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ABSTRACT 

From the last decade, even though there have been sudden 

advances in present technology in all areas, there exist some 

real-world NP composite problems that still escape scientists. 

The Travel salesman Problem is no exception. As it is an NP-

Hard problem, lots of divergent solutions have been created to 

determine in shortest possible time, the optimal solution. 

Traditional algorithms are one of the oldest suggested 

solutions which present successful solutions that are to a 

larger extent optimal except in few occasions which may be 

close to the optimal. In this paper, a variant of the classical 

TSP, Random TSP (RTSP) is computed using various 

traditional algorithms. Their performances are evaluated with 

emphasis on length of tour and the algorithm effectiveness. 

Also, this paper presents the comparison among the 

algorithms based on a variety of parameters that facilitated to 

decide the superior algorithm with regards to their needs. 

General Terms 

Travelling Salesman Problem, Dynamic Programming, 

Branch and Bound and Nearest Neighbor algorithm 

Keywords 

Traditional Algorithms, Travelling Salesman Problem, 

Optimization Problem   

1. INTRODUCTION 
Travelling Salesman Problem (TSP) is classical and most 

widely studied problem in Combinatorial Optimization [1]. It 

has been studied intensively in both Operations Research and 

Computer Science since 1950s as a result of which a very 

large amount of methods were studied to solve this problem. 

The study of TSP presents a perfect platform for study of 

general methods that can be applicable to a broad range of 

Discrete Optimization Problems so the need to study but not 

really motivated by direct applications . Certainly, several 

direct applications of TSP breathe life to research area and 

help out to direct future work. The idea of the problem is to 

find shortest route of salesman starting from a given city, 

visiting n cities only once and finally arriving at origin city. 

The problem can be sketched on graph with each city 

becoming a node. Assuming a complete weighted graph, edge 

lengths correspond to the distance between the attached cities. 

The TSP occurs in countless forms with some applications of 

engineering that include Vehicle routing [2] scheduling 

problems [3], integrated circuit designs [4], physical mapping 

problems [5], and constructing phylo-genetic trees [6]. 

There are a lot more algorithms known to have been 

developed to solve TSPs where many algorithms were applied 

with more or less success. On the order of merits there are 

diverse ways to classify algorithms. The implementation 

principle is one of the ways to categorize algorithms and is by 

[7]. 

Explicit enumeration: It leads to investigating all feasible 

solutions of problems, for that reason is appropriate only for 

small problem size (Brute Force, Greedy approach, Divide 

and conquer etc). It is frequently used in situations where no 

analytical solution algorithms exist and the solution space is 

finite. 

Deterministic methods: These algorithms base only on exact 

methods of “classical” mathematics. It is simply an algorithm 

that has a predefined output. With a given specific input, it 

will at all times return the same output. Added information, 

such as gradient, convexity etc. is as a rule needed. Examples 

may include Branch and Bound Algorithm, Cutting Plane 

Method, Dynamic Programming etc. Deterministic algorithms 

are by far the most studied and familiar kind of algorithm and 

as well the most practical, due to their efficient running on 

real machines. 

 Stochastic methods: Stochastic approach is one in which 

values are attained from a matching chain of jointly scattered 

random variables. These algorithms work on probabilistic 

methods to answer problems. The algorithm work gradually 

and are generally applicable only for guessing (Evolutionary 

Computation, Random search Walk, Monte Carlo etc.). 

Combined methods: These methods generally consist of 

stochastic and deterministic composition. Several meta-

heuristics algorithm has been formulated (Ant Colony 

Optimization, Memetic Algorithms, Genetic algorithms, 

Tabu-search, Simulated Annealing, Firefly Algorithm etc.). 

Meta-heuristics is made up of general search processes whose 

principles permit them to escape local optimality by means of 

heuristics design. 

In this research paper, among other criteria the authors 

classify the explicit enumeration and deterministic methods as 

traditional methods due to their year of discovery and 

implementation and a less emphasized fact that both methods 

have the ability to require any auxiliary information and reject 

probabilities in their operators. Additionally they work with 

single points as opposed to working with population of points 

and on variables not string coding of variables. 

