
International Journal of Computer Applications (0975 - 8887)
Volume 153 - No.11, November 2016

Speech Signal Reconstruction using Two-Step Iterative
Shrinkage Thresholding Algorithm

Rachit Saluja
Department of EEE

PESIT, Bangalore-560064
India

Susmita Deb
Department of EEE

PESIT, Bangalore-560064
India

ABSTRACT
The idea behind Compressive Sensing(CS) is the reconstruction
of sparse signals from very few samples, by means of solving a
convex optimization problem. In this paper we propose a com-
pressive sensing framework using the Two-Step Iterative Shrink-
age/Thresholding Algorithms(TwIST) for reconstructing speech
signals. Further, we compare this framework with two other con-
vex optimization algorithms, l1 Magic and Gradient Projection for
Sparse Reconstruction(GPSR). The performance of our framework
is demonstrated via simulations and exhibits a faster convergence
rate and better peak signal-to-noise ratio(PSNR).
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1. INTRODUCTION
Speech is an information rich signal which has become the primary
means of communication among humans. Digitizing real world sig-
nals help to achieve more compact representations and provides
better utilization of available resources. With an ever increasing de-
mands for system capacities, compression of all real world signals
has become a necessity. In many applications, huge amount of data
is generated at the sensing stage, as high sampling rate is preferred
for better quality of signals. This in turn, demands more space and
increases the need for data compression before storage or transmis-
sion.
CS is a relatively new field in digital signal processing [1, 2]. CS
theory asserts that one can recover certain signals from far fewer
samples or measurements than conventional methods for recover-
ing signals, which are presently being used for transmission and
storage [3, 4, 5]. The conventional approach of sampling a Nyquist
rate (twice the bandwidth) requires a lot of signal processing at
transmitter end [6].
Compressed Sensing, which provides a framework for simultane-
ous sensing and compression has gained much attention in litera-
ture due to its diverse applications in a variety of fields. Also, it
exploits the sparsity notion which is minimally explored, inher-
ent characteristic present in almost all real world signals. CS has
been applied to strictly sparse as well as compressible signals. Most
of the real world signals are compressible in some domain or the

other [7, 8]. This is true for speech signals too. The major applica-
tions where CS theory has been applied are image compression, im-
age de-noising, image fusion, content based image retrieval, com-
pressed medical imaging (MRI etc), radar imaging, face recogni-
tion etc and recently to speech and audio processing. In resource
limited scenarios, CS can facilitate efficient utilization of the avail-
able resources with substantial performance gains. Since sparsity
is the main principle behind CS, effective sparse representations of
signals play a major role in the success of CS based applications.
The motivation behind this paper is the fact that speech signals are
sparse in transform domain. i.e, they are compressible and CS the-
ory which is based on sparsity of signals, can be applied to speech
signals.
In this work, we propose a framework in the Fourier transform do-
main which uses the advantage of CS in acquiring lesser samples.
This framework uses TwIST [9] to solve the convex optimization
problem and is then compared with l1 Magic [10] and GPSR [11].
The rate of convergence, PSNR and the Mean-squared error (MSE)
is observed for each of the optimization techniques.

2. COMPRESSIVE SENSING - AN OVERVIEW
To analyse mathematically, let us start with a real-valued, finite-
length, one-dimensional, discrete-time signal x. Signal x can be
represented as an NX1 column vector, situated in a vector space
RN populated with elements x[n], n = 1, 2, ..,N . Any signal of a
higher dimension can be represented into a one dimensional signal
by vectorizing it. For a signal situated in signal spaceRN , it can be
represented in terms of a basis of NX1 vectors ΨN

i=1. We assume
that the basis is orthonormal, for the purpose of simplicity. The
signal x can then be further represented as Ψ = [Ψ1|Ψ2|...|ΨN ]
using the set of NXN basis vectors defined above, with the Ψi as
columns. It can be represented as:

x =

N∑
n=1

siΨi (1)

or

x = Ψs (2)

here s is the NX1 column vector of weighting coefficients si =
〈x,Ψi〉. Clearly, x and s are equivalent representations of the sig-
nal, with x in the time or space domain and s in the Ψ domain. We
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define the signal x as K-sparse, as the signal can be represented
as a linear combination of only K vectors. Thus, we begin with a
signal x, which is said to be compressible since its representation
in the Ψ basis has only a few large coefficients [12].
Now, what we have a compressible signal with us, but we do not
want to compute all the coefficients for compression, since we
know most of them will be discarded anyway. So, we need a method
to integrate its dimensionality reduction within the sensing process
itself, so that we aren’t faced with those many coefficients in the
first place. Compressive sensing seeks to directly acquire a com-
pressed representation of the signal without computing all the N
coefficients.
A general linear measurement process is considered which com-
putesM < N inner products between x and a collection of vectors
φM
j=1 as in yj = 〈x, φj〉. The vectors yj are then arranged in a

