
International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

13

Solving the TSP using Traditional Computing Approach

Evans Baidoo
Kwame Nkrumah University of

Science and Technology
Department of Computer Science

Stephen O. Oppong
Kwame Nkrumah University of

 Science and Technology
Department of Computer Science

ABSTRACT

From the last decade, even though there have been sudden

advances in present technology in all areas, there exist some

real-world NP composite problems that still escape scientists.

The Travel salesman Problem is no exception. As it is an NP-

Hard problem, lots of divergent solutions have been created to

determine in shortest possible time, the optimal solution.

Traditional algorithms are one of the oldest suggested

solutions which present successful solutions that are to a

larger extent optimal except in few occasions which may be

close to the optimal. In this paper, a variant of the classical

TSP, Random TSP (RTSP) is computed using various

traditional algorithms. Their performances are evaluated with

emphasis on length of tour and the algorithm effectiveness.

Also, this paper presents the comparison among the

algorithms based on a variety of parameters that facilitated to

decide the superior algorithm with regards to their needs.

General Terms

Travelling Salesman Problem, Dynamic Programming,

Branch and Bound and Nearest Neighbor algorithm

Keywords

Traditional Algorithms, Travelling Salesman Problem,

Optimization Problem

1. INTRODUCTION
Travelling Salesman Problem (TSP) is classical and most

widely studied problem in Combinatorial Optimization [1]. It

has been studied intensively in both Operations Research and

Computer Science since 1950s as a result of which a very

large amount of methods were studied to solve this problem.

The study of TSP presents a perfect platform for study of

general methods that can be applicable to a broad range of

Discrete Optimization Problems so the need to study but not

really motivated by direct applications . Certainly, several

direct applications of TSP breathe life to research area and

help out to direct future work. The idea of the problem is to

find shortest route of salesman starting from a given city,

visiting n cities only once and finally arriving at origin city.

The problem can be sketched on graph with each city

becoming a node. Assuming a complete weighted graph, edge

lengths correspond to the distance between the attached cities.

The TSP occurs in countless forms with some applications of

engineering that include Vehicle routing [2] scheduling

problems [3], integrated circuit designs [4], physical mapping

problems [5], and constructing phylo-genetic trees [6].

There are a lot more algorithms known to have been

developed to solve TSPs where many algorithms were applied

with more or less success. On the order of merits there are

diverse ways to classify algorithms. The implementation

principle is one of the ways to categorize algorithms and is by

[7].

Explicit enumeration: It leads to investigating all feasible

solutions of problems, for that reason is appropriate only for

small problem size (Brute Force, Greedy approach, Divide

and conquer etc). It is frequently used in situations where no

analytical solution algorithms exist and the solution space is

finite.

Deterministic methods: These algorithms base only on exact

methods of “classical” mathematics. It is simply an algorithm

that has a predefined output. With a given specific input, it

will at all times return the same output. Added information,

such as gradient, convexity etc. is as a rule needed. Examples

may include Branch and Bound Algorithm, Cutting Plane

Method, Dynamic Programming etc. Deterministic algorithms

are by far the most studied and familiar kind of algorithm and

as well the most practical, due to their efficient running on

real machines.

 Stochastic methods: Stochastic approach is one in which

values are attained from a matching chain of jointly scattered

random variables. These algorithms work on probabilistic

methods to answer problems. The algorithm work gradually

and are generally applicable only for guessing (Evolutionary

Computation, Random search Walk, Monte Carlo etc.).

Combined methods: These methods generally consist of

stochastic and deterministic composition. Several meta-

heuristics algorithm has been formulated (Ant Colony

Optimization, Memetic Algorithms, Genetic algorithms,

Tabu-search, Simulated Annealing, Firefly Algorithm etc.).

Meta-heuristics is made up of general search processes whose

principles permit them to escape local optimality by means of

heuristics design.

In this research paper, among other criteria the authors

classify the explicit enumeration and deterministic methods as

traditional methods due to their year of discovery and

implementation and a less emphasized fact that both methods

have the ability to require any auxiliary information and reject

probabilities in their operators. Additionally they work with

single points as opposed to working with population of points

and on variables not string coding of variables.

This paper take a look at two explicit enumeration algorithms

and three deterministic algorithms based on their qualities of

their solutions and mechanisms by which edges that emerge in

a known optimal tour are conserved and summed to produce

the minimized and optimized tour length. The rest of the

paper is structured as follows: Section 2 details explanation of

the Travelling Salesman Problem; Section 3 in brief examines

all five algorithms used in this work. Experimental results are

revealed in Section 4 and finally in Section 5 the conclusion

of the work.

