data a key-value pair,

whose type is established by the programmer and also return a

key-value pair as a result. Batch processing based on the

MapReduce model presume reading a set of data of the

dimension of the batch. When the batch is full (or when the

execution of some processing is forced by the planner) data

will be submitted for processing, obtaining a “framed” model

of execution, either in terms of time (at some imposed

intervals), or in terms of the volume of data (imposed by the

dimension of the batch). Although, Hadoop is a good

framework for what it was developed, the model has some

limitations as for example the possibility that the problem and

data cannot be transposed in key-value pairs, or the specific

delay of producing the output data determined by the

dimension of the data that has to be processed and the

computing power of the system.

2.2 Stream processing
As an alternative, the recent data stream processing, also

known as processing in real time, involves a continuous

processing of the input data. In this context, real-time can be

analyzed from two points of view: the data and the final user

point of view. From the data perspective, the term real time

refers the data processing as soon they are received, so the

results obtained after the analysis will be always current.

From the perspective of the final user [5], the definition of the

big-data concept correlated with real time, will be made based

on the necessary time for the system to respond to an

interrogation, so that the user could have immediately the

response to the request. From this point of view the notion of

real time can be compared to a call to a REST service or any

other call of RPC type.

2.3 Lambda architecture
The Lambda architectural model [6] requires the integration

of two levels: a fast processing level, based on streams and a

massive processing system, using the batch model which

keeps the advantages of the two methods, and the

disadvantage of the latency is solved by the layer that

processes the data in real time

The Lambda architecture includes three levels:

1. The batch level which manages the master data type

and calculates in advance the batch views. A

possible implementation is one using Apache

Hadoop or an OLAP system (online analytical

processing) like Vertica or Netezza.

2. Speed level: realizes an analysis in real time of a

subset from the total of collected data, being used to

offer immediate access to the most current results,

3. Service level: which represents a caching

mechanism of the obtained results from the analysis

made by the batch level.

Therefore, Lambda defines a big-data architecture which

allows predefined and arbitrary interrogations. He includes the

advantages of the MapReduce model for simultaneous

processing of a big volume of data, and the latency introduced

by that is resolved through de service level in real time. It can

be observed that both models: the batch model and the stream

processing, bring advantages and disadvantages. Batch

processing allows the analysis of a big volume of data, but

introduce latency in obtaining results, problem which was

solved by the stream processing at the price that data is

available only for a definite period of time. The hybrid

lambda architecture offers a combined approach, in trying to

overcome all these disadvantages, but at a price of a

significant complexity.

2.4 New stream processing frameworks
The main reason that led to the development of a great

number of frameworks for stream processing was mainly the

inherent limitations of the batch processing, namely the high

latency introduced. Real-time processing requires the

processing of a continuous flow of data, so that the results

obtained can be available with a minimum latency accessible

to the final user. The well-known systems that offer stream

processing data are Apache Storm, Heron, Apache, Splunk-

Streaming, Spark and many others [8]. As we will describe in

more details the first two as being of interest, the rest will be

only shortly presented.

Splunk is a platform that can be used for real –time analysis

for machine generated big data, and for processing structured

and unstructured files. Splunk captures, indexes and correlates

real-time data in a searchable repository from which it can

generate graphs, reports, alerts, dashboards and visualization.

Spark streaming is an extension of the base framework Spark

that offers a high level API in Java, Python, R for the Big

Data processing.

Apache Storm [9,10] is a distributed system, open-source of

Big Data type. Storm includes a series of features like

horizontal scalability, tolerance to failure, ensuring data

processing and support for different languages.

Basic concepts in Storm are topology, tuple, stream, bolt and

spout and their functional definition will be presented.

Topology: represents the top level abstractization which is

used for describing the workflow of a Storm application.

Contains as elements spouts, bolts and streams of tuples.

Tuple: an identifiable data structure which contain an ordered

list of values

Stream: basic abstraction from Storm, which represents an

infinite sequence of tuple, which are created and processed in

parallel.