This paper take a look at two explicit enumeration algorithms 

and three deterministic algorithms based on their qualities of 

their solutions and mechanisms by which edges that emerge in 

a known optimal tour are conserved and summed to produce 

the minimized and optimized tour length. The rest of the 

paper is structured as follows: Section 2 details explanation of 

the Travelling Salesman Problem; Section 3 in brief examines 

all five algorithms used in this work. Experimental results are 

revealed in Section 4 and finally in Section 5 the conclusion 

of the work. 

2. TRAVELLING SALESMAN 

PROBLEM 
The origin of the Travelling Salesman Problem and its name 

is to some extent difficult to understand. .The travelling 
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salesman problem, also recognized as the TSP, is one of the 

problems in computer science which is largely prominent. 

Although it is simple to explain, yet it is very complicated to 

compute. It emerges to have been talked about informally 

among mathematicians for quite a lot of years. The TSP is a 

known combinatorial optimization problem. Even though 

many argue to solve this problem to the optimal within 

efficient time, there is no known algorithm which can solve it 

completely in a reasonable amount of time. Although many 

argue it is difficult to solve, we settle on using traditional 

methods to solve this problem and to conduct study into 

finding among the traditional approaches the most efficient 

offering optimal results.  

TSP first appearance in mathematical theory is the paper by 

Leonard Euler in 1757. Euler's paper concerns a resolution of 

the knight’s tour problem in chess, that is, the problem of 

locating a series of knight’s movement that will take the piece 

from a starting square on a chessboard, through every other 

square precisely once and returning to the start. This is 

classified as the Classical Travel Salesman Problem (CTSP). 

With the CTSP, as the quantity of cities raises, the complexity 

of the problem also raises exponentially because the number 

of promising solutions increase very much. 

The test of the CTSP is that the travelling salesman wants to 

reduce the total length of the trip.  

The travelling salesman problem can be illustrated [16] as 

follows:  

TSP = {(G, f, t): G = (V, E) a complete graph,  

f is a function V×V → Z, 

t ∈  Z,  

G is a graph that contains a travelling salesman tour with cost 

that does not exceed t}. 

 

 A look at the subsequent set of cities in fig 1.1: 

 

 
Figure 1.1: A graph with weights on its edges. 

The goal of the problem lies in identifying a minimum length 

passing from all n nodes of G vertices exactly once. For 

instance the path Path1 {A, B, C, D, E, A} and the path Path2 

{A, B, C, E, D, A} go by all the vertices however Path1 has a 

sum length of 28 and Path2 has a sum length of 35. P = {A, B, 

C, D, E} forms a Hamiltonian cycle in view of the fact that 

each vertices is traversed once.  As a result, an optimal 

solution to TSP is permutation π with node indices {1,.......,n} 

such that length f(π) is minimal, where f(π)is given by [8], 

F (π) = dπ i π i+1 + dπ n π 1 
n−1
i=1  

This paper offers solutions to a variation of TSP referred to as 

Random Travelling Salesman Problem (RTSP) using classical 

explicit enumeration and deterministic algorithms. Algorithm 

performances are evaluated on the basis of length of tour and 

the effectiveness of the algorithm. Four datasets are arbitrarily 

created having the number of cities and coordinates as the 

distances for cities and represented in the form of adjacency 

matrix. The generated coordinates have a limited range from 0 

to 100. Mostly, a starting node continues with it if is specified, 

if not starting node is selected arbitrarily. 

3. TRADITIONAL ALGORITHMS 
Two classical explicit enumeration (Brute force, and Greedy 

method), and three deterministic methods (Dynamic 

Programming, Branch and Bound and Nearest Neighbor 

algorithm) have been used for solving the TSP alongside their 

implementation comparison in this work. These are in brief 

illustrated along with their algorithms in the succeeding 

section. 