2. TRAVELLING SALESMAN

PROBLEM
The origin of the Travelling Salesman Problem and its name

is to some extent difficult to understand. .The travelling

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

14

salesman problem, also recognized as the TSP, is one of the

problems in computer science which is largely prominent.

Although it is simple to explain, yet it is very complicated to

compute. It emerges to have been talked about informally

among mathematicians for quite a lot of years. The TSP is a

known combinatorial optimization problem. Even though

many argue to solve this problem to the optimal within

efficient time, there is no known algorithm which can solve it

completely in a reasonable amount of time. Although many

argue it is difficult to solve, we settle on using traditional

methods to solve this problem and to conduct study into

finding among the traditional approaches the most efficient

offering optimal results.

TSP first appearance in mathematical theory is the paper by

Leonard Euler in 1757. Euler's paper concerns a resolution of

the knight’s tour problem in chess, that is, the problem of

locating a series of knight’s movement that will take the piece

from a starting square on a chessboard, through every other

square precisely once and returning to the start. This is

classified as the Classical Travel Salesman Problem (CTSP).

With the CTSP, as the quantity of cities raises, the complexity

of the problem also raises exponentially because the number

of promising solutions increase very much.

The test of the CTSP is that the travelling salesman wants to

reduce the total length of the trip.

The travelling salesman problem can be illustrated [16] as

follows:

TSP = {(G, f, t): G = (V, E) a complete graph,

f is a function V×V → Z,

t ∈ Z,

G is a graph that contains a travelling salesman tour with cost

that does not exceed t}.

 A look at the subsequent set of cities in fig 1.1:

Figure 1.1: A graph with weights on its edges.

The goal of the problem lies in identifying a minimum length

passing from all n nodes of G vertices exactly once. For

instance the path Path1 {A, B, C, D, E, A} and the path Path2

{A, B, C, E, D, A} go by all the vertices however Path1 has a

sum length of 28 and Path2 has a sum length of 35. P = {A, B,

C, D, E} forms a Hamiltonian cycle in view of the fact that

each vertices is traversed once. As a result, an optimal

solution to TSP is permutation π with node indices {1,.......,n}

such that length f(π) is minimal, where f(π)is given by [8],

F (π) = dπ i π i+1 + dπ n π 1
n−1
i=1

This paper offers solutions to a variation of TSP referred to as

Random Travelling Salesman Problem (RTSP) using classical

explicit enumeration and deterministic algorithms. Algorithm

performances are evaluated on the basis of length of tour and

the effectiveness of the algorithm. Four datasets are arbitrarily

created having the number of cities and coordinates as the

distances for cities and represented in the form of adjacency

matrix. The generated coordinates have a limited range from 0

to 100. Mostly, a starting node continues with it if is specified,

if not starting node is selected arbitrarily.

3. TRADITIONAL ALGORITHMS
Two classical explicit enumeration (Brute force, and Greedy

method), and three deterministic methods (Dynamic

Programming, Branch and Bound and Nearest Neighbor

algorithm) have been used for solving the TSP alongside their

implementation comparison in this work. These are in brief

illustrated along with their algorithms in the succeeding

section.

3.1 Brute Force
Brute force is an exhaustive search of all the probable results

for a problem. It is a programming approach that does not

embrace any shortcuts to advance performance, but instead

relies on complete computing power to attempt all

possibilities until a reliable solution to a problem is

established of which a classic example is the traveling

salesman problem (TSP). It is a lot easy to execute and will

almost definitely find a solution (If there is one). In terms of

Algorithmic complexity, it is time consuming. Even though

brute force algorithm is not for the most part elegant, it does

have a justifiable place in software engineering. Since brute

force methods at all times return the correct result -- although

slowly -- they are practical for testing the correctness of faster

algorithms. Additionally, occasionally a particular problem

can be solved so quickly with this algorithm that it will be out

of place to waste time devising a more promising solution.

Algorithm according to [9]

1. Create a record of all promising Hamilton circuits

2. Compute the weight or distance of every Hamilton

circuit by totalling the weights or distance of its

edges.

3. Choose the Hamilton circuit with the smallest total

weight.