Bolt: reads the tuples of one or more streams and processes

them

Spout: defines a source of tuples in Storm, reads an external

source and sends data in the topology.

A Storm cluster is dedicated to the execution of a topology

and can be compared to a Hadoop cluster. While Hadoop

executes jobs of type MapReduce, Storm runs topologies the

major difference being represented by the fact that the

execution of a Hadoop job is finite and the topology is

executed infinitely or until is eliminated. A Storm topology is

illustrated in Figure 1.

The Storm architecture is based on master-slave pattern. The

coordination of the master processes and the slave processes

are made through a third-party component called ZooKeeper.

The master node called Nimbus is responsible for the task

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

18

distribution in the cluster and their assignment to the

processing nodes similarly to an operating system scheduler,

and also used for the system monitoring.

Each node involved in processing, contains a supervisor and

every supervisor has control over one or more logical workers

in that node, their coordination being resolved by the

Zookeeper component.

Apache Heron [10,11] Along with the tremendous increase

in data produced especially in the social apps domain, many

limitations of the Strom framework where visible, like the

overuse of functionally for the Nimbus component. Form the

efficiency point of view were identified the following

drawbacks: suboptimal replays due to the failure of a tuple in

a tree and long cycles of garbage collection determined by the

topologies which consume too much RAM memory.

Due to the increase volume of processed data and also

determined by the large diversity of data, improvements

brought by Heron over Apache Storm, are highlighted in the

architectural model where the final user submits the tasks to

the planner, tasks which are executed as a job in more than a

single container, one of them running the so called Topology

Master (equivalent to Nimbus) and being responsible for the

topology management.

Each container runs a Stream Manager which executes the

routing of the data, a manager for every metrics which

collects and reports different metrics and a number of

processes called Heron instances, which run spouts and bolts

defined by the user and specific to the application. The

metadata of a topology which contain the physical plane and

the execution details are kept in the Zookeeper. This new

architecture was designed with more support for flexibility,

versatility and dynamism.

After a set of benchmarks made by the architects from Twitter

to evaluate the system, Heron proves superior performance

over Storm, both in terms of execution speed and simplicity in

troubleshooting and detecting the failed or lazy component

from the topology.

3. DESIGN AND IMPLEMENTATION
The solution proposed is an application implemented using

the Apache Storm framework and written entirely in Java. The

application creates a real time analysis of all tweets send on

the Twitter social network which can be used to determine the

so called trending topics, a term associated to the most

discussed subjects from the social network, at a specific time.

The system initially, was implemented in the Apache Storm

framework and then migrated to the new real-time processing

framework proposed by Twitter, named Heron.

This section will present the proposed method for the topics

classification, trending topics, having a hashtag based

algorithm as main classification mechanism. For the

implementation, running, testing and integration of the

application, the following tools and frameworks were

adopted: Eclipse Mars as IDE, Apache Maven for the

integration management and the compilation Twitter4J and

Bing Maps API as libraries used for the real-time analysis of

tweets and their classification, JUnit for testing the

framework, the log4j libraries for the logging files, and finally

for running in a simulated and real cluster we used Apache

Storm and Heron.

3.1 Input data format
The input data used by the application to determine the most

discussed topics from the Twitter social network, represent

the read tweets accessed in the application using Twitter

Stream API.

The first necessary step in order to access the data is the

authentication using a specific key created as a combination

of: a consumer key, a consumer secret, an access token and

the secret access token.

Once authenticated, the developer has access to the real public

streams, which are divided in three categories: POST statuses

/ filter, GET statuses / sample and GET statuses. The first

endpoint returns all the tweets that match to at least one filter

as a parameter. It is possible to specify multiple number of

filters, but at least one needs to be present. The endpoint

“GET statuses / sample” returns a number of public status

randomly chosen and is the chosen one for implementing the

classification of the tweets. The application takes into

consideration all the tweets read and does not need an initial

filtering, but as the data advance in the topology, the ones that

are irrelevant were removed.

