
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.6, October 2016

12

Simulation and Investigation on “Effect of Dependency

in under Pipelining”

Renuka Patel
Department of Computer Science,
Pt. Ravishankar Shukla University,

Raipur, Chhattisgarh,
492010, India

Sanjay Kumar
Department of Computer Science,
Pt. Ravishankar Shukla University,

Raipur, Chhattisgarh,
492010, India

ABSTRACT

Instruction level parallelism is the most common technique to

achieve speedup and Pipelining is one of the techniques to

achieve Instruction level parallelism. Pipelining is of 5 types –

Scalar pipelining, Superscalar pipelining, Super pipelining,

Under pipelining and Super Scalar Super pipelining. In

pipelining technique more than one instruction can issue

simultaneously into different functional unit. But, dependency

is most common problem in pipelining. This paper shows the

development of simulator using ‗C‘ language to study the

effect of dependency in under pipelining. This paper also

calculates some pipelining parameters like CPI, IPC etc.

General Terms

Pipelining.

Keywords

Instruction Level Parallelism, Dependency, Pipelining,

Simulation, CPI, IPC, MIPS

1. INTRODUCTION
In pipelining technique, instruction execution process is

divided into number of stages called pipelining stage (Load,

Decode, Fetch, Execute and Write), and each stage of

instruction is executed by different functional unit (Load unit,

Decode unit, Fetch Unit, Decoder and Write Unit) of

processor[1-3]. Figure 1 shows 5 stage pipelining.

Pipelining is the technique in which instructions are executed

into overlapped cascaded manner [4-5]. Pipelining are of 5

types – Scalar pipelining, Superscalar pipelining, Super

pipelining, Under pipelining and Super Scalar Super

pipelining. When instruction issue latency is more than 1

clock cycle then it comes under under-pipelining architecture

[6]. Processor is utilized fully when 1 instruction is issued in

each clock cycle, but because of various practical reasons

instruction issue latency is more than one. When instruction

issue latency is more than one, then the pipeline is

underutilized and this pipeline is known as under-pipeline [7].

Under pipelining is shown in figure 2. In figure 2 x axis

shows clock cycles and y axis shows number of instructions.

There are 2 instructions i1 and i2, both instructions are getting

processed parallel but first instruction i1 is loading in 1st clock

cycle and second instruction i2 is loading on 3rd clock cycle

because this is under-pipelining architecture. First instruction

i1 is completing in 5th clock cycle and second instruction i2 is

completing on 7
th clock cycle. So total number of clock cycle

to complete 2 instructions is 7 clock cycles. Here instruction

issue latency is 2 clock cycles. Following are the various

practical reasons for instruction issues latency is being more

than one clock cycle [8-9]-

 True data dependency

 Procedural dependency

 Resource Dependence

 Output dependency

True data dependency also called write read dependency

means an instruction cannot be executed until all required

operands are available [10]. Instructions having branch is

called procedural dependent instruction, in which the

instruction cannot be completely executed until the branch is

executed [9]. Resource dependence means two or more than

two instructions require same resource same time. Here

resource means integer units (such as integer adder), floating

point units, registers, memory areas etc [7]. Output

dependency also called write after write dependency. Output

dependency means two instructions write into same output

variable simultaneously [11]. If dependency is not handled

properly then incorrect result will be generated. There are

various methods available to deal with dependency. One of

the simple method is pipeline stalling. Pipeline stalling means

giving time delay [12]. In the present work the effect of

dependency in under pipelining is studied.

L D F E W

 L D F E W

Fig. 2 Under-pipelining

2. EXPERIMENTAL METHOLOGY
This section describes the methodology used to study the

effect of dependency in under pipelining. This paper

considered mainly 2 conditions. First condition is current

instruction is not dependent on any previous instruction and

second condition is current instruction is dependent on

previous instruction.

Now if current instruction is not dependent on any other

previous instruction then loading of current instruction takes

place on (l[i-1]+2)th clock cycle. Decoding takes place on

(L[i]+1)th clock cycle. Fetching will be taken place on

(D[i]+1)th. Execution cycle depends upon type of instruction.