Figure 1.2: A TSP instance

From fig 1.2, which sequence should be travelled to ensure

that minimum distance is covered?

http://www.webopedia.com/TERM/P/program.html

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

15

Table 1: Distance between each pair of cities (Km)

 DISTANCE COVERAGE

CITIES M O N D A Y

M 0 93 70 39 44 68

O 93 0 34 54 51 54

N 70 34 0 31 40 22

D 39 54 31 0 21 38

A 44 51 40 21 0 56

Y 68 54 22 38 56 0

Solving some possible outcome of distances to be covered

between cities

Distance (MDNYOAM) = 39 + 31 + 22 + 54 + 51 + 44 = 241

Distance (MNAYDOM) = 70 + 40 + 56 + 38 + 54 + 93 = 351

Distance (MONDAYM) = 93 + 34 + 31 + 21 + 56 + 68 = 303

From the example given the number of Vertices (Cities) is N

= 6. It pans out that there are precisely 5! = 5 * 4 * 3 * 2 * 1

= 120 dissimilar permutations of the numbers to n-1from 0.As

the attention relies on permutations that begin with 0, to

compute an n-city TSP instance with brute force necessitates

that we resolve at exactly (n – 1)! = 1. 2. 3….. (n – 2), (n – 1)

different permutations. The brute force algorithm can be used

on small city problems as it is O(n!).

3.2 Greedy Method
Local optimization happens to be the key motive behind a

greedy algorithm. This implies that the algorithm selects at

one time what appears to be the important thing to do, instead

of considering the global situation. In other situations, whilst

the optimal solution is too costly, a greedy algorithm could be

able to come up with an OK solution. Greedy algorithm

basically attempts to do what appears like the short-term best

thing, and hopes that this pans out in the long run. For the

most times, greedy algorithms are easy to invent, simple, easy

to implement and straightforward approach. It more often than

not does not operate comprehensively on all the data but may

offer locally optimal solutions that estimate a global optimal

solution in a logical time.

Finding an optimal way to a solution, the greedy method

constructs two set where one set keeps accepted items and the

other containing rejected items. The greedy algorithm comes

up with some five (5) components [10].

1. A function that verifies that a selected set of items

present a solution.

2. A function that looks out for the feasibility of a set.

3. A selection function that identifies the most

promising amongst candidates

4. An objective function, which does not emerge

explicitly, provides the value of a solution.

5. A solution function, which will indicate when a

complete solution is discovered

Algorithm as stated by [11]

- Before stating the lemma, we need some notation

and preliminary concepts. Let

V(G) and E(G) be the vertex and edge sets of G,

Assume G = (V, E) is the graph given, with | V| = n

{

Begin graph with T = (V,∅) making up of vertices of

G only and no edges;

Set up E in increasing order of costs;

 for (i = 1, i ≤ n - 1, i + +)

 {

Pick the next least cost edge;

 if (the edge joins two dissimilar connected

components)

 add the edge to T;

 }

Return T

 }

From the example 1.0

- Find the shortest path among the cities (n)

 C ← {} // set that will keeps the cities

 Sol ← {}; // set that will hold

the solution set.

 Sum ← 0 addition of item in solution set

 Sort the edges in the increasing order of weights.

 Starting with the least cost edge

 WHILE sum != n

 Scale through the edges one by one

 Select an edge only //

Check for the constraint

o IF the edge, together with already picked

edges, does not make a vertex to possess

degree three or more AND

o does not form a cycle, unless the number

of chosen edges is the same the number of

vertices in the graph.

 ELSE RETURN "No Solution"

 x = shortest distance in set C such that sum + x ≤ n

 IF item does not exist THEN

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

16

 RETURN "No Solution"

 Sol ← S {value of x}

 sum ← sum + x

 RETURN Sol

 END

From Fig 1.2, without loss of generality, the greedy

method will return the results as follows:

Distance (MDAONYM) = 39+21+51+34+22+68 = 235

Distance (MDNAOYM) = 39+31+40+51+54+68 = 283

Distance (MDANOYM) = 39+21+40+34+54+68 = 256

The results form a Hamilton circuit. Therefore the greedy

method will pick from among these possible candidates the

optimal/ most promising solution set. i.e. the set that returns

the least cost.

3.3 Branch and Bound
There were at least three groups that independently discovered

the Branch and bound technique. It was first applied by [12]

to solve asymmetric TSP. This exceptionally noteworthy

paper also introduced quite a lot of other innovations. Land

and Doig [13] provided a self explanatory general description

to solving integer programming problems by linear

programming. Little [14] finally described and named this

approach as Branch and Bound in an application to the TSP.