The most relevant fields from the content stream, used by the

system are:

Text: contains the text of a tweet posted by a user of the

social network

GeoLocation: represents the coordinates of longitude and

latitude of the user that posted the tweet. The coordinates are

represented under the form of an object of type GeoLocation.

Place: which represents specific locations and the

corresponding geo-coordinates. They can be attached to a

tweet, but the fields are optional. The objects of type Place

contain a series of attributes used for a more detailed

description of the location. With respect to the system, the

most relevant attributes are the name, for example:

name=”Paris”, country=”France” and the type of the location.

HashtagEntities: represent a list of all mentioned hashtags in

the current tweet. The values of type hashtag are extracted

from the text of the tweet and are represented as a character

string, without the specific ”#” symbol, like in the initial

message

3.2 Determining the trending topics
A method for determining the most discussed subjects, also

named as “trending topics” became a tough challenge with the

explosion of the number of users in different social networks

and of importance for various fields as online marketing,

social interest surveys, product promoting. The proposed

method and associated metrics are used in order to compute a

set of most discussed subjects based on [12].

Fig 1. Topology in Storm

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

19

In order to determine the set, a basic method implies the

counting of the most mentioned terms in the poster tweets in

the Twitter social network. In the first step are removed all the

words which are presumed to be irrelevant, after that is

counted the apparitions of every word, where the word

frequency is related to a series of subject categories. The

major problem encountered was that when applying this

method, a lot of tweets contain words relevant to more than

one category are present in the selection. Moreover, the

classification is made at the word level and not at the semantic

level.

In TwiTrends, the proposed method for classification used to

determine the trending topics over an interval of time is based

on extracting and counting the hashtags from a tweet. A

hashtag is represented by a word or more words concatenated,

which start with the symbol “#”. The hashtag symbol is used

in a social relationship like Twitter to identify a message that

belongs to a certain topic. So, a topic is represented through a

set of hashtags associated to it. The method is known in the

domain of data analysis for social network as “Trending

Hashtags” method. Suppose two subjects A and B, the fact

that A is more popular than B is equivalent to the fact that the

number of mentions of the subject A is greater that the

number of mentions of the subject B. This relationship can be

described in the following formula presented in Figure 2.

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡y(𝐴) ≥ 𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖ty(𝐵) ⟺

𝑛o_𝑚𝑒𝑛𝑡𝑖ons(𝐴) ≥ 𝑛o_𝑚𝑒𝑛𝑡𝑖𝑜𝑛s(𝐵)

Fig 2. The relationship between the number of mentions

and their popularity

Applying the semantics of a hashtag on which the method of

“Trending Hashtags” is based, we can deduce that the number

of mentions of a subject it actually represents the number of

hashtags associated to it, the hashtag identifying the topic to

which it belongs. So, the identification of a subject becomes

equivalent with the identification of the number of hashtag

that represent that subject. Also, for a more accurate analysis

we have to take into consideration a new dimension: the time.

The popularity of a subject is related to a period of time, so

this is defined on a bounded interval t1 – t0, denoted with Δt.

The time t1 is the current time, and t0 represents a moment

from the near past. As an example, we consider the term “big-

data” as being a trending topic at the time moment t1, if the

number of hashtags that are associated to that subject

identified by a predetermined time interval of the order of

hours is of certain size. Therefore, using the notation, in

which A and B represent two different subjects and, in

addition, #A represents a hashtag which determines the

subject A, and #B is associated to the subject B, the formula

can be rewritten in the following manner, presented in Figure

3 .

3.3 The TwiTrends topology
Implementing a real-time processing system in Apache Storm

or Heron assumes the design of an architectural topology,

which will be implemented and then run on a cluster. Thus,

the implementation of the TwiTrends begins with the design

and implementation of the topology architecture at the level of

components, also it involves the definition of the relationships

between topology elements named spouts and bolts through

specific data streams. At each bolt we must specify the

potential parallelism and the description of the mapping

model of the tuples for every stream at every instance. We

will describe the topology components for TwiTrends, which

represents the basic architecture of the system used to

determine the most discussed subject from the Twitter social

network. The topology can be represented as a directed

acyclic graph (DAG), consisting from a single spout node, the

one that issues the tweets accessing the Twitter4J library, a set

of bolts type nodes used for processing, filtering and

forwarding data and the streams of tuples which link together

all components.