If current instruction is addition or subtraction then, execution

stage is completed on (F[i]+2)th clock cycle. If current

instruction is multiplication or division then execution stage is

completed on (F[i]+3)th clock cycle. If current instruction is

I1

I2

1 2 3 4 5 6 7

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.6, October 2016

13

of else category then execution stage is completed on

(F[i]+1)th clock cycle. After execution, writing of ith

instruction takes place on (E[i]+1)th clock cycle.

If instruction i, is dependent on only one of the previous

instructions, then fetching of ith instruction will be taken place

on (W[i-1]+1)th clock cycle, where W[i-1] is a dynamic array

element which contains write clock cycle of previous

instruction, upon which current instruction i is dependent as

shown in Fig. 2. In Fig. 3 two instructions are processing I1

and I2 in parallel manner. I1 is one instruction where 2

variables ‗b‘ and ‗c‘ are multiplying and result is stored in

variable ‗a‘, now I2 is another instruction which need value of

variable ‘a‘ from instruction I1 i.e. output of instruction I1

become input of I2, in another word I2 is true data dependent

on I1. Then fetching of I2 is taking place on 8th clock cycle

(here ‗i‘ is 2 so w[i-1] is w[1], w[1] is 7 so (W[i-1]+1) is 7+1

i.e. 8).

When instruction i is dependent on more than one (i-1)

instructions, then take maximum of all W[i-1] (here W[i-1]

contains all write clock cycles of previous instructions, in

which current instruction i is dependent) and denote it as (max

W[i-1]). Now fetching of ith instruction will be taken place on

(max W[i-1]+1)th clock cycle provided there is no resource

conflicts.

In both the conditions for every stage of every instruction,

resource conflicts (Load conflict, decode unit conflicts, fetch

unit conflicts, execute unit conflicts and write unit conflicts) is

checked. For example before fetching of ith instruction on

(e[i]+1)th clock cycle, it checks that at (e[i]+1)th clock cycle

fetching of another instruction is taking place on same clock

cycle or not i.e. it check fetch unit is free or not. If fetching of

another instruction is not taking place on same clock cycle

which means fetch unit is free then, fetching takes place on

(e[i]+1)th clock cycle. If fetching of another instruction is

taking place on same clock cycle then it increase the clock

cycle for fetching (i.e. (e[i]+2)th clock cycle) and again it

check same thing, this process is repeated until fetch unit is

not free.

I1:

a=b

*c

I2:

d=a

+9

L D F E E E W

 L D “ “ “ F E E W

 1 2 3 4 5 6 7 8 9 10 11

3. RESULT AND DISCUSSION
 As shown in tables (Table 1, and Table 2) as increases the

number of instructions Total cycle also increases, CPI

decreases and in high dependency case when increase the

level of dependency CPI increases. IPC increases with

number of instructions, IPC is highest for no dependency,

least for highest dependency. Reason behind this is that

number of idle cycles increase as level of dependency

increases and also shown in table and graph1 also. For no

dependency idle cycle is zero because in this situation

instructions are need not to wait.

Sample program code segments for which carrying out

simulation is given in Appendix A. It may be noted that when

program code will be changed, values in tables will be also

changed but nature of graph will not be changed.

Table 1 and Table 2 shows values of CPI, IPC, total clock

cycles, idle cycles MIPS in various situations like no

dependency, high dependency respectively, and subsequently

graph is shown in graph 1, and graph 2.

4. CONCLUSION
In this paper, effect of dependency in under pipeline is

studied. The simulation result shows that, when dependency

increases, number of clock cycles taken for executing

instructions also increases. This is well exhibited by the

simulator as well. This simulator also shows the effect of

different types of conflicts.

5. FUTURE WORK
In future, effect of dependency can be measured in other types

of pipelines like scalar pipeline, superscalar pipeline, and

superscalar super pipeline for analysing the effect of

dependency. And can also make simulator for other

scheduling policies like In-order issue with in-order

completion and out-of-order issue with out-of-order

completion because in this paper simulator for In-order issue

with out-of-order completion is only presented.