3.1 Brute Force 
Brute force is an exhaustive search of all the probable results 

for a problem. It is a programming approach that does not 

embrace any shortcuts to advance performance, but instead 

relies on complete computing power to attempt all 

possibilities until a reliable  solution to a problem is 

established of which a classic example is the traveling 

salesman problem (TSP). It is a lot easy to execute and will 

almost definitely find a solution (If there is one). In terms of 

Algorithmic complexity, it is time consuming. Even though 

brute force algorithm is not for the most part elegant, it does 

have a justifiable place in software engineering. Since brute 

force methods at all times return the correct result -- although 

slowly -- they are practical for testing the correctness of faster 

algorithms. Additionally, occasionally a particular problem 

can be solved so quickly with this algorithm that it will be out 

of place to waste time devising a more promising solution. 

Algorithm according to [9] 

1. Create a record of all promising Hamilton circuits 

2. Compute the weight or distance of every Hamilton 

circuit by totalling the weights or distance of its 

edges. 

3. Choose the Hamilton circuit with the smallest total 

weight. 

 

Figure 1.2: A TSP instance 

From fig 1.2, which sequence should be travelled to ensure 

that minimum distance is covered? 

http://www.webopedia.com/TERM/P/program.html
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Table 1: Distance between each pair of cities (Km) 

 DISTANCE COVERAGE 

CITIES M O N D A Y 

M 0 93 70 39 44 68 

O 93 0 34 54 51 54 

N 70 34 0 31 40 22 

D 39 54 31 0 21 38 

A 44 51 40 21 0 56 

Y 68 54 22 38 56 0 

Solving some possible outcome of distances to be covered 

between cities 

Distance (MDNYOAM) = 39 + 31 + 22 + 54 + 51 + 44 = 241 

Distance (MNAYDOM) = 70 + 40 + 56 + 38 + 54 + 93 = 351 

Distance (MONDAYM) = 93 + 34 + 31 + 21 + 56 + 68 = 303 

From the example given the number of Vertices (Cities) is N 

= 6.  It pans out that there are precisely 5! = 5 * 4 * 3 * 2 * 1 

= 120 dissimilar permutations of the numbers to n-1from 0.As 

the attention relies on permutations that begin with 0, to 

compute an n-city TSP instance with brute force necessitates 

that we resolve at exactly (n – 1)! = 1. 2. 3….. (n – 2), (n – 1) 

different permutations. The brute force algorithm can be used 

on small city problems as it is O(n!). 

3.2 Greedy Method 
Local optimization happens to be the key motive behind a 

greedy algorithm. This implies that the algorithm selects at 

one time what appears to be the important thing to do, instead 

of considering the global situation. In other situations, whilst 

the optimal solution is too costly, a greedy algorithm could be 

able to come up with an OK solution. Greedy algorithm 

basically attempts to do what appears like the short-term best 

thing, and hopes that this pans out in the long run. For the 

most times, greedy algorithms are easy to invent, simple, easy 

to implement and straightforward approach. It more often than 

not does not operate comprehensively on all the data but may 

offer locally optimal solutions that estimate a global optimal 

solution in a logical time. 

Finding an optimal way to a solution, the greedy method 

constructs two set where one set keeps accepted items and the 

other containing rejected items. The greedy algorithm comes 

up with some five (5) components [10]. 

1. A function that verifies that a selected set of items 

present a solution. 

2. A function that looks out for the feasibility of a set. 

3. A selection function that identifies the most 

promising amongst candidates 

4. An objective function, which does not emerge 

explicitly, provides the value of a solution. 

5. A solution function, which will indicate when a 

complete solution is discovered 

Algorithm as stated by [11]  

- Before stating the lemma, we need some notation 

and preliminary concepts. Let 

V(G) and E(G) be the vertex and edge sets of G, 

Assume G = (V, E) is the graph given, with | V| = n 

{ 

Begin graph with T = (V,∅) making up of vertices of 

G only and no edges;  

Set up E in increasing order of costs; 

        for (i = 1, i ≤ n - 1, i + +) 

        {  

Pick the next least cost edge; 

         if (the edge joins two dissimilar connected 

components) 

         add the edge to T; 

        } 

Return T 

    }  

From the example 1.0  

- Find the shortest path among the cities (n) 

 

 C ← {}     // set that will keeps the cities 

         Sol ← {};                         // set that will hold 

the solution set. 

