
International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

1

Literature Survey of Software Clones

Vishwachi
Research Scholar,

AKGEC, Ghaziabad, India

Sonam Gupta
Assistant Professor,

Department of Computer Science
and Engineering, AKGEC,

Ghaziabad, India

ABSTRACT
Code cloning is the procedure where the developers

reuse the code fragments implementing the paste option.

They may or may not make the modification in the

source code. The code thus developed after copying is

known as clone. It is the synonym of duplicate. In the

year 2002, Ira Baxter coined the term clones as the

segments of code that are similar according to some

definition of similarity. The similarity can be based on

text, syntactic or semantic. Studies have revealed that

almost 10-15% of the source code in large software are

part of single or more clones[1]. Clones have adverse

impact on the software maintenance, thus identification

of clones is beneficial. In the past decade many tools

have been developed to detect the clones but none was

able to correctly identify all types of clones. In this paper

the literature survey of all the clone detection techniques

has been done. Along with this it also propose an

approach which will use a combination of tree and token

based approach in order to detect the code clones.

Keywords

Clones, textual comparison, LWH approach, token based

approach, PDG approach, metric comparison, AST

approach.

1. INTRODUCTION
A code clone is a section of code in the source files

which is similar or identical to another code section[4].

The similarity can be based on text, syntax or sematic

(behavioral). Code clone generally results from the

practice of copy and paste followed by the developers.

They result in increased maintenance efforts. Thus

various tools have been developed to detect the code

clones. Automated code clone techniques and tools

utilize different similarity measures to find

clones in code[6]. Various techniques available for

detecting the code clones are textual comparison, metric

based approach, token based approach, AST based

approach, PDG approach, LWH approach, CRD

approach. In this paper we will briefly describe the

clones and the measures to identify them. The

consequences of cloning are that cloning of code

generally increases the maintenance effort. If the

code is redundant then changes must be made

consistently multiple times. This effort could have

completely avoided if the code would have been

implemented only once in a function. Code cloning is a

purposeful implementation strategy which may make

sense under certain circumstances [3]. Generic solutions

can become overly complicated.

The paper is organized as: section II contains types of

clones, section III describes the procedure of clone

detection, section IV gives the detailed techniques of

clone detection along with the limitations and advantages

of each. And finally section V gives the proposed

approach and section VI includes the conclusion.

2. TYPES OF CLONES
Clones are generally divided into four main categories:

Type 1: program fragments which are identical copies

of each other expect for the whitespaces and comments

variations.

Example:

Type 2: Program fragments which are syntactically

identical copies; except some changes in variables

names, data type, identifier name, etc.

Example:

Type 3: is a copied fragment with further modifications.

Statements can be changed ,added or removed in

addition to variations in identifiers, literals, types, layout

and comments.

int i=1;

if(i<=5)

printf (“

Continue…..”);

else

printf(“skip..”);

i++;

// fragment 1

int i=1; /*initializing the

value of i */

if (i<=5)

printf(“Continue…..”);

else

printf(“skip..”);

i++;

// fragment 2

float k=1;

if(k<=10)

printf(“ Hello…..”);

else

printf(“ Bye…..”);

k++;

//fragment 2

int i=1; /* initializing

value of i */

if(i<=10)

printf(“ Hello…..”);

else

printf(“ Bye…..”);

i++;

//fragment 1

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

2

Example:

Type 4:Two or more code fragments that perform the

same computation, but implemented through different

syntactic variations.

Example:

3. CLONE DETECTION PROCESS
The detection of clones has now become one of the most

important part of the development process as the clones

create trouble later in the maintenance phase. The

process of clone detection can be sub-divided into six

phases. They are:

1. Preprocessing
The detection of code cloning starts with the partitioning

of the source code. This phase is mainly responsible for:

 Removal of all the comments, white spaces etc.