column vector with dimensions MX1, referred to as Y . Similarly,
vectors φT

j are arranged in an MXN matrix, called Φ, also known
as the measurement matrix.
This implies from the equation written above that y = Φx =
ΦΨx = Θs. Here, Θ is the term used to represent ΦΨ . The mea-
surement process is not adaptive, meaning that Φ is fixed and does
not depend on the signal x. This ensures that we have a robust sys-
tem for sensing and reconstructing the signal. No priory informa-
tion is required.
The main aim of an appropriate reconstruction algorithm would be
to retrieve an N -value signal from M measurements in the Y ma-
trix, the random measurement matrix Φ and the transform matrix
Φ. If the signal is K-sparse, then there will be infinitely many s′
that will satisfy the equation Θs′ = Y . This is because if Θs′ = Y ,
then there will most certainly be another Θ(s + g) = Y for any
vector g in the null space of Θ. To prevent this issue from obstruct-
ing the hunt for the solution, the reconstruction algorithm searched
for the signal’s sparse coefficient vector in the (N −M) translated
vector space. Convex optimisation methods are applied to extract
the solution from the problem at hand. Specifically, minimization
methods are used to zero-in on to the solution plane, coupled with
other constraints added as per requirement.

3. CONVEX OPTIMIZATION TECHNIQUES
(1) l2 norm minimisation technique:

Let the lp norm of a vector s be defined a (||s||p)p =∑N

i=1
|si|p. The conventional way to solve inverse problems

of this type is to find the vector in the translated null space
which has the smallest energy by optimising

ŝ = argmin||s′||2 (3)

such that Θs′ = Y . While it may seem that this optimisation
has a convenient closed-form solution ŝ = ΘT (ΘΘT )−1Y ,
this leads nowhere unfortunately because almost without ex-
ception, the optimisation gives a solution which is non-sparse
with non-zero elements.

(2) l0 norm minimisation technique:
l2 norm theoretically finds only the energy of the signal and
minimises it, and not its sparsity. The sparsity of a K-sparse
signal can be measured by the l0 norm of the signal. That is,
the l0 of aK-sparse signal will beK itself, since it will simply
count the number of non-zero coefficients present in the signal.
The modified optimisation in this case would be

ŝ = argmin||s′||0 (4)

such that Θs′ = Y . Even though theoretically this optimisation
can result in a K-sparse solution with a very high probability
using only M = K + 1 samples, it still is not the ideal can-
didate for our purpose. Solving this optimisation problem is
numerically unstable and NP-complete. Moreover, we would
need to identify each of the

(
N
k

)
combinations of the non-

zero coefficients which becomes computationally exhaustive
and redundant.

(3) l1 norm minimisation technique:
l1 minimisation is a perfect candidate to find a K-sparse so-
lution which would be numerically stable as well. It can ac-
curately recover K-sparse compressible signals using only
M > cKlog(N/K) samples with a high probability. This
type of convex optimisation problem resolves into a linear pro-
gram which can be solved by various algorithms like basis pur-
suit, orthogonal matching pursuit, and so on. The optimisation
in this case becomes

ŝ = argmin||s′||1 (5)

such that Θs′ = Y .

4. COMPRESSIVE SENSING FRAMEWORK
Keeping in mind how compressive sensing works, it is time to per-
form the three different convex optimization techniques using a
common framework developed to demonstrate which optimization
technique has a better PSNR and a faster convergence rate.
Consider a signal x of length N . Since speech signals are long, the
signal is split into L smaller speech signals that are of equal length
N ′. Each of the smaller signals are then subjected to a Fourier trans-
form consecutively, as speech signals are sparse in the Fourier do-
main i.e. X = ΨxL, where Ψ = F , F being the Fourier transform
matrix.
Assuming that the speech signal is K - Sparse we use K random
measurements from N ′ to build the measurement vector Y , where
Y = ΘxL, Y being a KX1 vector. Θ is a matrix of KXN ′ and is
obtained by considering K orthobasis of the Ψ−1 matrix.
To obtain the signal with K number of samples we solve the opti-
mization problem using l1 Magic, GPSR and TwIST.