         Sum ← 0 addition of item in solution set 

 Sort the edges in the increasing order of weights. 

 Starting with the least cost edge  

 WHILE sum  != n 

 Scale through the edges one by one  

 Select an edge only    // 

Check for the constraint 

o IF the edge, together with already picked 

edges, does not make a vertex to possess 

degree three or more AND  

o does not form a cycle, unless the number 

of chosen edges is the same the number of 

vertices in the graph. 

 ELSE                RETURN    "No Solution" 

 x = shortest distance in set C such that sum + x ≤ n 

 IF item does not exist THEN 
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 RETURN    "No Solution" 

 Sol ← S {value of x} 

 sum ← sum + x 

 RETURN Sol 

 END 

From Fig 1.2, without loss of generality, the greedy 

method will return the results as follows: 

Distance (MDAONYM) = 39+21+51+34+22+68 = 235 

Distance (MDNAOYM) = 39+31+40+51+54+68 = 283 

Distance (MDANOYM) = 39+21+40+34+54+68 = 256 

The results form a Hamilton circuit. Therefore the greedy 

method will pick from among these possible candidates the 

optimal/ most promising solution set. i.e. the set that returns 

the least cost. 

3.3 Branch and Bound 
There were at least three groups that independently discovered 

the Branch and bound technique. It was first applied by [12] 

to solve asymmetric TSP. This exceptionally noteworthy 

paper also introduced quite a lot of other innovations. Land 

and Doig [13] provided a self explanatory general description 

to solving integer programming problems by linear 

programming. Little [14] finally described and named this 

approach as Branch and Bound in an application to the TSP. 

Branch and bound is a method that uses a state space search 

where expansion of any of the children may take place when 

all the sub-problems of a node are created. Although similar 

to backtracking method it employs a breadth first search 

algorithm-like search. 

The technique adopted by this method is to divide a problem 

into a number solvable sub-problem. It solves a series of sub-

problems of which each may have numerous possible 

solutions and where the chosen sub-problem for one solution 

may influence the possible solutions of later sub-problems.  

A branch-and-bound algorithm comprises  of a complete 

computation of all node solutions, where large subsets of 

ineffective nodes are discarded, by means of upper and lower 

approximated bounds of the optimize quantity. To keep away 

from the complete computation of all partial graphs, a 

practical solution is first found and its value noted as an upper 

bound for the optimum. Computations are done as the 

distance exceeds the upper bound. The value of a new found 

cheaper solution is used as the new upper bound when found.      

Principle 

Assuming an objective function is required to be minimized 

and assuming that there is a method for obtaining a lower 

bound on the cost of whichever solution amongst those in the 

set of solutions corresponding to some subset. If the subset 

with the best solution found so far costs less than the lower 

bound, then exploring that subset further is aborted. 

Let S represent some subset of solutions. 

L(S) = a lower bound on the cost of whichever solution 

belonging to S 

Let C = best solution cost found so far 

If C ≤ L(S), abort exploring S since it does not have any 

better solution. 

If C > L(S), explore S further since it may have a better 

solution 

Algorithm 

/* survive_node_set: set to keep the surviving nodes at all 

time */  

/* low-cost: variable to keep the minimum cost of the cost at 

any set node */ 

Start 

Low-cost = ∞;  

While survive_node_set ≠∞ do  

- select a branching node, q, in that 

q ∈ survive_node_set; /* q is a E-node */  

- survive_node_set= survive_node_set - 

{q};  

- produce the offspring of node q and the  

equivalent lower bounds;  

𝑆𝑞= {(j,𝑍𝑗 ): j is product of q and 𝑍𝑗  

- For each element (j,𝑍𝑗 ) in 𝑆𝑞  do  

- If 𝑍𝑗 > T 

- then  

- kill product j; /* j is 

a product node */  

- Else  

If product j is a 

solution  

Then  

T =𝑍𝑗 ; current best = 

product j;  