 Determine source units: the source code

obtained after the removal of white spaces and

comments is then partitioned into a set of

disjoint pieces known as source units which are

the largest source sections suspected to be

involved in direct clone relations with each

other[4].

 Determining the granularity: source units may

further be partitioned into smaller units say

into lines or tokens for a comparison purpose.

2. Transformation
After preprocessing step, the source code of the

comparison units is transformed to a proper intermediate

format for comparison [4]. Transformation includes

extraction and normalization. Extraction may involve

tokenization, parsing, control and data flow analysis

depending on the approach we are following in the

detection process. Normalization is an optional step.

3. Match Detection
The comparison units take transformed code as input and

compares the transformed comparison units to each other

to discover matches [4].

4. Formatting
Here the source coordinates of each clone pair obtained

in the comparison phase are mapped to their positions in

the original source files.

5. Filtering
Here the clones are manually analyzed, filtered and

ranked or they may be fed under automated heuristics.

6. Aggregation
Clones may be aggregated to clone classes with the aim

to diminish the measure of data or gather overview

statics.

Fig 1. Clone detection procedure

4. APPROACHES OF CLONE

DETECTION

4.1 Textual Comparison
This approach compares whole lines to each other

textually. The targeted source code is considered to be

the sequence of the strings or lines.in order to find the

match/clone the two code parts are compare to each

other. If the two parts of the code found out to be similar

then they are considered as clones. The approach

followed in textual comparison is light weighted and are

able to detect the clones accurately with higher recall

values, where recall refers to the overall percentage of

clone exist in the source code that have been detected by

the clone detector [1]. The work done in this technique

has been summarized in table 1.

Pre-
processin

g

Transfor
mation

Match
Detection

Formattin
g

Filtering

Aggregati
on

void sum()

{

int x=1;

int y=x=5;

return y;

}

//fragment 1

intfunc()

{

int m=5;

return ++m;

}

//fragment 2

int main()

{

int a=1,b=5,sum=0;

sum=sum+a;

printf(“%d”, sum);

}

//fragment 1

int main()

{

if(sum<=5)

{

s=a+sum;

sum++;

}

printf (“%d”, s);

}

//fragment 2

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

3

4.2 Token Based Approach
In token based clone detection techniques, firstly, tokens

are extracted from the source code by lexical analysis.

Then sequence is formed from some set of tokens which

are then compared in order to find the clone. They are

fast with high recall values. The most popular token-

based tool named CCFinder was developed by T.Kamiya

and S.Kusumoto [19] in the year 2002. Since then, it is a

popular tool among researchers and has been used widely

for code clone analysi sand management. Researchers are

working to enhance the output of CCFinder for example

Basit et al. [20] used CCFinder to study the patterns of

clones in a standard template library. They increased the

threshold of CCFinder to detect the smaller clones too.

Another tool based on token approach is CP-Miner

which uses frequent item set mining in order to detect the

bugs in the softwares produced due to clones. Yamashina

et al. [42] designed a tool called CCFinderX. The work

done in this technique has been summarized in table 2.

Table 1. Work done on text based approach

Sn

o.

Auth

or

Tool Yea

r

Advanta

ge

Disadvant

age

1. Wette

l et al.

[17]

Dude 200

5

Can

detect

duplicati

on chains

consistin

g of

number

of

smaller

size

exact

clones.

Can not be

applied to

large

systems.

2. C.K.

Roy et

al.

[30,31

]

NICA

D

200

8-

200

9

Can

detect

type 3

clones

very

effectivel

y as

compare

d to other

text

based

tools.

Not

exactly

text-based

but rather

hybrid as it

exploits

the

benefits of

tree-based

structural

analysis.

3. S. Lee

et al.

[18]

SDD 200

5

Capable

of

detecting

clones in

large

sized

systems.

Its

accuracy is

not high.

4. Baker

et al.

[36,37

]

Dup 199

2-

199

9

Can

detect

clone

even if

the

names of

variables

are

different.

