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ABSTRACT 

The Fibonacci polynomials and Lucas polynomials are 

famous for possessing wonderful and amazing properties and 

identities. Generalization of Fibonacci polynomial has been 

done using various approaches. One usually found in the 

literature that the generalization is done by varying the initial 

conditions. In this paper, Generalized Fibonacci polynomials 

are defined by 1 2( ) ( ) ( ); 2n n nw x xw x w x n    with 

0( ) 2w x b and 1( )w x a b  , where a and b are 

integers. Further, some basic identities are generated and 

derived by generating function. 
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1. INTRODUCTION 
The Fibonacci polynomials and Lucas polynomials are 

famous for possessing wonderful and amazing properties and 

identities. Fibonacci polynomials appear different frameworks 

.These polynomials are of great importance in the study of 

many subjects such as algebra, geometry, combinatorics, 

approximation theory, statistics and number theory itself. 

Moreover these polynomials have been applied in every 

branch of mathematics. Fibonacci polynomials are special 

cases of chebyshev polynomials and have been studies on 

more advanced level by many mathematicians. 

Basin [1] show that Q matrix generates a set of Fibonacci 

Polynomials satisfying the recurrence relation 

fn(x)=xfn-1(x) +fn-2(x), n   with f0 (x)=0  ,f1(x)=1           (1.1) 

The first few polynomials of (1.1) are 
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The Lucas polynomials [10] are defined by  

ln(x)=xln-1(x) +ln-2(x), n   with l0 (x)=2, l1(x)                 (1.2) 

Generating function of Fibonacci polynomials is 
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Generating function of Lucas polynomials is  
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Explicit sum formula for (1.1) is given by 
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Where 
n

k

 
 
 

 is binomial coefficient and [X] is the greatest 

integer less than or equal to X. 

Explicit sum formula for (1.2) is given by 
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Where n

k

 
 
 

 is binomial coefficient and [X] is the greatest 

integer less than or equal to X. 

The Fibonacci and Lucas polynomials are many fascinating 

properties which have been studied in [2] to [12]. 

In this paper, we present generalized Fibonacci polynomials 

by varying the initial conditions. Further, some basic identities 

and derived by generating function.  

2. GENERALIZED FIBONACCI      

      POLYNOMIALS 
Generalized Fibonacci polynomials have been intensively 

studied for many years and have become an interesting topic 

in Applied Mathematics. Generalization of Fibonacci 

polynomial has been done using various approaches. One 

usually found in the literature that the generalization is done 

by varying the initial conditions. 

Generalized Fibonacci polynomials ( )nw x are defined by 

recurrence relation 

1 2( ) ( ) ( ); 2.n n nw x xw x w x n    with 0 ( ) 2 ,w x b  

1( ) ,w x a b   where a and b are integers.                       (2.1)         

The first few terms of generalized Fibonacci polynomials are 

as follows: 
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 If x=1, then (1)nw  is Generalized Fibonacci sequence. 

Generating function of Generalized Fibonacci polynomials is  
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                                  (2.2) 

Hypergeometric representation 
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Hence hypergeometric representation of generating function is 
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3. SOME IDENTITIES OF      

     GENERALIZED FIBONACCI   

     POLYNOMIAL 
In this section, some basic identities of Generalized Fibonacci 

polynomials have been obtained by method of generating 

function. 

Theorem 3.1. Prove that 

1 1( ) ( ) ( ), 1.n n nw x w x xw x n                          (3.1) 

Proof. By generating function of Generalized Fibonacci 

polynomial,  
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Differentiating both side with respect to t, 
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Now, equating the coefficient of tn on both side, 
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Theorem 3.2. Prove that 
' ' '

1 2 1( ) ( ) ( ) ( ), 2.n n n nw x xw x w x w x n                     (3.2) 

Proof. By generating function of Generalized Fibonacci 

polynomial, 
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Differentiating both sides with respect to x, 
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Now, equating the coefficient of tn on both sides. 

' ' '

1 2 1( ) ( ) ( ) ( ).n n n nw x xw x w x w x      

Theorem 3.3. Prove that 
' ' '

1 1( ) ( ) ( ) ( ), 1.n n n nw x xw x w x w x n                        (3.3) 

Proof. By (3.1),  
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By differentiating with respect to x, 
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Theorem 3.4. Prove that 
' '
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Proof. By generating function of Generalized Fibonacci 

polynomials, 
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Differentiating both sides with respect to t,  
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Differentiating both sides with respect to x, 
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Using (3.5) in (3.4),  
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Equating the coefficient of tn-1 on both sides, 
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Theorem 3.8. (Explicit sum formula): For Generalized 

Fibonacci Polynomials, 
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Proof. By generating function,  
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Equating coefficient of tn on both sides,  
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Theorem 3.9. For positive integer 0n  , prove that 
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Proof. By (3.12), 
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Theorem 3.10. For positive integer 0n  , prove that 
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4. CONCLUSION 
In this paper, Generalized Fibonacci polynomials are 

introduced by varying the initial conditions. Further, some 

basic identities established and derived by standard methods.  
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