Else  

Add product j to 

survive_node_set;  

Endif; 

Endif;  

- Endfor;  

Endwhile; 

3.4  Dynamic Programming  
Dynamic programming (DP) is a very dominant technique 

that finds solution to a specific group of problems. It is an 

optimization technique that alters a series of simpler problems 

from a complex problem. It is a method for efficiently 

calculating recurrences by holding partial results and re-

process them when the need be. The multistage character of 

the optimization method is its important characteristic. More 

so than the optimization approach as illustrated earlier, 

dynamic programming presents a broad framework for 

analyzing countless problem types. Within this framework an 

array of optimization procedures can be utilized to solve 

particular characteristics of a more universal formulation. It is 

a known fact that dynamic-programming cycle can be stated 

as shortest-path problems in a more layered networks whose 

nodes link up to the states of the dynamic program. More 

often than not creativity is essential before we can make out 

that a specific problem can be cast successfully as a dynamic 

program; and frequently subtle insights are needed to 

reorganize the formulation so as to solve it effectively. It 

requires very smart formulation of the problem and simple 

thinking. 

There are two ways of arriving at an optimal solution of a 

given problem.  This may be by Top down or Bottom up 

approach. The top down approach begin solving the given 

problem by breaking it down. If it identifies that the problem 

has been solved already, it just return the saved answer else it 

solve it and save the answer. This property is known 

as Memoization[15]. The Bottom up approach examines the 
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problem and notes the order the sub-problems are solved and 

begin solving from the smallest sub-problem, up to the given 

problem. In this procedure, it is ensured that the sub-problems 

are solved prior to solving the problem  

Algorithm of the Dynamic programming as stated by [16] 

//S=set of all cities, ℵ=number of cities, C = city/node 

1. Select a random vertices/ node (city) as a first initial node 

Q  

2. P=Power set of all node excluding Q or 2𝑆−𝑄 

3. for k=2 to ℵ do //create all permutation of node/cities  

 

g(k,∅)=Ck1   //initialization  

4. for all i ϵ S - {1} do  

for all element E in P do  

if i not in E then  

g(i, E)= 𝑚𝑖𝑛𝑗∈𝐸(𝐶𝑖𝑗 +g(𝑗1,E-{j})) 

 //add to g shortest distance  

5. g(1,S-{1})=𝑚𝑖𝑛𝑗∈𝑆−{1}(𝐶𝑖𝑗 +g(j,S-{1}-j))  

 //shortest distance calculated 

3.5 Nearest Neighbor Algorithm 
The nearest neighbor algorithm happens to be among the 

earliest known algorithms used to settle on a solution to the 

travelling salesman problem.  

J.G. Skellam pioneered the algorithm which was then 

continued by F.C. Evans and P.J Clark. The algorithm is such 

that, it arbitrarily selects a city as the starting city and then 

navigates to all neighboring cities closest to the staring city 

that does not form any cycle. This process is maintained until 

all cities are reached once. 

In a related work, Taiwo et al [17] offered a reliable 

implementation approach, Nearest Insertion and Nearest 

Neighbor to finding solution to the TSP.  In their work, a 

comparison was made to ascertain the algorithm that gives the 

superior result and to find out the flaws in the other algorithm 

with which it fails to produce the required result. 

Additionally, they compared the execution time and 

concluded that the nearest insertion algorithm has somewhat 

less time than that of nearest neighbor algorithm. From their 

observation the solution can be established in very limited 

computational time. This assertion to a larger extent 

facilitated to arrive at the conclusion that to obtain satisfactory 

results which may not be optimal but are close to the optimal 

result these approaches can be adopted.  

Algorithm 

1. Pick any node to begin with 

2. identify neighbouring nodes of the starting node 

which is not yet visited with the shortest distance.(if 

a tie is found, randomly break it) 

3. At each stage, repeat this procedure to visit exactly 

once all nodes in the tour 

4. Return to the starting nodes if all nodes are visited 

else continue with step 2 

5. Compute the total minimum distance of the tour. 

 

This algorithm presents a chain of all the visited vertices but 

often time misses out some of the shorter routes.  