Uses large

search

space as

hashing is

to be

applied. it

cannot

detect

clones if

source

code is

written in

different

styles.

5. Cordy

et al.

[39]

 200

4

Capable

of

detecting

near-miss

clones.

Precision

value is not

high.

6. Ducas

se et

al.

 The tool

is

language

independ

ent

Not able to

detect

meaningful

clones

4.3 Metric Based Approach
In this technique, we gather different metrics for code

fragments and compare these metric vectors instead of

comparing the code directly. In this approach metric

values for different methods are calculated to extract the

potential clone pairs. The metrics used may involve

number of lines, number of arguments, number of

function calls etc. The two methods whose metrics

comes out to be similar are considered as clone pairs.

The major advantage of this technique is that it can

detect both the syntactically and semantically similar

clones. The work done in this technique has been

summarized in table 3.

Table 2. Work done on token based approach

Sno. Autho

r

To

ol

Yea

r

Advantage Disadvantage

1. T.Ka

miya

et al.

[19]

CC

Fin

der

200

2

Till date the

most popular

tool used for

clone analysis

and

management.

It is unable to

detect smaller

clones.

2. Basit

et al.

[20]

 200

5

Enhanced

CCFinder by

increasing its

threshold to

detect smaller

clones too.

Unable to find

out the

semantic

similarity

between the

codes.

3. Z Li et

al.

[44]

CP-

Mi

ner

200

6

Can detect

bugs in

software

induced due to

cloning.

Precision is not

very high.

4. Yamas

hina et

al.

[42]

CC

Fin

der

X

200

9

Tokens are fed

as input to

suffix array

which results

in fast

retrieval.

Needs

improvement in

ranking

algorithm.

5. Sasaki

et al.

FC

Fin

der

201

0

Used hashing

It does not

accept source

files written in

two or more

programming

language.

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

4

Table 3. Work done on Metric based approach

Sno. Author Year Advantage Disadvantage

1. Mayrand et

al. [21]

1996 Was one of

the first

approach to

compare

metrics

obtained

from AST of

source code.

Not able to

identify segments

which are based

on copy-paste

operation.

2. Kontogiannis

et al. [22]

2004 Applies

dynamic

programming

on the lines

of source

code by

using

minimum

edit distance

between

them. Thus,

it is able to

detect the

similarity

more

precisely.

Not being able to

find the exact

clones. It can

only find out the

similarities

between the

codes.

3. Perumal et

al. [43]

2010 Used

fingerprint

technique to

detect the

clones.

The technique

used is quite

costly.

4. Li and Sun

[44]

2010 The

technique

used in this

tool is

scalable as

well as

accurate.

It is yet to be

verified for

different systems.

5. Lovoie et al.

[45]

2010 Technique

used is based

on graphics

processing

unit (GPU)

which results

in increased

performance.

4.4 Program Dependency Graph (PDG)

Approach
PDG is a semantic (behavioral) based approach. PDG

considers the semantic information which is encoded in

the form of a dependency graph that captures the data

flow and control information. Clones may be identified

as isomorphic sub graphs in a PDG [3]. R. Komondoor et

al. [24] developed a tool based on PDG approach which

uses program slicing to find out the isomorphic sub-

graphs. Its main feature is that it helps in detecting the

non-contigous clones. Another tool Scorpio was

developed by Higo and Kusumoto [25] in the year 2011

which applies two-way slicing to detect clones. It was

developed with the aim to address the problem of slow

detection of contiguous clones which the existing

systems faced. Krinke [35] used PDG as an iterative

approach for finding maximal similar sub-graph but it

suffers from the shortcoming that it was not able to give

a formula that can be used on any type of system to find

the clone[35]. All the researchers using PDG technique

came to the conclusion that although PDG-based

techniques can find non-contiguous clones but it cannot

be applied to large systems[35]. The major disadvantage

of this approach is that sub graph comparison is quite

costly in this approach. The algorithms which uses this

technique returns the approximate results. The tabular

representation of the work done so far using this

technique is given in table 4:

Table 4. Work done on PDG based approach

Sno

.

