
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.7, October 2016

29

Performance Analysis of List Scheduling on

Homogeneous Multiprocessors System

Sunita Kushwaha
Research Scholar
Dept. of C.S. & IT

Pt. Ravishankar Shukla university,
 Raipur, India

Sanjay Kumar
Associate Professor
Dept. of C.S. & IT

Pt. Ravishankar Shukla university,
 Raipur, India

ABSTRACT

Nowadays multiprocessor system has received a lot of

attention because of its efficiency and reliability, which play

an important role in success of multiprocessor systems.

Hence, there is a necessity for developing efficient

scheduling algorithms. Therefore, various researches have

been done in different areas of scheduling of multiprocessor

system. This paper evaluates the performance of

homogeneous multiprocessor system on the basis of

Throughput.

General Terms

List heuristic scheduling

Keywords

Throughput, List Scheduling, Static Scheduling

1. INTRODUCTION
Scheduling is simply allocating a set of tasks or jobs to

resources such that the optimum performance is obtained

[1]. It is often difficult to schedule a program set to separate

CPUs or processors in order to maximize system utility.

Scheduling is a method by which processes or threads

access the resources of the system that they will require in

any particular manner to get optimal solution. When more

than one processor work together scheduling becomes a

challenging task.

1.1. Classification of Scheduling
Scheduling in multiple processor environment may be

broadly classified in two categories. First is local scheduling

in which all processors maintain their own individual queue.

Second is global scheduling in which a central queue is

maintained for all processors [2].

Fig1. Board classification of scheduling methods

Generally, global scheduling policy uses space sharing

mechanism where a single job is assigned among several

processors. On the other hand local scheduling uses time

sharing mechanism where several tasks assigned to a single

processor. Further, both global and local scheduling policies

are again classified as static and dynamic scheduling. In

static scheduling the assignment of tasks to processors is

done before program execution begins, while in dynamic

scheduling, the redistribution of tasks to processors is done

during execution time [3-4]. Static scheduling is also known

as deterministic task scheduling and compile time

scheduling algorithm. In static scheduling, the following

information of tasks is known in advance: communication

time between tasks, computation time of tasks, and the

precedence constraints of tasks. Dynamic task scheduling is

also known as nondeterministic scheduling and run time

scheduling algorithms. In dynamic scheduling algorithm, all

the information of tasks are known at run time and not in

advance.

1.2 Component of scheduling problem

A Scheduling problem consists of three main components.

1) Processes

2) Processors

3) Policy (Scheduling Approach)

This relationship [4] between the scheduler, policies,

processors and processes is shown in Figure 2.

Fig 2. Component of scheduling system

In this paper, processes are independent to each other. Both

uniprocessor and multiprocessor systems are considered.

Static scheduling algorithms are further classified as

heuristic algorithms that give near –optimal solution .It has

satisfactory performance and has polynomial time

complexity. Heuristic algorithm is classified in three

categories namely List task scheduling algorithms,

Clustering algorithms and Task duplication algorithms.

Scheduling

Local (Time
Sharing)

Static

Dynamic

Global (Space
Sharing)

Static

Dynamic

Processes
Scheduler

Policy
Processors

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.7, October 2016

30

There are so many heuristic scheduling approaches existing

but for getting optimal schedule with less complexity, list

heuristic scheduling is used which is the simplest and

efficient approach. This paper evaluate some static list

scheduling algorithms namely Longest Processing Time

(LPT) first, Shortest Processing Time (SPT) first, Earliest

Completion Time (ECT) first and Earliest Starting Time

(EST) first [5].

2. PROBLEM DESCRIPTION
Static process scheduling for a homogeneous multiprocessor

system is defined as the problem of allocating the processes

to the processors that have same processing capabilities, and

specifying the start execution time of each task. Efficient

task schedule is the one that minimizes the total completion

time, or the schedule length of the application. Static task

scheduling takes place during the compilation time hence,

the characteristics of a processes, such as execution times,

processing time etc. of processes, are known in advance [1,

6, 7]. In multiprocessor system scheduling became more

challenging than uniprocessor system due to presence of

more processing unit. Mapping of processes on processor is

difficult.

