
International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

24

Colour Recognizing Robot Arm Equipped with a CMOS

Camera and an FPGA

Asma Taha Sadoon
College of Engineering
University of Baghdad

Dina Abdul Kareem Abdul Qader
College of Engineering
University of Baghdad

ABSTRACT
In this paper a system is designed on an FPGA using a Nios II

soft-core processor, to detect the colour of a specific surface

and moving a robot arm accordingly. The surface being

detected is bounded by a starting mark and an ending mark, to

define the region of interest. The surface is also divided into

sections as rows and columns and each section can have any

colour. Such a system has so many uses like for example

warehouses or even in stores where their storing areas can be

divided to sections and each section is coloured and a robot

arm collects objects from these sections according to the

section’s colour also the robot arm can organize objects in

sections according to the section’s colour.

Keywords
Robot arm, sopc builder, colour reconition, FPGA, CMOS

camera.

1. INTRODUCTION
Using robots in nowadays is very important for so many

reasons which include accuracy and less time. Collecting,

organizing, and sorting objects using robot arms are very

useful in so many applications. In this paper a system is

designed and implemented on an FPGA using a Nios II soft-

core processor to detect the colour of a surface and moving a

robot arm accordingly. So many previous work that involve

colour recognition of objects in order for the robot arm to pick

and place the objects according to their colour, especially if

the objects move on a conveyer belt (only mentioning few).

[1] designed and implemented a robot arm that can pick and

sort objects depending on their colour, using a microcontroller

and a colour sensor in the design. While [2] designed a pick

and place robot arm that sorts objects according to their colour

depending on a web cam connected to a computer on chip

called eBox-3300MX which is responsible for the image

processing and also connected to the microcontroller to

control the robot arm. Also [3] designed a system that can sort

objects according to their colour using a camera to capture the

image that is sent to the computer to process the image using

MATLAB and the computer sends signals to the

microcontroller to move the robot. In this work the main

objective is to design and implement a system that can

organize objects in coloured spaces and also can be used for

sorting objects according to their colour that is much simpler

(although not tested).

The aim of this work is to design and implement a system that

can detect the colour of a surface and pick an object from that

particular colour position or organize objects in those desired

positions. This system is implemented on an FPGA using a

Nios ii soft-core processor and a CMOS camera.

2. THE SYSTEM DESIGN
Figure 1 shows a block diagram of the system, where the

camera is connected to the FPGA, when the system is turned

on the nios ii processor gives a start signal to the camera to

start capturing and after 61 frames the nios ii processor gives a

stop signal. The captured image is stored in the SDRAM

located on the FPGA kit. The nios ii processor reads the

image from the SDRAM and starts the image processing.

Then the nios ii processor gives an output describing the

coloured regions, this output is used by the FPGA to control

the robot arm.

The system has two parts the hardware part and the software

part:

Figure 1. Block diagram of the system

2. 1The Hardware
The hardware part of the system is shown in figure 2, which is

composed of the following:

2.1.1 DE2-115 FPGA.
The FPGA is chosen in this project as the programmable

device to build the system due to its flexibility and the ability

to use soft-core processors like Nios ii processor. The DE2-

115 Cyclone IV EP4CE115F29C7 is chosen whose features

are [4]:

• 114,480 LEs.

• 432 M9K memory blocks.

• 3,888 Kbits embedded memory.

• 4 PLLs.

• JTAG and AS mode configuration.

• EPCS64 serial configuration device.

• On-board USB Blaster circuitry.

• 128MB (32Mx32bit) SDRAM.

• 2MB (1Mx16) SRAM.

• 8MB (4Mx16) Flash with 8-bit mode.

• 32Kb EEPROM.

 FPGA

CMOS
CAMERA
(image
capture)

Robot
Arm

NIOS ii
PROCESSOR
 (image
processing)

 SDRAM
(image
stored)

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

25

• 40-pin expansion port.(Configurable I/O standards

(voltage levels:3.3/2.5/1.8/1.5V))

• VGA-out connector.

• Three 50MHz oscillator clock inputs.

• 18 slide switches and 4 push-buttons switches.

• 18 red and 9 green LEDs.

• Eight 7-segment displays.

Also other features not used in this project.

2.1.2 TRDB-D5M kit
The TRDB-D5M kit provides a 5 Mega pixel camera used

with the DE2-115 FPGA.

