
International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

31

A Comprehensive Survey on SSL/ TLS and their

Vulnerabilities

Ashutosh Satapathy

Research Associate
School of Computing

Science and Engineering
VIT University-Chennai Campus

Chennai, India

Jenila Livingston L. M.
Associate Professor
School of Computing

Science and Engineering
VIT University-Chennai Campus

Chennai, India

ABSTRACT
The boom of internet, web technologies bring the whole world

under a single roof. Transferring information through e-ways

leads security to be an important aspect to deal with. In IP

network, SSL/ TLS is the protocol works on the top of the

transport layer to secure application traffic and provides end to

end secure communication. A security hole in those protocols

makes the communication channel vulnerable to be

eavesdropped and modified information later. This paper

discuses SSL and TLS architectures and presents survey on

attacks against SSL/TLS. It also highlights the factors

influence on those attacks.

Keywords
Secure Socket Layer, Transport Layer Security, Compression

Algorithms, Message Authentication Code, Cipher Block

Chaining, SSL/ TLS Attacks
1. INTRODUCTION
Today in business world, World Wide Web (WWW) is the role

model behind every action. As the demand increases, it

requires transformation from web services to secure web

services. Secure Socket Layer (SSL)/ Transport Layer Security

(TLS) protocols are used to provide reliable services over

transport layer protocol [1]. SSL has gone through several

upgradation such as SSLv1.0, SSLv2.0, and SSLv3.0 etc.

SSLv3.1 is basically called as TLSv1.0 which provides

backward compatible with previous version of SSL.SSL

protocol works on two layer of services where first one is SSL

connection and second one is SSL session. SSL connection

works at transport layer to establish links between clients and

servers. Peer to peer associations allow sessions to be built up

which is ephemeral. Each SSL session is associated with one

SSL connection. SSL/ TLS handshaking protocol is used to

create session by exchanging a couple of parameters (e.g.,

random number, session ID, cipher suite, compression

techniques etc.). Each session is maintained by two states

mainly. Session state deals with a number of parameters such

as session identifier, X509 certificate, compression techniques,

cipher specification, master secret etc. connection state

parameter includes server and client send MAC secrets,

initialization vectors, sequence numbers etc.

2. ARCHITECTURE

2.1 SSL Architecture
SSL is the mixture of four protocols which provide security to

upper layer protocols such as HTTP, FTP and any application

layer protocol. They are distributed into two layers (see Figure
1).

Fig 1: SSL protocol layer structure

2.1.1 SSL Record Protocol
It works as the base for other three protocols and provides

confidentiality and integrity to upper layer messages. At sender

site, it segments the information into a number of chunks,

compresses those, compute MAC and encrypt the chunks with

corresponding MAC together. At receiver site, those processes

are accomplished in opposite direction before the original

messages delivered to receiver. By default compression is

disabled in SSLv3.0 and all versions of TLS. Flow structure of

SSL packets creation are divided into five parts (see Figure 2).

Fig 2: SSL record protocol working principle

i. Compression Algorithms: Lossless compression techniques

are called by the SSL record protocol to squeeze the data

without any loss. (e.g., Huffman codding, LZ77, GZIP etc.)

ii. Hash Algorithms: Secure hash functions are played major

roles to provide confidentiality to each segment of data.

Most popular MD5 and SHA algorithms are used to

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

32

compute MAC. (e.g., MD5, SHA-1, SHA-224, SHA-256

etc.)

iii. Encryption Algorithms: Symmetric stream or block cipher

techniques are used to create SSL payload. In case of stream

cipher encryption, compressed chunk and MAC are

encrypted together. Padding bits are added along MAC to

chunk before block cipher encryption. Symmetric algorithms

with their key sizes are listed in table 1 and table 2.

Table 1. Stream encryption algorithms and key sizes

Algorithms Key Sizes (bits)

RC4 40 or 128

Table 2. Block encryption algorithms and key sizes

Algorithms Key Sizes (bits)

RC2 40

DES 40 or 56

Fortezza 80

IDEA 128

3DES 168

AES 128 or 256

As described above, hash function with a shared secret key is

used to calculate Hashed based Message Authentication Code

(HMAC) where „+‟ stands for concatenation operation. Its

evaluation is given below.