Author Yea

r

Advantage Disadvanta

ge

1. Horwitz et

al.

199

0

Can identify

syntactic

and

semantic

difference

between

two

versions of

program.

Cannot be

applied to

large

systems.

2. Krinke et

al. [35]

200

1

Finds

maxiaml

similar sub-

graphs

Not able to

give a single

formula

which can

be used on

any type of

system for

finding

clone.

3. R.

Komondo

or et al.

[24]

200

3

Finds

isomorphic

sub-graphs.

Helps in

detecting

non-

contigous

clones.

Limited only

to smaller

sized

systems.

4. Higo et al.

[25]

201

1

Based on

no. of PDG

specializatio

n for Java

language

and

heuristics

4.5 Abstract Syntax Tree (AST)

Approach
The most commonly used representations in order to

transform the source code into tree structure is Abstract

Syntax tree and parse trees. It can be used to find out the

syntactic differences between the two parts of the same

source code. This technique is generally based on

grammar and a parse tree is generated for both the parts

of the code. Detection of the clone is applied

synchronously to both the trees and it is based on the

LCS(longest common subsequence). If the subsequence

of the two parts comes out to be similar then they will be

considered as clones. The work done in this technique

has been summarized in table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

5

Table 5. Work done on AST based approach

Sn

o.

Author Ye

ar

Tool Advant

age

Disadvan

tage

1. I.D.Baxt

er et al.

[26]

199

8

Clone

DR

Can

detect

as well

as near

miss

clones.

Suffers

from large

execution

time.

2. Jiang et

al. [46]

200

7

Decka

rd

Capable

of

finding

the

behavio

ral

similarit

y.

The

approach

used is

heavy-

weighted.

3. Falke et

al.[29]

200

8

 Used

syntax

tree.

Has

advanta

ge of

precisio

n of

syntax

tree and

high

speed of

syntax

tree.

Takes

longer

time to

traverse

the tree.

4. Ekoko et

al.[49]

200

8

Clone

Tracke

r

Detect

the

clones

in Java

codes

Results in

large

number of

false

positives.

5. W.S.Eva

ns et al.

[48]

200

9

Asta Works

on

structur

al

abstracti

on of

arbitary

sub-

trees of

AST.

6. T.T.Ngu

yen et

al.

[23,41]

200

9

Clema

nX

Can

detect

clones

in

aassemb

ly code.

4.6 Hybrid Approach
As the name implies it is a hybrid technique so it will

combine two or more of the above techniques. LWH

(light weight hybrid) combines the textual comparison

and metrics based approach in order to detect the

method-level syntactic and as well as semantic clones.

The tool developed using this technique accepts the

source code and separates the functions/methods present

in it. Also, it forms the template of each of the method

present. After this, the code metrics is computed for each

method and are stored in a database. The methods whose

metrics values comes out to be nearly similar are

subjected to textual comparison to detect the actual clone

pairs. Egambaram Kodhai et al. [1] in the year 2014

developed a tool named CloneManager which used

LWH approach. The tool is able to detect all four types

of the clones with high precision. It first converts the

source code into templates and then apply the metrics

approach to find the similarities between different parts

of the source code. Maeda[50] in the year 2009

introduced a technique based on PALEX source code

representation.it is language independent and uses a

suffix tree for comparison. Chilowicz et al. [51] used

suffix array and metrics. The technique starts with

collecting the tokens using lexical analysis. Basit et al.

[52] developed a tool named Clone Miner in the year

2009 which used frequent item set mining and works on

the output of a token based clone detection tool named

RTF. Its disadvantage is that it doesn’t implies the

refactoring method. The major advantage of this

approach is that it is light weighted so the time it takes to

detect the clones is quite low as compared to other

techniques. The accuracy of the tool developed using this

technique comes out to be 88-100 % which is

considerably high.