2.1.3 Robot Arm
The robot arm has five degrees of freedom (five joints) each

controlled by a servo motor. The servo motor can rotate from

0° to 180° and sometimes even more, by controlling the

control signal of the servo motor. The servo motor has three

wires, one for the control signal and one for the power (about

5v d.c) and one connected to ground. The control signal is a

pulse waveform whose period is 20msec and the pulse width

varies between 0.5 msec and 2msec in order to make the servo

motor rotate from the 0 degree position to the 180 degree

position.

2.1.4 A D.C Motor, Wheels, and a Motor Driver

Circuit (L298d IC)
The wheels are connected to the D.C motor, and the D.C

motor is controlled by a drive circuit shown in figure 3. The

D.C motor’s two wires are connected to OUT1 and OUT2.

Table (1) shows the truth table of the motor drive circuit, if

ENA is set to logic (1) then the D.C motor is enabled. To

control the speed of the motor a pulse waveform is applied to

the ENA input, this pulse waveform has a period of 1msec

and as the duty cycle increases the speed of the motor

increases. The pulse waveform that is applied to a D.C motor

differs from that applied to a servo motor, for the first what

matters is the duty cycle as for the latter what matters is the

width of the pulse.

Figure 2. The Hardware Components

Figure 3. Motor Drive Circuit

Table 1 Motor drive circuit truth table

ENA IN1 IN2 Motor status

1 0 0 Motor breaks

1 0 1 Motor moves

1 1 0

Motor moves in
opposite

Direction of case
2

1 1 1 Motor breaks

0 X X Motor is off

2. 2The Software
The software part is composed of the following:

2.2.1 The Camera Module
The camera module is composed of 4 main modules each

provided by Altera and written in Verilog HDL:

 Cmos Sensor Data Capture (CCD_Capture)

This module gets raw data from the camera and converts it to

raw data with X and Y coordinates to the next module

(RAW2RGB).

 Bayer Color Pattern Data to 30-Bit RGB (RAW2RGB)

This module converts the raw data from the CCD_Capture

module to a 30 bit RGB (Red, Green, and Blue) data, each

colour has 10 bits.

 Multi-Port SDRAM Controller (Sdram_Control)

The SDRAM is the frame buffer of the images captured by the

camera and this module controls the SDRAM chip. This

module stores the Red, Green, and Blue data into the SDRAM

chip available on the FPGA. The SDRAM is divided into two

banks each with 16 bits, so the 10 bit Red data and the first

five bits of the Green data are stored in bank 1, as for the 10

bit Blue data and the second 5 bit of the Green data are stored

in bank 2.

 O UT1

Motor

 O UT2

Motor

 Motor

Motor

 ENA

Motor

IN1

Motor

IN2

Motor

TRDB-D5M

camera

Robot

arm

D.C Motor

Moto

r

drive

r

circu

it

DE2-115

FPGA

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

26

 I2C Sensor configuration (I2C_CCD_Config)

This module controls camera settings like exposure time,

resolution, and frame rate.

2.2.2 The SOPC (System On Programmable

Chip)
The Nios ii system is designed using the SOPC (System On

Programmable Chip) builder available in the Quartus ii

package. The SOPC builder specifies the components of the

system and its settings to build a complete computer system.

The SOPC chooses a Nios ii processor (soft-core processor)

and adds other components like peripherals, memories, bus

connections and also creates components that are not available

using the component editor (like the case of this paper) by

adding the component’s HDL. The SOPC creates a module

written in Verilog HDL to describe each one of the

components to be used in completing any system.

The SOPC of the colour recognizing robot arm is shown in

Table (2). Each of the components is explained in the

following:

 Cpu

This component is the Nios ii processor, in which the nios ii/f

is chosen whose specifications are shown in figure 4. In this

project the reset vector and the exception vector of the nios ii

processor are set to the Flash memory and the SRAM memory

respectively.

Figure (4) Nios ii Processor Specifications

 JTAG_UART
In this system a JTAG UART is used where the USB Blaster

JTAG cable is used to configure the FPGA and also used as a

UART device after the FPGA is configured [5].

 Cmos _Controller

This module is not available in the SOPC builder so its HDL

module which was developed by [6] is added by the

component editor to the SOPC builder. This module is

responsible for reading image frames from the SDRAM and

giving start or stop image capture signal to the camera.

 DE2_115_SRAM

This component is also not available in the sopc builder so it’s

HDL which was developed by [7] is added by the component

editor to the SOPC builder. This module adds the 2MB DE2-

115 SRAM to the system in order to set the exception vector

of the nios ii processor to SRAM.