4. EXPERIMENTAL RESULTS 
All five labeled traditional algorithms are implemented with 

some adjustment in a small number of parameters in order to 

adjust it to work out the travelling Salesman problem. The 

experimental settings is executed in Java program and carried 

out on a HP ProBook 4540s Computer with the processor of 

Intel(R) Core(TM) i3-3110M CPU at 2.40 GHz and 4096 GB 

memory.  Randomly generated TSP dataset of four instances 

are used to solve the travel salesman problem and to compare 

the effectiveness and performance of all five algorithms. 

Table 2 illustrates the performance comparison of all five 

traditional algorithms for the Random TSP whiles Table 3 

compares their effectiveness. 

Table 2: Performance Comparison 

Algorithm 
No of  

Cities 

Best 

Distance 

results 

Execution 

time 

Brute Force 

4 120 0.1245 

6 228 0.4564 

10 1635 3.6546 

12 2022 12.5648 

Greedy 

Algorithm 

4 120 0.1123 

6 254 0.2454 

10 1639 0.4745 

12 2045 0.6473 

 

Branch and 

Bound 

4 120 0.1143 

6 228 0.3471 

10 1635 0.6457 

12 2027 0.9874 

Dynamic 

Algorithm 

 

 

4 120 0.1134 

6 228 0.3418 

10 1635 0.6300 

12 2025 0.9684 

 

Nearest 

Neighbour 

Algorithm 

4 120 0.1120 

6 269 0.2281 

10 1639 0.4671 

12 2047 0.5754 
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Table 3: Effectiveness comparison 

Algorithm Feasible solution Optimal result Ease of implementation Simplicity 

Brute Force  √ √ √ 

Greedy Algorithm √  √ √ 

Branch and Bound √  √  

Dynamic Algorithm  √ √ √ 

Nearest Neighbour √  √ √ 

 
From table 2, the Brute-Force Algorithm returns the best 

solution, but takes an unreasonably long time to compute than 

the other algorithms. The Greedy and Nearest Neighbor 

algorithms offer close to optimal results in reasonable limited 

time. The Branch and Bound and Dynamic programming 

produce very good results but may not always provide the best 

results.  The Nearest Neighbor algorithm returns the best 

execution time. 

From Table 3, Brute force and Dynamic programming 

algorithm indicate that it is optimal but inefficient. The 

Greedy algorithm, Branch and Bound and Nearest Neighbor 

indicated their efficiency or offering feasible solution but may 

fail to provide optimal solution. 

On the whole from the tables 2 & 3, the dynamic 

programming algorithm is the best choice of solution to the 

travel salesman problem with the given set of conditions 

5. CONCLUSION 
 Finding a sub-optimal solution to the TSP can be obtained 

using any of the five traditional algorithms; Brute force, 

Greedy algorithm, Branch and Bound, Dynamic programming 

and Nearest Neighbor. Making reference to the Greedy, Brute 

Force and Nearest neighbor, in the algorithm, each node 

match to their initial node taking into consideration the next 

closet node.  This goes to emphasize the fact that nodes are 

not free of one another. 

The paper offers a comparison among the traditional 

algorithm to solving the travelling salesman problem. The 

comparison criteria are rooted on the distance travelled by the 

algorithms, their execution time and their effectiveness.  

In all four instances, the Brute force approach returned the 

best results but possess unreasonably high execution time 

whiles the execution time of Nearest Neighbor algorithm 

possess the least but returned un-optimal solution in all the 

four instances. The Dynamic programming algorithm on the 

other hand, returned optimal solution within a reasonable 

execution time, easy to implement and very simple.  The 

major object of a TSP is to identify the lowest total distance 

travelled, so in view of the objective of TSP, it is concluded 

that the Dynamic programming algorithm is considered the 

best algorithm with regards to the criteria under consideration. 

In future, further studies can be conducted on comparing the 

performance and cost of various meta-heuristic algorithms to 

solving the TSP. 
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