 The TwiTrends topology is a hierarchic one, composed of a

top-level component from which diverge the set of elements

and connections between them. Also, the architecture

describes the interactions between these components, defined

based on the streams of tuples through which they

communicate. The main components of the TwiTrends

architecture are:

TwiTrendTolology: Represents the top-level component of

the topology. Contains the spout used for issuing the tweets

and the eight bolts used for processing them

TweetSpout: Represents a component used for issuing the

tweets in the TwiTrends topology. This was the only spout

used, taking into consideration only the reading and the

forwarding of a single stream

TweetFilterBolt: Reads the tweets issued by the TweetSpout

and executes the filtering. Only tweets that contain coded

messages using the standard Unicode.

ParseTweetBolt: Processes the filtered tweets issued as

tuples by the component TweetFilterBolt. Taking into

consideration that the tuple is filtered, at this level we have the

guarantee that each tweet contains at least one hashtag

CountHashtagBolt: Takes the tweets that are parsed through

the component ParseTweetBolt and counts each hashtag.

CountHashtagBolt uses a dispersion table as a buffer to map

each hashtag to its counter. The table is updated at each read

tuple, based on those values. The component issues an output

stream which contains a corresponding pair as an entry in the

dispersion table based on the hashtag and the counter

associated to it

 𝐶𝑜𝑢𝑛𝑡(ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝐴)𝑡1
𝑡0

𝛥𝑡
≥
 𝐶𝑜𝑢𝑛𝑡(ℎ𝑎𝑠ℎ𝑡𝑎𝑔𝐵)𝑡1
𝑡0

𝛥𝑡

popularity(A)≥popularity(B)

⟺

Fig 3. The popularity of a subject based on the number of hashtags in a time interval

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

20

IntermediateRankerBolt: Represents a generic intermediate

component for determining the most N mentioned hashtags

TotalRankerBolt: Makes a total ranking of all the counted

hashtags. It uses an intermediate classification model,

followed by the aggregation of the results that facilitate the

parallel execution.

GeoLocationBolt: It takes the hashtag issued by the

ParseTweetBolt, with the location of the tweet. Taking into

consideration that the location is encoded through coordinates

of longitude and latitude, the transformation to a concrete

location is necessary.

CountLocationHashtagBolt: Presents a functionality similar

to the component CountHashtagBolt but introduces a second

dimension with regards to the counting. The counting is not

reported to the text hashtag, but to the geolocation from which

it was issued. In this case, it is not possible the extraction of

the location of the tweet represented by the input tuple, the

bolt uses a variable of type sentinel named “UNKNOW

LOCATION” as a key in the dispersion table, this being

issued by the responsible bolt for the calculation of the

location. The structure of the buffer is represented through a

key-value relationship, in which the key is composed from

two fields: the location and the text of the hashtag

RedisBolt: Is the final bolt of the TwiTrend topology and

represents a component that groups the processing results at

the global level. The component saves generically the most N

discussed topics identified based on the hashtag and processed

in the topology. Also, this bolt contains the counting of the

hashtags at the geolocation level, obtained through the stream

issued by the CountLocationHashtagBolt. Being the final

component, RedisBolt needs to allow access to the data stored

external to the application. To facilitate this functionality, the

bolt will publish all the data contained in a Redis message

broker, which represents a local storage space used as a

database and which can be accessed in a publish/subscribe

manner. RedisBolt makes an aggregation of the issued streams

by the components TotalRankerBolt and the

CountLocationHashtagBolt.