Branch and bound is a method that uses a state space search

where expansion of any of the children may take place when

all the sub-problems of a node are created. Although similar

to backtracking method it employs a breadth first search

algorithm-like search.

The technique adopted by this method is to divide a problem

into a number solvable sub-problem. It solves a series of sub-

problems of which each may have numerous possible

solutions and where the chosen sub-problem for one solution

may influence the possible solutions of later sub-problems.

A branch-and-bound algorithm comprises of a complete

computation of all node solutions, where large subsets of

ineffective nodes are discarded, by means of upper and lower

approximated bounds of the optimize quantity. To keep away

from the complete computation of all partial graphs, a

practical solution is first found and its value noted as an upper

bound for the optimum. Computations are done as the

distance exceeds the upper bound. The value of a new found

cheaper solution is used as the new upper bound when found.

Principle

Assuming an objective function is required to be minimized

and assuming that there is a method for obtaining a lower

bound on the cost of whichever solution amongst those in the

set of solutions corresponding to some subset. If the subset

with the best solution found so far costs less than the lower

bound, then exploring that subset further is aborted.

Let S represent some subset of solutions.

L(S) = a lower bound on the cost of whichever solution

belonging to S

Let C = best solution cost found so far

If C ≤ L(S), abort exploring S since it does not have any

better solution.

If C > L(S), explore S further since it may have a better

solution

Algorithm

/* survive_node_set: set to keep the surviving nodes at all

time */

/* low-cost: variable to keep the minimum cost of the cost at

any set node */

Start

Low-cost = ∞;

While survive_node_set ≠∞ do

- select a branching node, q, in that

q ∈ survive_node_set; /* q is a E-node */

- survive_node_set= survive_node_set -

{q};

- produce the offspring of node q and the

equivalent lower bounds;

𝑆𝑞= {(j,𝑍𝑗): j is product of q and 𝑍𝑗

- For each element (j,𝑍𝑗) in 𝑆𝑞 do

- If 𝑍𝑗 > T

- then

- kill product j; /* j is

a product node */

- Else

If product j is a

solution

Then

T =𝑍𝑗 ; current best =

product j;

Else

Add product j to

survive_node_set;

Endif;

Endif;

- Endfor;

Endwhile;

3.4 Dynamic Programming
Dynamic programming (DP) is a very dominant technique

that finds solution to a specific group of problems. It is an

optimization technique that alters a series of simpler problems

from a complex problem. It is a method for efficiently

calculating recurrences by holding partial results and re-

process them when the need be. The multistage character of

the optimization method is its important characteristic. More

so than the optimization approach as illustrated earlier,

dynamic programming presents a broad framework for

analyzing countless problem types. Within this framework an

array of optimization procedures can be utilized to solve

particular characteristics of a more universal formulation. It is

a known fact that dynamic-programming cycle can be stated

as shortest-path problems in a more layered networks whose

nodes link up to the states of the dynamic program. More

often than not creativity is essential before we can make out

that a specific problem can be cast successfully as a dynamic

program; and frequently subtle insights are needed to

reorganize the formulation so as to solve it effectively. It

requires very smart formulation of the problem and simple

thinking.

There are two ways of arriving at an optimal solution of a

given problem. This may be by Top down or Bottom up

approach. The top down approach begin solving the given

problem by breaking it down. If it identifies that the problem

has been solved already, it just return the saved answer else it

solve it and save the answer. This property is known

as Memoization[15]. The Bottom up approach examines the

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

17

problem and notes the order the sub-problems are solved and

begin solving from the smallest sub-problem, up to the given

problem. In this procedure, it is ensured that the sub-problems

are solved prior to solving the problem

Algorithm of the Dynamic programming as stated by [16]

//S=set of all cities, ℵ=number of cities, C = city/node

1. Select a random vertices/ node (city) as a first initial node

Q

2. P=Power set of all node excluding Q or 2𝑆−𝑄

3. for k=2 to ℵ do //create all permutation of node/cities

g(k,∅)=Ck1 //initialization

4. for all i ϵ S - {1} do

for all element E in P do

if i not in E then

g(i, E)= 𝑚𝑖𝑛𝑗∈𝐸(𝐶𝑖𝑗 +g(𝑗1,E-{j}))

 //add to g shortest distance

5. g(1,S-{1})=𝑚𝑖𝑛𝑗∈𝑆−{1}(𝐶𝑖𝑗 +g(j,S-{1}-j))

 //shortest distance calculated

3.5 Nearest Neighbor Algorithm
The nearest neighbor algorithm happens to be among the

earliest known algorithms used to settle on a solution to the

travelling salesman problem.