5. PROPOSED APPROACH
Till now, we have seen the advantages and disadvantages

of all the well known approaches of locating the clones

in source code. There is not a single approach which is

capable of detecting all four kinds of clones precisely

with 100% efficiency. The text based approach can

detect the clones of only 2 types (in some cases upto type

4). So, here we propose a hybrid approach including the

tree and token based approach. We will construct an

AST of the given source code and will traverse it using

DFS technique. After that, we will store the leaf nodes of

the tree as tokens and the tokens of the same kind will be

stored in the list. Then the Levenshetin distance between

them will be find out. The two list of tokens among

whom the levenshetin distance comes out to be minimum

than a particular threshold can be considered as clones.

6. CONCLUSION
In this paper, a review about the clones and different

techniques to detect them is shown. Clone are harmful as

they increase the maintenance efforts. So, it is better to

detect them beforehand in order to avoid any kind of

problems in future. Also, the refactoring procedure is not

easy because of the cost and risk associated with

refactoring. Therefore, one of the above mentioned

approach may be used at the time of development of the

source code before handing over the product to the client

so that in maintenance phase the product doesn’t

encounter much difficulty. The studies shows that the

most advantageous method of detecting clones is the

combination of metrics and textual approach as they

results in light weight tool development occupying less

space and resulting in a small execution time as

compared to other techniques.

7. REFERENCES
[1] Kodhai, Egambaram, and SelvaduraiKanmani.

"Method-level code clone detection through LWH

(Light Weight Hybrid) approach." Journal of

Software Engineering Research and

Development 2.1 (2014): 1.

[2] Sonam Gupta, Dr. P.C Gupta, Clones: A Survey,

International Journal of Computer Science and

Technology 2012

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

6

[3] Koschke, Rainer. "Survey of research on software

clones." Dagstuhl Seminar

Proceedings.SchlossDagstuhl-Leibniz-

ZentrumfürInformatik, 2007.

[4] Singh, Gurvinder, and Jahid Ali. "A Novel

Composite Approach for Software Clone

Detection." International Journal of Computer

Applications 126.7 (2015).

[5] Singh, Manu, and Vidushi Sharma. "Detection of

File Level Clone for High Level Cloning." Procedia

Computer Science 57 (2015): 915-922.

[6] Tairas, Robert, and Jeff Gray. "Increasing clone

maintenance support by unifying clone detection

and refactoring activities." Information and

Software Technology 54.12 (2012): 1297-1307.

[7] Rattan, Dhavleesh, Rajesh Bhatia, and Maninder

Singh. "Software clone detection: A systematic

review." Information and Software Technology 55.7

(2013): 1165-1199.

[8] Basit, Hamid Abdul, and Stan Jarzabek. "A data

mining approach for detecting higher-level clones in

software." IEEE Transactions on Software

engineering 35.4 (2009): 497-514.

[9] Al-Omari, Farouq, et al. "Detecting clones across

microsoft. net programming languages." 2012 19th

Working Conference on Reverse Engineering.IEEE,

2012.

[10] Gupta, Sonam, and P. C. Gupta. "Algorithm to

Detect Non-Contiguous Clones with High

Precision." International Journal of Innovations in

Engineering and Technology, Vol 5 Issue 1,

February 2015.

[11] Gupta, Sonam, and P. C. Gupta. "A Novel

Approach to Detect Duplicate Code Blocks to

Reduce Maintenance Effort." International Journal

of Advanced Computer Science & Applications 1.7

(2016): 311-314.

[12] Gupta, Sonam, and P. C. Gupta. "International

Journal of Software and Web Sciences (IJSWS)

www.iasir. net." International Journal of Software

and Web Sciences (2015): 65.

[13] Chatterji, Debarshi, Jeffrey C. Carver, and Nicholas

A. Kraft. "Code clones and developer behavior:

results of two surveys of the clone research

community." Empirical Software

Engineering (2015): 1-33.