The implementation of the topology implies the translation in

Java code. Every component (spout or bolt) correspond to a

class, and the level of parallelism, the streams through which

the components communicate and the type of grouping are

specified at class level which implements the topology. As a

basic rule, bolt which needs a greater processing time needs to

be processed at a greater level of parallelism, in order to

maintain a flow of continuous data. The components that only

process and forward data in the topology use a grouping of

type shuffle, or random and they don’t save any intermediate

data. To reduce the regrouping time of the issued stream,

usage of grouping at the hashtag level or the location, avoid

the presence of the same keys in the maps of different

instances. So, two hashtags or identical geolocation contained

in different tuples will be processed by the same bolt instance.

All the bolts in the topology are in the package

com.twitrends.bolt. Sub-package com.twitrends.bolt.apache

contain the classes taken from the open-source project “storm

starter”. The spout used is in the package com.twitrends.spout.

TwiTrends topology accesses a set of interfaces from the

package com.twitrends.util, to obtain the constants used in the

topology, the identifiers of the components it instantiates,

name of the fields of each tuple and the necessary values to

login in the Twitter Stream API.

In the proposed topology, there exist processing nodes that

cannot be executed in parallel. For example, TotalRankerBolt

which is represented through a single instance, it issues only

one stream which represents the result of the aggregation of

the obtained tuples from the IntermediateRanklisherBolt,

Fig 4. The TwiTrends topology

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

21

similar to RedisBolt which is a data collecting bolt at the

global level, and was made available to the external

environment.

The two frameworks, Apache Storm and Heron offer a series

of implementation for the different grouping semantics of the

streams to increase complementary the processing speed. The

grouping methods used in the Twitter topology are the

following:

Shuffle grouping: The tuples are distributed randomly by the

tasks of the elements of type bolt. The grouping ensures that

the distribution is uniform, so that each task will receive an

equal number of tuples

Fields grouping: The stream of tuples is partitioned based on

the fields specified in the grouping. For example, if the stream

is grouped after the field hashtag, the tuples that contain the

same hashtag will be processed in the same bolt instance, but

the tuples that contain a different hashtag can be processed by

other instances

Global grouping: The entire system of data is transmitted to a

single take corresponding to an instance of a bolt. In the case

that there is more than one instance, is chosen the one with the

smallest identifier.

The components that only process and forward data in the

topology use the shuffle or random grouping. They only save

intermediate data, so they do not depend on the level of value

that are contained in the stream tuple which they process.

Bolts like CountHashtagBolt or CountLocationHashtagBolt

save the value of the hashtag of the geolocation for a

processed tweet. In order to reduce the regrouping time of the

issued streams, usage of a grouping at the hashtag level or the

location, avoid the presence of the same keys in maps from

different instances.

3.4 Reading, filtering and parsing of a tweet
The reading, filtering and the parsing of a tweet is made

through three main classes: TweetBolt, TweetFilterBolt and

the ParseTweetBolt.

In order to implement a component of type spout, Apache

Storm imposes the extension of a class type spout

implemented in the framework and the overwriting its method

to be implemented in a personalized functionality. The

implementation of a bolt is similar to one of a spout, but the

class needs to be extended to one corresponding to the

framework Apache Storm, what differs in respect to the

overwriting of the methods. The component of the topology

that read the real tweets accessing the Twitter Stream API

trough the library Twitter4J is called TweetSpout. The Spout

authenthicates to have access to the data stream, after it reads

one tweet and it saves in a structure of type

LinkBlockingQueue which is used as a buffer, and after that,

each tweet from the queue is issued in the topology.

Top N Hashtags: The determination of “trending topics” is

based on a method which identify the hashtags that determine

that topic. So, for determining the most discussed subjects,

TwiTrends validates and parses a tweet, after it counts each

apparition of every hashtag. Based on this, it counters a

classification based on the most mentioned N hashtags, the

value of N being a predefined constant in the application. In

determining the most mentioned N hashtags three bolts of the

TwiTrend topology are involved: CountHashtagBolt,

IntermediateRankerBolt and TotalRankerBolt. [13]

Fig 5. Simplified class diagram of the TwiTrends system

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

22

Geolocation module. In the stream analysis of the tweets,

TwiTrends realizes also a classification at the geolocation

level. The necessary information is obtained from the object

of type Status, which represent a tweet. This contain the

coordinates of longitude and latitude of the location from

where it was posted. Based on this coordinates, TwiTrends

computes the name of the city and the country where the

hashtag or hashtags contained in that message. This

conversion is made using Bing Maps API, which returns the

details of the location based on the specified coordinates in

the request sent. To obtain a better performance, TwiTrends

uses a mechanism of caching all location already computed,

avoiding the access to Bings Maps API for the identical

locations, in order to a much faster execution.