J.G. Skellam pioneered the algorithm which was then

continued by F.C. Evans and P.J Clark. The algorithm is such

that, it arbitrarily selects a city as the starting city and then

navigates to all neighboring cities closest to the staring city

that does not form any cycle. This process is maintained until

all cities are reached once.

In a related work, Taiwo et al [17] offered a reliable

implementation approach, Nearest Insertion and Nearest

Neighbor to finding solution to the TSP. In their work, a

comparison was made to ascertain the algorithm that gives the

superior result and to find out the flaws in the other algorithm

with which it fails to produce the required result.

Additionally, they compared the execution time and

concluded that the nearest insertion algorithm has somewhat

less time than that of nearest neighbor algorithm. From their

observation the solution can be established in very limited

computational time. This assertion to a larger extent

facilitated to arrive at the conclusion that to obtain satisfactory

results which may not be optimal but are close to the optimal

result these approaches can be adopted.

Algorithm

1. Pick any node to begin with

2. identify neighbouring nodes of the starting node

which is not yet visited with the shortest distance.(if

a tie is found, randomly break it)

3. At each stage, repeat this procedure to visit exactly

once all nodes in the tour

4. Return to the starting nodes if all nodes are visited

else continue with step 2

5. Compute the total minimum distance of the tour.

This algorithm presents a chain of all the visited vertices but

often time misses out some of the shorter routes.

4. EXPERIMENTAL RESULTS
All five labeled traditional algorithms are implemented with

some adjustment in a small number of parameters in order to

adjust it to work out the travelling Salesman problem. The

experimental settings is executed in Java program and carried

out on a HP ProBook 4540s Computer with the processor of

Intel(R) Core(TM) i3-3110M CPU at 2.40 GHz and 4096 GB

memory. Randomly generated TSP dataset of four instances

are used to solve the travel salesman problem and to compare

the effectiveness and performance of all five algorithms.

Table 2 illustrates the performance comparison of all five

traditional algorithms for the Random TSP whiles Table 3

compares their effectiveness.

Table 2: Performance Comparison

Algorithm
No of

Cities

Best

Distance

results

Execution

time

Brute Force

4 120 0.1245

6 228 0.4564

10 1635 3.6546

12 2022 12.5648

Greedy

Algorithm

4 120 0.1123

6 254 0.2454

10 1639 0.4745

12 2045 0.6473

Branch and

Bound

4 120 0.1143

6 228 0.3471

10 1635 0.6457

12 2027 0.9874

Dynamic

Algorithm

4 120 0.1134

6 228 0.3418

10 1635 0.6300

12 2025 0.9684

Nearest

Neighbour

Algorithm

4 120 0.1120

6 269 0.2281

10 1639 0.4671

12 2047 0.5754

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

18

Table 3: Effectiveness comparison

Algorithm Feasible solution Optimal result Ease of implementation Simplicity

Brute Force √ √ √

Greedy Algorithm √ √ √

Branch and Bound √ √

Dynamic Algorithm √ √ √

Nearest Neighbour √ √ √

From table 2, the Brute-Force Algorithm returns the best

solution, but takes an unreasonably long time to compute than

the other algorithms. The Greedy and Nearest Neighbor

algorithms offer close to optimal results in reasonable limited

time. The Branch and Bound and Dynamic programming

produce very good results but may not always provide the best

results. The Nearest Neighbor algorithm returns the best

execution time.

From Table 3, Brute force and Dynamic programming

algorithm indicate that it is optimal but inefficient. The

Greedy algorithm, Branch and Bound and Nearest Neighbor

indicated their efficiency or offering feasible solution but may

fail to provide optimal solution.

On the whole from the tables 2 & 3, the dynamic

programming algorithm is the best choice of solution to the

travel salesman problem with the given set of conditions

5. CONCLUSION
 Finding a sub-optimal solution to the TSP can be obtained

using any of the five traditional algorithms; Brute force,

Greedy algorithm, Branch and Bound, Dynamic programming

and Nearest Neighbor. Making reference to the Greedy, Brute

Force and Nearest neighbor, in the algorithm, each node

match to their initial node taking into consideration the next

closet node. This goes to emphasize the fact that nodes are

not free of one another.