3. LITERATURE SURVEY
A Hybrid Flow Shop (HFS) [8-9] consists of series of

production stages, each of which has several machines

operating in parallel. Some stages may have only one

machine, but at least one stage must have multiple

machines. Eric Angel, Evripidis Bampis and Fanny Pascual

studied LPT (Longest processing time), SPT (shortest

processing time) and DSPT (delay SPT) algorithms for the

problem of scheduling tasks on parallel identical machines

in order to minimize the makespan [10]. Hamid, described

the CPOP (Critical Path On a Processor), HEFT

(Heterogeneous Earliest Finish Time), HCPT

(Heterogeneous Critical Parent Trees), HPS (High

Performance task Scheduling), PETS (Performance

Effective Task Scheduling) and lookahead list-based

scheduling heuristic algorithms, for scheduling tasks on

heterogeneous processors and proposed a new scheduling

algorithm PEFT (Predict Earliest Finish Time) [11]. HLFET

(Highest Level First with Estimate Times), ISH (Insertion

Scheduling Heuristic), MCP (Modified Critical Path), ETF

(Earliest Time First), DLS (Dynamic Level Scheduling) and

CNPT (Critical Node Parent Tree) list scheduling for

homogeneous environments studied by Nidhi and Anurag

[12]. S. Guirchoun, P. Martineau and J.C. Billaut studied a

computer system with a server and two parallel processors

using SPT/FAM (shortest processing time first/First

available machine) scheduling algorithm [13].

4. EXPERIMENTAL SETUP AND

PERFORMANCE METRICS

4.1 Experimental setup
No of processors- 1, 2, 3, 4, 5

No of processes- 2, 3, 4, 5, 6

Scheduling algorithms- LPT, SPT, EST, ECT

Range of time instant for arrival of each process- [1- 5]

Range of processing time for each process- [1-10]

4.2 Performance Metrics
Performance metrics are used to evaluate the performance

of scheduling algorithm. There are various performance

metrics exists such as speedup, efficiency, makespan,

throughput etc. However this paper deal only one metric-

Throughput.

Throughput: Throughput is the number of processes per

time unit that the system completes. This rate reflects the

computing power of system [5].

5. RESULT AND DISCUSSION:
This paper evaluates the performance of some static list

scheduling algorithms for „zero‟ arrival time that means all

the processes arrived before a time instant.

Fig 3. Throughput for 2 processes

Fig 4. Throughput for 3 processes

1 2 3 4 5

LPT 0.143 0.25 0.25 0.25 0.25

SPT 0.143 0.25 0.25 0.25 0.25

ECT 0.143 0.25 0.25 0.25 0.25

EST 0.143 0.25 0.25 0.25 0.25

0
0.05

0.1
0.15

0.2
0.25

0.3

THROUGHPUT

1 2 3 4 5

LPT 0.12 0.2 0.3 0.3 0.3

SPT 0.12 0.188 0.3 0.3 0.3

ECT 0.12 0.188 0.3 0.3 0.3

EST 0.12 0.2 0.3 0.3 0.3

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

THROUGHPUT

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.7, October 2016

31

Fig 5. Throughput for 4 processes

Fig 6. Throughput for 5 processesn

Fig 7. Throughput for 6 processes

 The throughput of multiprocessor system

increases only when number of processes quite

greater than number processes.

 When number of processes is less than the number

of processors throughput remain same for all

scheduling algorithms.

6. CONCLUSION
This paper evaluates the performance of some static list

scheduling algorithms namely LPT, SPT, ECT and EST for

„zero‟ arrival time. In this experiment number of processes

increases, keeping the number of processors fixed and

observes that the throughput of LPT is better than other list

scheduling algorithms on the other hand sometime

throughput of EST is also better than SPT and ECT.

7. REFERENCES
[1] Albert Y. Zomaya, Chris Ward, (1999). ”Genetic

scheduling for parallel processor systems: comparative

studies and performance issues”, IEEE Transaction on

Parallel and Distributed System, vol. 10,pp 795-812.

[2] T. Hagias and J. Janacek, (2003). “Static vs. Dynamic

List-Scheduling Performance Comparison”,

ActaPolytechnica, Vol.3 No. 6/2003, pp 16-21.