The classification of a hashtag at the geolocation level

represent in TwiTrends the most expensive operation from the

execution time point of view. In the case that every location

would be computed using Bing Maps API, the latency will be

increased substantially. Using a cache memory to store the

values already computed, will improve the execution time

considerably. Moreover, the initialization of the memory

before the actual execution of the topology, bring an increase

in performance for the cases mentioned before.

The model of execution of the TwiTrends topology can be

resumed to the following steps for a tweet: read tweet, verify

if is valid, parse it, process it and store the results. Finally, the

results obtained after the analysis are aggregated and

classified according to the model “Top N hashtags”. For this

comparative performance analysis, 200 different pairs

(longitude and latitude) for computation of the location were

realized, choosing 1000 times, a random pair from this set.

3.5 The execution model
The execution model of the topology can be resumed to a set

of necessary steps to process a tweet. In the first step, the

tweet is read by the application and issued further in the

topology after validation. A valid tweet represents a tweet

whose message is encoded according to the validation

realized by the TwiTrends topology. A tweet whose content

does not correspond to that criteria is ignored by the topology,

and the processing is finished. A valid tweet is issued further

under the form of a tuple in the stream and arrives to the

parsing state. The parsing of a tweet involves the extraction of

all tweets from the message and the information relating to

the location of the issued tweet

Fig 6. Performance for the calculation of the twit-geolocation

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

23

It should be noticed that after the validation, the presence of a

hashtag is guaranteed, but the information of the geolocation

is not. Whether it occurs or not, a tuple is issued for every

hashtag accompanied by its location data. After the parsing of

the tweet, the hashtags are processed in two parallel states:

one for determining the most discussed subject and one for the

classification of the hashtag at the geolocation level. For

determining the trending topics, the hashtag contained in the

read tweets to which initially is assigned the value 1. In the

case the TwiTrends has encountered this hashtag, the

associated counter is incremented, and after that, the pair

(hashtag, counter) is issued for the classifying itself. In the

case of a bug report at the geolocation level, the information

about the geolocation is extracted from the tuple, and the city

and also the country from where are issued are computed. If

the information extracted from the tuple is not present or not

enough for determining the concrete location, TwiTrends

considers that the hashtag comes from an unknown location.

The classification of a hashtag takes place after the association

of a counter with. Each is received from the previous state,

and the aggregated results are obtained through analysis up to

that moment. Analogous with the counting of hashtags,

reporting to a location takes place through associating a

counter to each hashtag, but based on the location from where

they are issued. Even if the hashtag was already mentioned,

if it comes from another city, or country, a new counter will be

assigned and initialized. In the case when the hashtag was

already analyzed for the same city and the same value of the

hashtag, the existing counter will be incremented.

The data resulted in the states “Count Location Hashtag” and

“Rank Hashtag” are aggregated in the terminal state. If a

hashtag was duplicated in the parsing state, the results of the

two alternative processing are grouped in that moment. After a

tweet was read, validated, parsed, processed and stored, its

execution is over, and this reached the final state as in Figure

6. The execution model is continuous, so more than one tweet

is executed simultaneously, and the state that a tweet is in the

execution flow presented does not determine the status of

another tweet, as long as it does not cause processing delays

for it, which is isolated from the rest of the data in processing.

3.6 TwiTrend in a Storm cluster
To scale the system for a massive parallel execution, in a

context of high volume input data and in a low latency

manner, Apache Storm offer the execution of a topology in a

cluster, this being dedicated to the developing and testing of

complex applications.