 Output_from_nios

This component is an input/output peripheral with width (1-

32) bits. This peripheral is chosen as an output port with 32

bits width. This component is used to pass data between the

Nios ii processor and the main Verilog block in a way that is

explained in sections 2.2.3.

 Tri_state_bridge

This component is added to connect the Flash memory (also

other memories and external components) to the main system

bus [8].

 CFI_FLASH

This component adds the flash memory to the system in order

to be the program memory device by setting the reset vector to

FLASH memory. Each time the system is turned on the

program works automatically without requiring operating the

Nios ii software package.

Table 2 SOPC of the Colour Recognizing Robot Arm.

Module name
Module
Description

Clock Base address

Cpu Nios ii processor
50
MHz

0x01400800

Jtag_uart JTAG UART
50
MHz

0x01401020

Cmos_controller Cmos_controller
50
MHz

0x01401000

De2_115_sram De2_115_sram
50
MHz

0x01200000

Output_from_nios PIO(Parallel I/O)
50
MHz

0x01401010

Tri_state_bridge
Avalon-MM
Tristate Bridge

50
MHz

Cfi_flash
Flash Memory
Interface (CFI)

50
MHz

0x00800000

2.2.3 The Image Processing Using the Nios ii

Package Provided By Altera.
The image processing is done by writing a program in C

language using the nios ii SBT (Software Build Tools) for

eclipse which describes the instruction set for the Nios ii

processor. The Nios ii processor uses the FLASH memory and

the SRAM as its program memories. The Nios ii processor

accesses each peripheral and component in the system through

their base addresses [5]. When turning the system on the Nios

ii processor gives a start signal to the Cmos_Controller

module to make the camera start capturing images and after

61 frames the processor gives a stop signal. In order for the

Nios ii to write to or read from a peripheral or component a

number of functions are employed for example IORD and

IOWR. [6] developed the following functions so that the Nios

ii communicates with the Cmos_Controller :

IOWR(base address, CAPTURE_START, 1) (1)

IOWR(base address, CAPTURE_STOP, 1) (2)

IORD(base address, CAPTURE_DATA) (3)

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

27

Where

CAPTURE_START = 0x0

CAPTURE_STOP = 0x1

CAPTURE_DATA = 0x2

These functions are added to the image processing program,

where when eqn(1) and eqn(2) are executed the camera starts

capturing and then stops after 61 frames, knowing that the

base address is (0x01401000) from Table (2). The third

function denoted by eqn(3) reads the image pixel by pixel so

eqn(3) is executed as many times as the pixels and then all the

pixels are stored in an array knowing that each pixel has 30

bits. The stored image is in RGB form where each pixel of the

image has 30 bits (10 for R (RED), 10 for G (GREEN), and

10 for B (BLUE)).

The flow chart shown in figure 5 shows the complete image

processing steps. The image is converted from RGB to HSV

colour model, where the HSV color model describes the color

and brightness component respectively. For image processing

issues the image is converted from RGB to HSV. The HSV

colour model defines a colour space in terms of three

constituent components [9]:

 Hue (H) is the colour type (such as red, magenta, blue,

cyan, green or yellow). Hue ranges from 0-360 deg.

 Saturation (S) refers to the intensity of specific Hue.

Saturation ranges are from 0 to 100%.

 Value (V) refers to the brightness of the colour. Value

ranges are from 0-100%.

In this work Saturation and Value are chosen to be from 0-1.

Before converting RGB to HSV model it is required to

normalize the pixel values which is done by dividing every

red, green and blue values in a pixel by 255. The HSV

transform function is shown in equations 4, 5, and 6 as follow

[10]:

𝐻 =

 60 ∗ [

𝐺−𝐵

𝛼
 + 6] 𝑖𝑓 𝑀𝐴𝑋 = 𝑅

60 ∗ [
𝐵−𝑅

𝛼
 + 2] 𝑖𝑓 𝑀𝐴𝑋 = 𝐺

60 ∗ [
𝑅−𝐺

𝛼
 + 4] 𝑖𝑓 𝑀𝐴𝑋 = 𝐵

𝑛𝑜𝑡 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑓 𝑀𝐴𝑋 = 0

 (4)

 𝑆 =

𝛼

𝑀𝐴𝑋
 𝑖𝑓 𝑀𝐴𝑋 ≠ 0

0 𝑖𝑓 𝑀𝐴𝑋 = 0
 (5)

𝑉 = 𝑀𝐴𝑋 (6)

Where 𝛼 = 𝑀𝐴𝑋 −𝑀𝐼𝑁 , 𝑀𝐴𝑋 = 𝑚𝑎𝑥 𝑅,𝐺,𝐵 , 𝑀𝐼𝑁 =
𝑚𝑖𝑛(𝑅,𝐺,𝐵)

The resultant H, S and V values are manipulated with until the

image read by the Nios ii processor is as accurate as possible

then each pixel is assigned a colour class.