The paper offers a comparison among the traditional

algorithm to solving the travelling salesman problem. The

comparison criteria are rooted on the distance travelled by the

algorithms, their execution time and their effectiveness.

In all four instances, the Brute force approach returned the

best results but possess unreasonably high execution time

whiles the execution time of Nearest Neighbor algorithm

possess the least but returned un-optimal solution in all the

four instances. The Dynamic programming algorithm on the

other hand, returned optimal solution within a reasonable

execution time, easy to implement and very simple. The

major object of a TSP is to identify the lowest total distance

travelled, so in view of the objective of TSP, it is concluded

that the Dynamic programming algorithm is considered the

best algorithm with regards to the criteria under consideration.

In future, further studies can be conducted on comparing the

performance and cost of various meta-heuristic algorithms to

solving the TSP.

6. ACKNOWLEDGMENTS
Special appreciation goes to Mr. Dominic Asamoah and Mr.

Emmanuel O. Oppong of Kwame Nkrumah University of

Science and Technology, Computer Science Department.

7. REFERENCES
[1] Applegate, D. L., Bixby, R.E., Chvátal, V., and Cook, W.

J. 2006. The Travelling Salesman Problem: A

Computational Study. Pinceton Series in Applied

Mathematics: Princeton.

[2] Clarke, G. and Wright, J.W. 1964. Scheduling of vehicles

from a central depot to a number of delivery points.

Oper. Res., vol. 12, pp. 568–581,

http://dx.doi.org/10.1287/opre.12.4.568

[3] Whitely, D. Starkweather, T. and D’Ann, F. 1989.

Scheduling problems and travelling salesman: The

genetic edge recombination operator, in Proc.3rd Int.

Conf. Genetic Algorithms, pp.133–140.

[4] Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. 1983.

Optimization by simulated annealing, Science, vol. 220,

pp. 498–516,

http://dx.doi.org/10.1126/science.220.4598.671

[5] Alizadeh, F., Karp, R. M., Newberg, L. A., and Weisser,

D. K. 1993. Physical mapping of chromosomes: A

combinatorial problem in molecular biology,” in Proc.

4th ACM-SIAM Symp. Discrete Algorithms (SODA),

pp. 52–76.

[6] Korostensky C. and Gonnet, G. H. 2000. Using traveling

salesman problem algorithms for evolutionary tree

construction, Bioinformatics, vol. 16, no. 7, pp. 619–627,

http://dx.doi.org/10.1093/bioinformatics/16.7.619

[7] Zelinka, I. 2002. Umělá intelligence v problémech

globální optimalizace. Praha: BEN-technická literatúra.

[8] Johnson D.S., and McGeoch, L.A. 1995. The Traveling

Salesman Problem: A Case Study in Local Optimization,

November 20,

[9]http://www.cs.sfu.ca/CourseCentral/125/tjd/tsp_example.ht

ml

[10] Eugene Lawler, L., Lenstra, J.K., Rinnooy Kan, A.H.G,

and Shmoys, D.B., 1985. The Traveling Salesman

Problem, John Wiley & Sons.

[11] http://lcm.csa.iisc.ernet.in/dsa/node187.html.

http://lcm.csa.iisc.ernet.in/dsa/node187.html

International Journal of Computer Applications (0975 – 8887)

Volume 152 – No.8, October 2016

19

[12] Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M.,

1954. Solution of a large-scale traveling-salesman

problem, Operations Res 2: 393–410.

[13] Land, A. H., and Doig A. G., 1960. An automatic method

of solving discrete programming problems,

Econometrica 28: 497–520.

[14] Little J. D. C., Murty K. G., Sweeney D. W and Karel C.,

1963. An algorithm for the traveling salesman problem .

Opns Res 11: 972–989.

[15] Martin G. T., 1966. Solving the traveling salesman

problem by integer programming. Working Paper, CEIR,

New York.

[16] Ellis Horowitz, Sartaz Sahni, and Rajasekaran. 1998.

Fundamentals of Computer Algorithms. W.H. Freeman

and Company, Indian Edition published by Galgotia

Publications, 2000.

[17] Oloruntoyin Sefiu Taiwo et al, 2013. Implementation of

Heuristics for Solving Travelling Salesman Problem

Using Nearest Neighbor And Nearest Insertion

Approaches, International Journal of Advance Research.

Volume 1, Issue 3, March 2013, Online: ISSN 2320-

9194

IJCATM : www.ijcaonline.org