In order to execute a topology in a cluster, it is necessary the

installation and the configuration of the following components

from its architecture : Server Zookeeper, Nimbus, Supervisor,

Framework Apache Storm.

The prerequisites for the configuration of a Storm cluster

which have to be met are resumed to a pre-installed Java

version over 1.7, and Python 2.6.6. The configuration of the

cluster was realized using the Ubuntu 14.04.4 operating

system, but according to the Storm documentation, the

compatibility is not limited only to those. The drawbacks of

the framework Apache Storm and the improvements brought

by Heron, lead to the migration of the topology to the Heron

architecture, the new created topology being TwiTrends-

Heron. The migration process of the application was relatively

simple, taking into consideration that the new framework is

fully compatible with Apache Storm. For transposing the

topology TwiTrends on the new Heron architecture, the

necessary changes were the following: removing the

dependencies for the Closure plugin, adding the dependencies

for the Heron API and adding the dependencies for Heron-

Storm

Fig 7. TwiTrends system execution steps

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

24

4. TESTING AND VALIDATION
The functional testing of the TwiTrend topology was made

from the point of view of the functional behavior at the

component level and at the topology level. Also, a type of

truthfulness testing was made for the results obtained, after the

analysis and the classification of the tweets. The mechanism

proposed for computing the geolocation was tested

extensively, because it represent the most complex

computations made by the topology. For testing, the

conversion of the coordinates was made with a precision of

0.05 degrees, for a set of pairs (longitude and latitude) on

which the conversion and the build of a geolocation object

was applied.

The classification method of a hashtag was tested based on

39.000 randomly chosen tweets, using the Twitter Streaming

API. The running of the test was made in the 25 June 2016 at

the 21:00 hour. The major events which characterize that time

moment were, the withdraw of the Great Britain from the

European Union (#Brexit) and European football

championship Euro 2016(#EURO2016), and followed by the

confrontation between Northern Ireland and Wales (# NIR

#WAL #WALNIR). The results obtained running the

TwiTrends topology where the expected ones, through the

most discussed subjects form the social network being the

ones mentioned above in Table 1.

Table 1 The most mentioned hashtags (25 June 2016)

Place Hashtag Mentions

2 #EURO2016 629

4 #WAL 458

6 #Brexit 353

7 #WALNIR 311

8 #NIR 301

5. CONCLUSIONS AND FURTHER

DEVELOPMENTS
In this section we will underline the objectives that were

achieved through this project and a set of improvements that

can be brought to the TwiTrends system as further

developments.

The purpose of this paper was to introduce the basics of Big-

Data concepts and the currently processing methods in the

context of a real-world system . Based on the bibliographic

study realized, the paper presents the fundamental concepts

necessary in understanding the domain, the current data

stream processing methods and two Apache frameworks for

big-data processing. The paper presents different technologies

of real-time analysis and it described in detail the Apache

Storm framework, which exhibits a better performance for the

last several years in the industry, for various applications.

Moreover, even if recently introduced tool - Apache Heron

was only in few projects integrated, the proposed

implementation confirmed the results published by Twitter.

The system proved to be scalable, tolerant to failure, and with

a response time of the order of milliseconds which can say

that the processing of data is made in real time. Moreover,

according to the proposed objectives, the results obtained

showed the truthfulness and reflected a realistic determination

of the most discussed subjects. As expected, both Apache

Storm and Heron proved their abilities to process the streams

in real time. The Twitrends system has a set of characteristics,

through which the important ones are a good processing

speed, the reduced latency, the horizontal scalability, the ease

of development of application, and also the code reusability.

Although the obtained results confer a validation for the

proposed approach, a number of improvements can be

brought to the system. Regarding the reporting of a hashtag to

a geolocation, TwiTrends considers a zone of a certain radius,

the dimension of this is given by the precision chosen for the

coordinates. To obtain a more relevant reporting, the

geolocation module ca be extended, to reports this values to

different interest zones. Another improvement can be at the

level of determination of the most discussed subjects form the

Twitter social network. The method chosen was based on the

hashtag criteria proved to be a good one, taking into

consideration that the results obtained running the application

TwiTrends determined the most discussed subjects globally.