Figure 5. The Image Processing Steps Flowchart

The surface to be recognized should be organized in rows and

columns with identical cells as shown in figure 6. The surface

is marked with a starting mark and an ending mark which is

chosen to be small green squares located at the top left and the

bottom right. So the C program or the image processing

program will search for the starting mark and the ending mark

to define the area of interest. Then the program will find the

colour of each region on the defined area and record that

colour in an output register (peripheral) which is known from

section 2.2.2 as the output_from_nios. This output has 32 bits

and each bit will describe the colour of a region, for example

if the regions have three colours then the first 9 bits of the

output_from_nios describe the first colour and the second 9

bits describe the second colour and the third 9 bits describe

the third colour so the number of regions will be 9. Each bit

in each of the nine bits of a specific colour will describe a

region. For example if the first colour is chosen to be

recognized then the first 9 bits of the output_from_nios will

be 1 if the region is that colour and 0 if not. These regions

may have any colour but cannot exceed three colours, if the

regions have two colours then there will be 16 regions.

Start

Capture image

Define Hue threshold for various

colour

Assigning colour for each pixel

Read RGB image

Determine area of interest

Determine regions of interest and filling output

END

Convert RGB to HSV

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

28

Figure 6. The Surface Organized as Rows and Columns

The flowchart in figure 7 shows how the Output_from_nios

will be filled, where:

Output_from_nios (O) = 0x00000000.

M1 = 0x00000001.

M2 = 0x00000200.

M3 = 0x00040000.

M1, M2 and M3 represent masking values.

WR means wanted region.

C1, C2, and C3 mean first, second and third colour

respectively.

i counts from 1 to 9 which represent the number of regions.

So the program will detect each region if it is as the wanted

colour region (this program can detect three, two or one

colour as regions of interest) then the output will be 1 and if

not it will be 0.

For example if the regions are as in figure 8 then the

output_from_nios is 0x00821495 in HEX or 0000 0000 1000

0010 0001 0100 1001 0101 in binary. The first nine LSB bits

describe the first colour (RED) (0 1001 0101) and the second

nine LSB bits describe the second colour (BLUE) (10 0001

010) and the third nine LSB bits describe the third colour

(YELLOW) (000 1000 00), the remaining bits are ignored.

Figure (7) How the Output_from_nios is filled

Figure 8. An Example of a Coloured Surface to be

recognized

2.2.4 The robot movement part (servo motors

moving the joints and D.C motor to move the

wheels).
The robot movement has two parts the vertical movement and

the horizontal movement. The vertical movement is done by

the joints of the robot arm and the horizontal movement is

done by the wheels. The joints of the robot arm are controlled

by control signals which are provided by the FPGA by

programming them using Verilog HDL. These HDL modules

are added to the colour recognizing robot arm main HDL

module that contains the camera module, the sopc, and the

robot movement part.

The horizontal movement is done by the wheels, the D.C

motor and the motor drive circuit which are all controlled by 3

signals ENA, IN1, and IN2 (mentioned in section 2.1.4). The

pulse waveform applied to ENA and the inputs that are

applied to IN1 and IN2 are provided by the FPGA by

programming them using Verilog HDL. This HDL module is

added to the colour recognizing robot arm main HDL module

that contains the camera module, the sopc, and the robot

movement part.

FALSE

TRUE

TRUE

TRUE

TRUE

FALSE

FALSE
i=i+1

start

i=1

i <=9 ?

stop

WR= C1

WR= C2

WR= C3

O O | M1

M1 M1 <<1

O O | M2

M2 M2 <<1

O O | M3

M3 M3 <<1

FALSE

1st region 2nd region 3rd region

4th region 5th region 6
th

region

7
th

 region 8
th

 region 9
th

 region

Starting mark

Ending mark

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

29

Now to achieve a specific movement, pulse waveforms are

applied to all joints and a pulse waveform and input signals

are applied to the motor drive circuit in order to make the

wheels move forward or backward or stop. Each specific

movement is programmed in the main HDL block.