[3] Chapin, Steven J. and Weismann Jon B, (2002).

“Distributed and Multiprocessor Scheduling”,

Electrical Engineering and Computer Science, Head

book, Paper 40.

[4] Thomas casavant, Jong.kuhl, (1988). “A Taxonomy of

Scheduling in General-Purpose Distributed Computing

Systems”,IEEE Trans. onSoftware Engineering, vol.

14, no. 2,pp 141-154.

[5] Sunita Kushwaha, Sanjay Kumar, (2014). “Analysis of

List Scheduling Algorithms for Parallel System”, IEEE

International conference on High Performance

Computing and Applications (ICHPCA), 22-24 dec.,

Bhubaneswar, India.

[6] H. Topcuoglu, S. Hariri, and M.Y. Wu, (2002).

“Performance-Effective and Low- Complexity Task

Scheduling for Heterogeneous Computing”, IEEE

Trans. Parallel and Distributed Systems, Vol. 13, No.

3, pp. 260-274.

[7] Y.K. Kwok and I. Ahmad, (1999). “Static Scheduling

Algorithms for Allocating Directed Task Graphs to

Multiprocessors”, ACM Computing Surveys, Vol. 31,

No. 4, pp. 406-471.

[8] Richard Linn and Wei Zhang (1999), “HYBRID

FLOW SHOP SCHEDULING: A SURVEY‟,

Computers & Industrial Engineering 37, pp 57-61.

[9] S. Guirchoun, P. Martineau, J.-C. Billaut (2005),

“Total completion time minimization in a computer

system with a server and two parallel processors”,

Computers & Operations Research 32, Elsevier, pp

599–611.

[10] Eric Angel, Evripidis Bampis, Fanny Pascual (2009),

“Truthful algorithms for scheduling selfish tasks on

parallel machines”, Theoretical Computer Science,

Elsevier (press article), pp 1-12.

1 2 3 4 5

LPT 0.118 0.235 0.25 0.444 0.444

SPT 0.118 0.235 0.235 0.444 0.444

ECT 0.118 0.235 0.235 0.444 0.444

EST 0.118 0.222 0.235 0.444 0.444

0
0.1
0.2
0.3
0.4
0.5

THROUGHPUT

1 2 3 4 5

LPT 0.128 0.227 0.333 0.417 0.5

SPT 0.128 0.172 0.313 0.313 0.5

ECT 0.128 0.172 0.313 0.313 0.5

EST 0.128 0.208 0.277 0.313 0.5

0
0.1
0.2
0.3
0.4
0.5
0.6

THROUGHPUT

1 2 3 4 5

LPT 0.134 0.261 0.375 0.429 0.5

SPT 0.134 0.25 0.375 0.375 0.375

ECT 0.134 0.25 0.375 0.375 0.375

EST 0.134 0.25 0.333 0.375 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

THROUGHPUT

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.7, October 2016

32

[11] Hamid Aranejad and Jorqe G. Barbosa (2014), “List

Scheduling Algorithm for Heterogeneous Systems by

an Optimistic Cost Table”, IEEE tran. On Parallel and

Distributed systems, Issue No.03, vol.25, pp: 682-694.

[12] Nidhi Rajak and Anurag Dixit and Ranjit Rajak

(2014)” Classification of List Task Scheduling

Algorithms: A Short Review Paper”, Journal of

Industrial and Intelligent Information Vol. 2, No. 4,

December, pp320-323.

[13] Total completion time minimization in a computer

system with a server and two parallel processors S.

Guirchoun, P. Martineau, J.-C. Billaut, elsevier

Computers & Operations Research 32 (2005) 599–611

.

IJCATM : www.ijcaonline.org

https://www.computer.org/csdl/trans/td/2014/03/ttd2014030682-abs.html
https://www.computer.org/csdl/trans/td/2014/03/ttd2014030682-abs.html
https://www.computer.org/csdl/trans/td/2014/03/ttd2014030682-abs.html
https://www.computer.org/csdl/trans/td/2014/03/ttd2014030682-abs.html
https://www.computer.org/csdl/trans/td/2014/03/ttd2014030682-abs.html