[14] Kanagalakshmi, K., and R. Suguna. "Software

Refactoring Technique for Code Clone Detection of

Static and Dynamic Website.”

[15] Kapser, Cory J., and Michael W. Godfrey.

"Supporting the analysis of clones in software

systems." Journal of Software Maintenance and

Evolution: Research and Practice 18.2 (2006): 61-

82.

[16] Kapser, Cory, and Michael W. Godfrey. "" Cloning

considered harmful" considered harmful." 2006

13th Working Conference on Reverse

Engineering.IEEE, 2006.

[17] Wettel, Richard, and RaduMarinescu. "Archeology

of code duplication: Recovering duplication chains

from small duplication fragments." Seventh

International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing

(SYNASC'05). IEEE, 2005.

[18] Lee, Seunghak, and IryoungJeong. "SDD: high

performance code clone detection system for large

scale source code." Companion to the 20th annual

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and

applications.ACM, 2005.

[19] Kamiya, Toshihiro, Shinji Kusumoto, and Katsuro

Inoue. "CCFinder: a multilinguistic token-based

code clone detection system for large scale source

code." IEEE Transactions on Software

Engineering 28.7 (2002): 654-670.

[20] Basit, Hamid Abdul, Damith C. Rajapakse, and Stan

Jarzabek. "Beyond templates: a study of clones in

the STL and some general

implications."Proceedings of the 27th international

conference on Software engineering.ACM, 2005.

[21] Mayrand, Jean, Claude Leblanc, and Ettore M.

Merlo. "Experiment on the automatic detection of

function clones in a software system using

metrics."Software Maintenance 1996, Proceedings.,

International Conference on. IEEE, 1996.

[22] Patenaude, J-F., et al. "Extending software quality

assessment techniques to java systems." Program

Comprehension, 1999.Proceedings.Seventh

International Workshop on.IEEE, 1999.

[23] Nguyen, Tung Thanh, et al. "Scalable and

incremental clone detection for evolving

software." Software Maintenance, 2009.ICSM

2009.IEEE International Conference on.IEEE, 2009.

[24] Komondoor, Raghavan, and Susan Horwitz. "Using

slicing to identify duplication in source

code." International Static Analysis

Symposium.Springer Berlin Heidelberg, 2001.

[25] Higo, Yoshiki, and Shinji Kusumoto. "Code clone

detection on specialized PDGs with

heuristics." Software Maintenance and

Reengineering (CSMR), 2011 15th European

Conference on. IEEE, 2011.

[26] Baxter, Ira D., et al. "Clone detection using abstract

syntax trees." Software Maintenance,

1998.Proceedings., International Conference on.

IEEE, 1998.

[27] Tool SimScanhttp://www.blue-

edge.bg/download.html

[28] Project Bauhaus http://www.bauhuas-struggart.de

[29] Koschke, Rainer, RaimarFalke, and Pierre Frenzel.

"Clone detection using abstract syntax suffix

trees." 2006 13th Working Conference on Reverse

Engineering.IEEE, 2006.

[30] Roy, Chanchal K., and James R. Cordy. "NICAD:

Accurate detection of near-miss intentional clones

using flexible pretty-printing and code

normalization."Program Comprehension,

http://www.blue-edge.bg/download.html
http://www.blue-edge.bg/download.html
http://www.bauhuas-struggart.de/

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No4, November 2016

7

2008.ICPC 2008.The 16th IEEE International

Conference on.IEEE, 2008.

[31] Roy, Chanchal K. "Detection and analysis of near-

miss software clones."Software Maintenance,

2009.ICSM 2009.IEEE International Conference

on.IEEE, 2009.

[32] Barbour, Liliane, Hao Yuan, and Ying Zou. "A

technique for just-in-time clone detection in large

scale systems." Program Comprehension (ICPC),

2010 IEEE 18th International Conference on.IEEE,

2010.