3. IMPLEMENTATION OF THE

PROPOSED SYSTEM AND RESULTS
Using the Quartus ii version 11.1 package, the main Verilog

HDL program is downloaded on the DE2-115

EP4CE115F29C7 FPGA. Table (3) shows the compilation

result and resource usage. Then the Nios ii Software Build

Tools SBT for eclipse version 11.1 is operated, and using the

flash programmer the flash memory is programmed with the C

program for the Nios ii processer. This C program is

responsible for the Image processing part that controls the

image capture, reading image frames from the SDRAM and

analyzing the image to obtain specific information. Now the

camera starts capturing images and then stops after 61 frames

in order to get a clear image. The nios ii package is operated

only once (can be edited) because after programming the

Flash memory there is no need to operate the nios ii package

each time. Now that the image is read from the SDRAM and

processed, the desired colour to be recognized can be chosen

from the three push buttons located on the FPGA kit. After

choosing the desired colour the robot moves to that colour

position and collects the object placed there or places an

object in that same colour position.

For example if in a warehouse or store there are coloured

shelves organized in rows and columns, which all of the

shelves have the same height and the same width as shown in

figure 9. It is required to organize or pick objects in or from

the shelves according to the shelves colour. First, the camera

captures the image of the shelves and the nios ii processor

detects the colours of the shelves. An output

(output_from_nios) will be passed from nios to the main

Verilog module; this output describes the colours of all

regions (shelves). By pressing a KEY (push button) on the

FPGA then a specific colour is chosen, in this prototype

KEY1 is for choosing the colour RED (it can be any other

colour). The robot will move to those chosen positions, the

wheels move the robot horizontally and the joints move the

robot vertically and the grip of the arm catches the objects.

The robot is placed at a starting position marked X in figure

9, it moves from the starting position to any region required

and returns back to the starting position. The robot then

rotates away from the shelves by moving the fifth joint to

drop or to collect an object to or from the desired location.

The movement is done by knowing in advance the exact

dimensions of the entire shelves which means the maximum

height and the minimum height (which is limited by the arm

itself) and the entire width of the shelves. By knowing the

dimensions of the shelves and all of the shelves are identical,

all of the movements are programmed in Verilog HDL and

according to the output_from_nios the robot goes to a specific

region.

Figure 9. An Actual System with regions as rows and

coloumns

Each movement requires 5 pwm (pulse width modulated)

signals to control the 5 joints of the robot arm in order to

move the robot vertically and to hold or release an object. All

regions in the same row have the same pwm signals but when

the row changes the pwm signals also change. Also each

movement requires 3 signals to control the wheels (the D.C

motor) which are 1 pwm signal for the speed and two signals

to make the wheels move forward or backward or stop. To

control the wheels or the horizontal movement, the speed of

the motor is made constant at full speed (or any chosen speed)

and knowing in advance the distance between any region and

the starting position then the time it requires moving from the

starting position to any region is known. This time is used to

make the wheels reach the desired region and then stop for an

enough time for the object to be collected or placed and then

moves backward to the starting position and stops again.

The system is tested on different surfaces with different

colours, they all have been recognized and the robot moves to

the desired regions at different light intensities. The number of

regions depends on the number of colours because the

output_from_nios has 32 bits (any I/O peripheral cannot

exceed 32 bits). These regions may have any colour but

cannot exceed three colours, so if the regions have three

colours then there will be only 9 regions and if the regions

have two colours then there will be 16 regions.

To increase the number of regions it is proposed to divide all

regions into groups of 9 regions (3 rows X 3 columns) each 9

regions has a starting mark and an ending mark and a starting

position. Each nine regions are placed next to each other,

when a specific colour is chosen then the robot goes to the

first 9 regions collects or places objects from or to the desired

colour and then goes to the starting position of the next 9

regions and does the same if the desired colour is available

and then moves to the other 9 and so on. At each new starting

position the camera captures the image of the new 9 regions

by resetting the entire system automatically.

Colour 1

object

location

Colour 2

object

location

 Colour 3

object

location

X

 1st region 2nd region 3rd region

4th region 5th region 6
th

region

7
th

 region 8
th

 region 9
th

 region

Starting mark

Ending mark

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No2, November 2016

30

Table 3 The compilation result and resource usage.