HASH (MAC_secret_key + pad_2 +

HASH (MAC_secret_key + pad_1 + seq_no +

compression_type + compressed_chunk_length +

compressed_chunk) (1)

Padding bits (pad_1 and pad_2) length for MD5 and SHA-1

are 384 bits and 320 bits respectively. Segmentation allows

maximum size of chunk is 214 bytes. If compression is applied,

the length of chunk after compression is not more than 1024

bytes. So, it permits the maximum size of MAC is 1024 bytes.

214 + 2048 bytes is the maximum length of SSL payload which

forces encryption algorithm to restrict the incremental length

not more than 1024 bytes. At last SSL header is appended to

SSL payload before packets send to lower layer. SSL record

protocol header consists of four major fields such as Content

Type, Major Version, Minor Version and Compressed length.

Content Type defines handshake, change_cipher_spec,

application_data and alert which supply information to upper

layer protocol to process the chunks/ segments at receiver side.

Major and Minor Version specifies used major and minor

version of SSL in use. Compressed length indicate size of SSL

payload in bytes.

2.1.2 SSL Change Cipher Spec Protocol
It is one of the simplest protocol utilizes SSL record protocol

and deals with single byte. Byte with value 1 indicates current

state is updated with remaining state causes new cipher suite to

be activated for current link. Normally new SSL handshaking

is followed by change cipher spec message.

2.1.3 SSL Alert Protocol
It propagates faults to peer devices happens during SSL

negotiation and connection. It deals with two bytes which are

compressed and encrypted alike other messages. First byte

indicates level of alert and carries two values such as „1‟ stands

for warning or „2‟ stands for fatal. If the alert message is fatal,

link must be aborted and no new link can be established on that

particular session by SSL. Second byte indicates the degree of

severity specified by code related to different alert messages.

Alert messages with corresponding codes and types are listed

in table 3 [2].

Table 3. Alert messages of SSL

Codes Alerts Representations Types

0 close_notify No more

messages on this

link to receiver

Warning

10 unexpected_message Inappropriate

message to

receiver

Fatal

20 bad_record_mac Incorrect MAC

record to receiver

Fatal

21 decryption_failed Invalid decryption

due to improper

chunk size

Fatal

30 decompression_failure Decompression

fail due to

improper input

Fatal

40 handshake_failure Negotiation fail

due to improper

security

parameters set

Fatal

41 no_certificate Reply to no proper

certificate is

available

Warning

42 bad_certificate Corrupted

certificate or

contains invalid

signature

Warning

43 unsupported_certificate Sender certificate

is unsupported

Warning

44 certificate_revoked Certificate was

withdrawn by

signer

Warning

45 certificate_expired Issued certificate

is no longer valid

Warning

46 certificate_unknown An uncertain

problem causes

certificate to be

inappropriate

while handling

Warning

47 illegal_parameter Security

parameter are

inconsistent w.r.t.

their field in

handshake

Fatal

2.1.4 SSL Handshake Protocol
It is the first protocol come to action after the connection is

established by transport layer protocol. Client and server

validate each other and exchange necessary security parameters

such as cipher suite, compression techniques, random number

etc. before sending application data to each other (see Figure

3). Handshake protocol packet consists of three fields. „Type‟

deals with 1 byte represents type of the packet, „Length‟ of 3

bytes indicates length of the packet and „Content‟ (≥ 0 bytes)

carries necessary security parameters to be set during

negotiation. Handshake messages with corresponding codes

and security parameters are listed in table 4 and table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