[33] Roy, Chanchal K., and James R. Cordy. "Are

scripting languages really different?." Proceedings

of the 4th International Workshop on Software

Clones. ACM, 2010.

[34] Martin, Douglas, and James R. Cordy. "Analyzing

web service similarity using contextual

clones." Proceedings of the 5th International

Workshop on Software Clones. ACM, 2011.

[35] Gupta, Sonam, and P. C. Gupta. "Literature survey

of clone detection techniques." International Journal

of Computer Applications 99.3 (2014): 41-44.

[36] Brenda S. Baker. A Program for Identifying

Duplicated Code. In Proceedings of Computing

Science and Statistics: 24th Symposium on the

Interface, Vol. 24:4957, March 1992.

[37] Brenda S. Baker. Parameterized diff.In Proceedings

of the 10th ACM-SIAM Symposium on Discrete

Algorithms (SODA’99), pp. 854-855, Baltimore,

Maryland, USA, January 1999.

[38] Brenda S. Baker. On Finding Duplication in Strings

and Software.Journal of Algorithms, 1993.

[39] Cordy, James R., Thomas R. Dean, and Nikita

Synytskyy. "Practical language-independent

detection of near-miss clones." Proceedings of the

2004 conference of the Centre for Advanced Studies

on Collaborative research. IBM Press, 2004.

[40] Monden, Akito, et al. "Software quality analysis by

code clones in industrial legacy software." Software

Metrics, 2002.Proceedings.Eighth IEEE Symposium

on.IEEE, 2002.

[41] Nguyen, Tung Thanh, et al. "Scalable and

incremental clone detection for evolving

software." Software Maintenance, 2009.ICSM

2009.IEEE International Conference on.IEEE, 2009.

[42] Kawaguchi, Shinji, et al. "Shinobi: A tool for

automatic code clone detection in the ide." 2009

16th Working Conference on Reverse

Engineering.IEEE, 2009.

[43] Perumal, A., Kanmani, S., &Kodhai, E. (2010,

September). Extracting the similarity in detected

software clones using metrics. In Computer and

Communication Technology (ICCCT), 2010

International Conference on (pp. 575-579). IEEE.

[44] Li, Z. O., & Sun, J. (2010, April). A metric space

based software clone detection approach.

In Information Management and Engineering

(ICIME), 2010 The 2nd IEEE International

Conference on (pp. 393-397). IEEE.

[45] Lavoie, T., Eilers-Smith, M., & Merlo, E. (2010,

May). Challenging cloning related problems with

GPU-based algorithms.In Proceedings of the 4th

International Workshop on Software Clones (pp.

25-32).ACM.

[46] Jiang, L., Misherghi, G., Su, Z., &Glondu, S. (2007,

May). Deckard: Scalable and accurate tree-based

detection of code clones. In Proceedings of the 29th

international conference on Software

Engineering (pp. 96-105).IEEE Computer Society.

[47] Tairas, R., & Gray, J. (2010, March). Sub-clone

refactoring in open source software artifacts.

In Proceedings of the 2010 ACM Symposium on

Applied Computing (pp. 2373-2374).ACM.

[48] Evans, W. S., Fraser, C. W., & Ma, F. (2009). Clone

detection via structural abstraction. Software

Quality Journal, 17(4), 309-330.

[49] Duala-Ekoko, E., &Robillard, M. P. (2008, May).

Clonetracker: tool support for code clone

management. In Proceedings of the 30th

international conference on Software

engineering (pp. 843-846).ACM.

[50] Maeda, K. (2009). Syntax sensitive and language

independent detection of code clones. World

Academy of Science, Engineering and

Technology, 60, 350-354.

[51] Chilowicz, M., Duris, É.,&Roussel, G. (2009).

Finding similarities in source code through

factorization. Electronic Notes in Theoretical

Computer Science, 238(5), 47-62.

IJCATM : www.ijcaonline.org