Flow Status Successful - Fri Nov 26 03:06:19

2015

Quartus II 32-bit

Version

11.1 Build Web Edition

Revision Name Colour_Recognizing_Robot

Top-level Entity Name Colour_Recognizing_Robot

Family Cyclone IV E

Device EP4CE115F29C7

Timing Models Final

Total logic elements 5,653 / 114,480 (5 %)

Total combinational

functions

4,738 / 114,480 (4 %)

Dedicated logic

registers

3,219 / 114,480 (3 %)

Total registers 3269

Total pins 425 / 529 (80 %)

Total virtual pins 0

Total memory bits 126,392 / 3,981,312 (3 %)

Embedded Multiplier

9-bit elements

4 / 532 (< 1 %)

Total PLLs 1 / 4 (25 %)

4. CONCLUSIONS AND DISCUSSION
In this paper a colour recognizing robot arm is designed and

implemented using an FPGA and a CMOS camera. This

system detects the colour of a surface and moves a robot arm

accordingly. The surface is organized in rows and columns

forming regions that are identical, the surface is bounded by a

starting mark and an ending mark. In this prototype the

starting mark and the ending mark are chosen to be small

green squares so the surface must not have the colour green in

its regions. The dimensions of the surface should be known

and the robot is placed at a starting position. This system can

recognize any colour (but cannot exceed 3 colours) and at any

light intensity except at darkness. This system cannot be

compared with the systems mentioned in the related work

because they differ from each other by the objective, where

the related work systems sort objects according to the objects

colour while this system organizes any objects (whatever their

colour) according to the colour of the storing area. This

system can be very useful in warehouses and stores to

organize objects easily according to the colour of the storing

area.

5. REFERENCES
[1] Joy, A., 2014 Object Sorting Robotic Arm Based on

Colour Sensing International Journal of Advanced

Research in Electrical, Electronics and Instrumentation

Engineering (ISSN (Online): 2278 – 8875) Vol. 3, Issue

3, pp 7741-7746.

[2] Chandramohan, A., Murthy, K. K. R., Sowmya, G.,

Prasad, S. P. A., Krishna, V. V., and Peeyush, K. P.,

2014 Cost Effective Object Recognition and Sorting

Robot Using Embedded Image Processing Techniques,

International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075,

Volume-3, Issue-11,pp-29-32.

[3] Devalla, V., Singh, R., Mondal, A. K., and Kaundal, V.,

2012, Design and Development of Object Recognition

and Sorting Robot for Material Handling in Packaging

and Logistic Industries, International Journal of Science

and Advanced Technology (ISSN 2221-8386) Volume 2

No 9 , pp 30-35.

[4] Altera corporation 2009 DE2_115 user manual.

[5] Hamblen, J. O., Hall, T. S., and Furman, M. D., 2005,

Rapid Prototyping of Digital Systems: Quartus® II

Edition Springer Science & Business Media, Computers

- 371 pages.

[6] Cnblogs 2008 How to read CMOS from the Nios II’s

image on the SDRAM?, URL:

http://www.cnblogs.com/oomusou/archive/2008/08/31/d

e2_70_cmos_controller.html

[7] Cnblogs 2010 How to customize the interface IP SRAM

of Avalon, for Nios II use URL:

http://www.cnblogs.com/yuphone/archive/2010/09/27/18

36519.html

[8] Hamblen, J. O., Hall, T. S., and Furman, M. D., 2007,

Rapid Prototyping of Digital Systems: SOPC Edition

Springer Science & Business Media, - Technology &

Engineering - 411 pages.

[9] Georgieva, L, Dimitrova, T, and Angelov, N., 2005 RGB

and HSV color models in color identification of digital

traumas images. International conference on computer

systems and technologies. Bulgaria, 12-1-6.

[10] Chen, W., Shi, Y. Q. and Xuan, G. 2007 Identifying

computer graphics using HSV color model and statistical

moments of characteristic functions, Proc. IEEE Int.

Conf. Multimedia and Expo (ICME), pp.1123 -1126.

IJCATM : www.ijcaonline.org

http://www.cnblogs.com/oomusou/archive/2008/08/31/de2_70_cmos_controller.html
http://www.cnblogs.com/oomusou/archive/2008/08/31/de2_70_cmos_controller.html
http://www.cnblogs.com/yuphone/archive/2010/09/27/1836519.html
http://www.cnblogs.com/yuphone/archive/2010/09/27/1836519.html