33

Fig 3: SSL/TLS handshaking protocol operation

Table 4. Handshake messages of SSL

Codes Messages Parameters

0 MT_hello_request Void

1 MT_client_hello version,random_no,

session_id,

cipher_suite,

compression_tech

2 MT_sever_hello version,random_no,

session_id,

cipher_suite,
compression_tech

11 MT_certificate X.509 certificates chain

12 MT_server_key_exchange msg_signature,
public_parameters

13 MT_certificate_request cert_authorities,

cert_type

14 MT_server_done Void

 MT_client_key_exchange msg_signature,

public_parameters

15 MT_certificate_verify cert_signature

20 MT_finished MD5_hash +

SHA_hash

Table 5. SSL cipher suite

Parameters Values

Key exchange
algorithms

RSA, Diffie-Hellman, Fortezza

Cipher algorithm RC4, RC2, DES, 3DES or IDEA,
Fortezza

MAC algorithm MD5 or SHA

Cipher type Stream or Block

MAC size MD5(0 or 16 bytes) or SHA (20
bytes)

IV size Initialization vector size used in
CBC

CHR: MT_client_hello.random_no

SHR: MT_server_hello.random_no

SPM: secret_pre_master

SM: secret_master

HSM: Handshake_messages upto current message

CVSM: MT_certificate_verify.cert_signature.MD5_hash

CVSS: MT_certificate_verify.cert_signature.SHA_hash

KB: Key_block

To maintain authenticity of server key exchange messages,

signature is taken by encrypting hash with private key of

sender. Public parameters contains information regarding

different cryptographic algorithms are listed in table 6. SHA-1

is used for creation of Digital Signature Standard (DSS)

signature and both MD5 and SHA-1 (36 bytes) are used for

RSA signature.

Table 6. Algorithms and its parameters from server

Algorithms Public Parameters

Ephemeral Diffie-Hellman A prime no. and its primitive

root

RSA Public key (exponent and

Modulo)

The computation of hash is given below.

HASH (CHR+SHR+public_parameters) (2)

After server certificate and key exchange, it requests for client

certificate through certificate request message. In the response

client sends own certificate, key exchange parameters and

ended with certificate_verify message. Client key exchange

parameters are listed in table 7.

Table 7. Algorithms and parameters from client

Algorithms Public Parameters

Ephemeral Diffie-
Hellman

A prime no. and its primitive root

RSA 48 bits encrypted secret_pre_master

certificate_verify contains signature of client certificate and

calculated as follow.

CVSM= MD5 (SM+pad_2+MD5 (HSM+SM+pad_1)) (3)

 CVSS=SHA(SM+pad_2+SHA (HSM+SM+pad_1))

(4)

As mention above SHA-1 is used for DSS signature and both

MD5 and SHA-1 are used for RSA signature. Handshake

messages contain all the message from MT_client_hello to

MT_client_key_exchange. Finished message validates key

exchanges are successful or not under new cipher suite which

is immediately followed by change cipher spec message. It is

computed as given below.

MD5 (SM+pad_2+MD5 (HSM+sender_id+SM+pad_1) +

SHA (SM+pad_2+SHA (HSM+sender_id+SM+pad_1) (5)

sender_id represent whether current sender is client or server.

Diffie-Hellman server/client exchange parameters are used to

calculate respective public keys which are exchanged to

compute SPM at both sides. RSA client key exchange

parameters contain encrypted SPM which is decrypted by

server key to compute SM.

SM =MD5 (SPM+SHA („A‟+SPM+CHR+SHR)) +

 MD5 (SPM+SHA („BB‟+SPM+CHR+SHR)) +

MD5 (SPM+SHA („CCC‟+SPM+CHR+SHR)) (6)

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

34

In case of 3DES_ECE_CBC_SHA, SSL change cipher spec

message requires server_send_key (168 bits key + 24 control

bits), client_send_key (24 bytes), server_send_MACsecret (20

bytes), client_send_MACsecret (20 bytes), server_send_IV (8

bytes), client_send_IV (8 bytes) to change pending state to

current state. So, it requires a key block of 104 bytes to be

generated from SM which contains above parameters in

sequential order is evaluated as follow.

KB= MD5 (SM+SHA („A‟+SPM+CHR+SHR)) +

 MD5 (SM +SHA („BB‟+SPM+CHR+SHR)) +

MD5 (SM+SHA („CCC‟+SPM+CHR+SHR)) + […] (7)

2.2 TLS Architecture
As TLS is the upgraded version of SSL, it has same

architecture and protocols except there are some changes in

security parameters and computation of MAC, digital signature

and key block. It also introduces some new alert messages and

pseudorandom function to strengthen the security compare to

SSL are described below.