However, TwiTrends resumes the analysis at the hashtag

level, not at the level of a set of hashtags which represents the

same topic. By making more runs , the conclusion was that

certain hashtags , as for example #Euro2016, #EURO2016,

#Euro16 refer to the same discussed subject, but they are

classified independently. Even if there are a a lot of further

developments and improvements that can be brought to the

system,it can be considered that with TwiTrends system it was

obtained a reliable solution for determining automatically the

“trending topics” for a twit-message in one of the most used

social network –Twitter.

6. REFERENCES
[1] Jonathan Stuart Ward and Adam Barker, Undefined By

Data: A Survey of Big Data Definitions, University of St

Andrews, School of Computer Science, 2013. (accessed

24 april 2016)

[2] Thibaud Chardonnens, Big Data analytics on high velocity

streams, University of Fribourg (Switzerland), 2013.

(accessed 25 april 2016)

[3] Aftabl A. Chandio, Nikos Tziritas, Cheng-Zhong Xu, Big-

Data Processing Techniques and Their Challenges in

Transport Domain, Research Gate, februarie 2015. DOI:

10.3969/j.issn.1673-5188.2015.01.007 (accessed 24 april

2016)

[4] C.L. Philip Chen, Chun-Yang Zhang. Data-intensive

applications, challenges, techniques and technologies: A

survey on Big Data, Information Sciences Volume 275,

pages 314-347, august 2014. [Online]:

http://dx.doi.org/10.1016/j.ins.2014.01.015 (accessed 25

April 2016)

[5] Benoît Perroud. A hybrid approach to enabling real-time

queries to end-users. Software Developer’s Journal,

2013. (access 24 April 2016)

[6] Nathan Marz and James Warren, Big Data Principles and

best practices of scalable real time data systems,

Manning, aprilie 2015. (accessed 24 April 2016)

[7] Boyang Peng, Elasticity and Resource Aware Scheduling

in Distributed Data Stream Processing Systems, Master

Thesis, University of Illinois at Urbana-Champaign,

2015. (access 24 april 2016)

[8] Karan Patel, Yash Sakaria and Chetashri Bhadane, Real

Time Data Processing Frameworks, International Journal

of Data Mining & Knowledge Management Process

(IJDKP) Vol.5, No.5, septembrie 2015, DOI:

http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.ins.2014.01.015

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.4, October 2016

25

10.5121/ijdkp.2015.5504. (accessed 24 may 2016)

[9] Martin Illecker, Real-time Twitter Sentiment Classification

based on Apache Storm, Master Thesis, Innsbruck, 2015.

[10] Bc. Dávid Katuščák, Dynamic Processing of Event

Streams Using Java Tools, Master’s thesis, Brno, 2015.

[11] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas

Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh

M. Patel, Karthik Ramasamy, Siddarth Taneja, Twitter

Heron: Stream Processing at Scale, in Proceedings of

the 2015 ACM SIGMOD International Conference on

Management of Data, 2015. [Online]:

http://dx.doi.org/10.1145/2723372.2742788

[12] Arkaitz Zubiaga, Damiano Spina, Raquel Martinez,

Victor Fresno, Real-Time Classification of Twitter

Trends, Journal of the American Society for Information

Science and Technology, March 2014. [Online]:

http://arxiv.org/abs/1403.1451v1

[13] Doug Laney, 3D Data Management: Controlling Data

Volume, Veocity, and Variety, META Group, February

2001. [Online]: https://blogs.gartner.com/doug-

laney/files/2012/01/ad949-3D-Data Management-

Controlling-Data-Volume-Velocity-and-Variety.pdf

IJCATM : www.ijcaonline.org

http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1145/2723372.2742788
http://arxiv.org/abs/1403.1451v1
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