Fig 1: If necessary, the images ca

Stage 1

(Load)

Stage 4

(Execute)

Stage 2

(Decode)

Stage 3

(Fetch)

Stage 5

(Write)

Fig1. Five Stage Pipelining

Fig. 3 Data Dependency

 (I2 Dependent on I1)

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.6, October 2016

14

Table 1.No Dependency

No. of

instructions

Total clock

cycles

Idle

cycles

CPI IPC MIPS (for 100

MHz processor)

5 15 0 3.0 0.3333 33.33333

10 24 0 2.40 0.4167 41.66664

15 34 0 2.26666 0.441176 44.117649

20 43 0 2.150 0.465716 46.57163

25 50 0 2 0.48454 48.454548

Table 2.High Dependency

No. of

instructions

Total clock

cycles

Idle

cycles

CPI IPC MIPS (for 100

MHz processor)

5 17 5 3.400000 0.294118 29.411766

10 28 18 2.800000 0.35 35.71

15 36 31 2.40 0.4167 41.66667

20 47 38 2.35 0.4255 42.553192

25 53 44 2.12 0.471 47.169811

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.6, October 2016

15

6. REFERENCES
[1] Anish Gupta,Vinayak Kini, Prathik Shetty ―Five staged

pipelined processor with self clocking mechanism‖,

ISBN: 978-1-4673-7910-6 USB ISBN: 978-1-4673-

7909-0, IEEE Xplore, JAN 14 2016.

[2] M. Flynn, Computer Architecture—Pipelined and

Parallel Processor Design, Jones and Bartlett Publishers,

Boston, 1995

[3] Martti forsell‖ Implementation of Instruction Level and

Thread Level Parallelism in Computers‖ ISSN 1238-

6944, ISBN 951-708-557-5, pp 3.

[4] L John. Hennessy ,―VLSI Processor Architecture‖, IEEE

Transactions on Computers, VOL. c-33, No. 12,

December 1984

[5] Simran Rana Rajesh Mehra ―Hyper Pipelined RISC

Processor Implementation- A Review‖,International

Journal of Engineering Research & Technology (IJERT)

Vol. 2 Issue 10, October - 2013 IJERTIJERT ISSN:

2278-0181

[6] Jouppi N. P. and Wall D. W., ―Available Instruction-

Level Parallelism for Superscalar and Superpipelined

Machines‖ Digital Western Research Laboratory, Tech.

Rep. 89/7, Jul. 1989

[7] Hwang K.,―Advanced Computer Architecture‖ Tata Mc

Graw Hill 2001, pp 160, 54,

[8] Stallings W. ,‖Computer Organization and Architecture ‖

Pearson Education 2010, ISBN 978-81-7758-993-1, pp

504-510

[9] Johnson W.M., ―Super-Scalar Processor Design‖

Technical Report No.CSL-TR-89-383, June 1989, pp 8-

9.

[10] Andreas Moshovos, Scott E. Breach, T. N. Vijaykumar,

Gurindar S. Sohi ―Dynamic Speculation and

Synchronization of Data Dependences‖, Proceedings of

the 24th Annual International Symposium on Computer

Architecture.

[11] Henry Styles, David Barrie Thomas and Wayne Luk

,―Pipelining Designs with Loop-Carried Dependencies‖,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.134.8880&rep=rep1&type=pdf

[12] Saravanan V., Kothari D. P. and Woungang I.,‖ An

optimizing pipeline stall reduction algorithm for power

and performance on multi-core CPUs‖ Human-centric

Computing and Information Sciences , SpringerOpen

7. APPENDIX A
Program code for No dependency case:

1. Print ―hello‖

2. Print ―this is second instruction‖

3. a = 8679-456

4. b = 8+2

5. c=d*5

6. a1=98+09

7. e=55*5

8. y=p+2

9. h=i*5

10. j=33.7-3

11. z=9+57

12. l=69-5

13. m=78*4

14. b1=78+b7

15. h=15-10

16. n=56-9

17. y=78+8

18. o=P+q

19. r=Q+3

20. Print ―This is 20 cc‖

21. t=10-4

22. u=100*765

23. g1=h1+9

24. X=88*82

25. S=98*90

Program code for High dependency case :

1. a=b*c

2. d=5+87

3. e=10

4. f=d*e

5. Print ―f‖

6. g=h-i

7. j=g*e

8. k=j

9. m=k+1

10. l=d

11. n=12

12. o=k+m

13. p=k-m

14. Print ―p‖

15. Q=15

16. r= s/t

17. Print ―r‖

18. U=a-d

19. V= Q*100

20. W=V+59

21. X=V*34

22. Y=500

23. Print ―Y‖

24. Z=X

25. Print

IJCATM : www.ijcaonline.org