(1) l1 Magic minimisation technique: For the l1 Magic recon-
struction algorithm, we minimise

||xL||1 (6)

s.t. ΘxL = Y , where the x′L we obtain is row vector of dimen-
sion NX1, a vectorised version of our desired signal [13].

(2) GPSR minimization technique: For the GPSR reconstruction
algorithm, we minimise

1

2
||Y −ΘxL||2 + τ ||xL||1 (7)

where the x′L we obtain is row vector of dimension NX1, and
τ is a non-negative factor.

(3) TwIST minimization technique: For the TwIST reconstruc-
tion algorithm, we minimise

1

2
||y −ΘxL||22 + τΦ(xL), (8)

where the x′L we obtain is row vector of dimension NX1, τ
is a non-negative factor and Φ(xL) is the total variation norm
regularization function [14].
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After obtaining the x′L, the reconstructed signal in the time do-
main is recovered by taking an inverse Fourier transform,i.e x̃L =
Ψ−1x′L. Now all the x̃L are concatenated to obtain the complete
reconstructed speech signal using CS [15].

5. OBSERVATIONS
The performance of each algorithm is tested by comparing the
MSE, PSNR and the rate of convergence by taking different num-
ber of samples. Figure 2 represents the plotting of the reconstructed
speech signal by applying TwIST using 30,000 samples (75% less
samples). From the figures we note that it is a near perfect recon-
struction.

Fig. 1. Graph plotting Amplitude (y-axis) against number of samples for
original signal.

Fig. 2. Graph plotting Amplitude (y-axis) against number of samples
utilised for reconstruction using TwIST.

First we observe the MSE obtained for the three techniques. From
Figure 3 we infer that the least MSE is for TwIST and that the
MSE decreases with the increase in number of samples. We see

Table 1. Time of Convergence, MSE and PSNR for the reconstructed
signal using 30,000 samples

Technique Time of Convergence(Seconds) MSE PSNR
TwIST 397.412 8.28231e-05 40.8185
l1 Magic 939.59 0.000371619 34.299
GPSR 418.92 0.00157627 28.0237

that GPSR has maximum error and that the MSE for TwIST almost
tends to zero at 30,000 samples.
The PSNR values obtained for the TwIST technique are signif-
icantly higher than the PSNR values obtained by l1 Magic and
GPSR, as shown in the Figure 4. We note that for TwIST and l1
Magic, the PSNR values increases with increase in number of sam-
ples, however for GPSR, the PSNR nearly remains constant. The
above two results obtained are due to the regularization function
that is used in TwIST, which helps in denoising the speech signal.
We take the original signal shown in Figure 1 as the reference.

Fig. 3. Graph plotting MSE (y-axis) against number of samples utilised
for reconstruction using TwIST, l1 Magic and GPSR.

Fig. 4. Graph plotting PSNR (y-axis) against number of samples utilised
for reconstruction using TwIST, l1 Magic and GPSR.

Finally, we compare the time taken by each method to converge,
i.e to obtain the reconstructed signal. From Figure 5 we observe
that the rate of convergences of TwIST is better than GPSR slightly
and is significantly better than l1 Magic. As the number of samples
increases, the time taken to converge also increases. In case of l1
Magic it drastically increases.
From the observations made above, we infer that TwIST is a better
reconstruction algorithm as it has the fastest rate of convergence,
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Fig. 5. Graph plotting Time of Convergence (y-axis) against number of
samples utilised for reconstruction using TwIST, l1 Magic and GPSR.

the highest PSNR and the lowest MSE. Though l1 Magic has low
MSE and a high PSNR, the time taken to converge is very high.
Whereas, using GPSR would reconstruct a speech signal with poor
PSNR and a high MSE. Hence, the work has successfully demon-
strated that TwIST would be a better technique to use.

6. CONCLUSIONS
From the previous section we observe that TwIST is a better algo-
rithm to use for the reconstruction of a speech signal. The implica-
tions of compression in speech signals are as follows:

(1) Reduction in bit rate thereby achieving reduction in bandwidth
and memory storage requirement.

(2) Reduction in transmission power requirement because after
compression there are less bits (hence less energy) per second
to transmit.

(3) Immunity to noise, as error control coding methods can be in-
troduced in place of some of the saved bits per sample in order
to protect speech parameters from channel noise and distortion.

(4) Encryption of source information.

With the successful demonstration of the application of compres-
sive sensing in speech signals, new avenues have been opened for
future research in this direction. A more efficient sparse represen-
tation using other sparsifying transforms or dictionaries and better
reconstruction algorithms, which might improve both the recon-
structed speech signal quality and the compression ratios, can also
be explored.
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