2.2.1 TLS Record Protocol
i. Version: It indicates the major and minor version

reinforced by client for current TLS. The major and minor

version for different version of TLS are listed in table 8

contradict to major and minor version for SSL are 3 and 0

respectively.

Table.8.Versions of TLS

Major Version Minor Version Class

3 1 TLS 1.0

3 2 TLS 2.0

3 3 TLS 3.0

ii. MAC: A cryptographic hash function with shared secret

key is used to calculate MAC. Here compression_version

is concatenated with other fields which are same as SSL

chunk fields shown in Eq.1.

 (MAC_secret_key, seq_no +TLS_compression_type +

TLS_compression_version +

TLS_compressed_chunk_length + TLS_compressed_chunk)
 (8)

iii. Pseudorandom function (PRF): It takes shared secret, tag

and data as inputs to PRF. It is calculated by taking XOR

over two hash value (MD5 and SHA). shared_secret_left

and shared_secret_right indicate left half and right half of

shared secret. Pseudo_MD5 and Pseudo_SHA are called

for three times to produces (3x 16 bytes) and (3x 20 bytes)

for 48 bytes final output. In case of Pseudo_SHA from 60

bytes last 12 bytes are truncated to produce 48 bytes.

PRF (shared_secret, tag, data) =

(Pseudo_MD5 (shared_secret_left, tag +data)) XOR

(Pseudo_SHA (shared_secret_right, tag+ data)) (9)

Here pseudo random function is called two times by

pseudo_MD5 and pseudo_SHA functions where data‟ is the

concatenation of tag and data supply to PRF.

Pseudo_hash (key, data‟) =

HMAC_hash (key, pMAC (1) +data‟) +

HMAC_hash (key, pMAC (2) + data‟) +

HMAC_hash (key, pMAC (3) + data‟) + …. (10)

pMAC (0) = data‟

pMAC (k) = MAC_hash (key, pMAC(k-1)) (11)

HMAC_hash is HMAC_MD5 for Pseudo_MD5 and

HMAC_SHA for Pseudo_SHA. Both pad_2 (512 bits) and

pad_1 (512 bits) carries binary values of X5C and X36

respectively which are repeated 64 times.

HMAC_hash (key, data‟) = hash ((key‟ XOR pad_2) +

hash ((key XOR pad_1) + data‟)) (12)

2.2.2 TLS Handshake Protocol
i. Cipher Suite: Key exchange and encryption algorithms

are supported by TLS are same as SSL listed in table V

except Fortezza. Apart from fixed and ephemeral Diffie-

Hellman algorithms, it also supports Elliptic Curve Diffie-

Hellman.

ii. Certificate Types: Response to certificate request message

by TLS, RSA or DSS signed certificate is issued where

the key exchange parameters are RSA or Diffie-Hellman

public parameters listed in table VI and VII.

iii. Certificate Verify Message: It carries signature of client

certificate calculated over previous handshake messages

by hashing these. It eliminates concatenation of master

secret and padding bits with handshake messages before

hash calculation as those will not add extra security to

certificate.

MT_certificate_verify.cert_signature.MD5_hash =

MD5 (handshake_messages) (13)

MT_certificate_verify.cert_signature.SHA_hash =

MD5 (handshake_messages) (14)

iv. Finished Message: Contrast to SSL, hash (MD5 and SHA)

are computed over handshake messages and concatenation

of these are given as input to PRF.

PRF (secret_master, tag, MD5 (handshake_messages)

+SHA (handshake_messages)) (15)

v. Master Secret and Key Block Computation: Master secret is

calculated by calling PRF function over three input such as

pre master secret, tag and concatenation of client and server

random number which is much simpler than SSL.

secret_master = PRF (secret_pre_master,

“master secret”,

MT_client_hello.random_no +

MT_server_hello.random_no) (16)

Key block is computed over three inputs such as master

secret,tag and concatenation of client and server random no by

passing as a parameters to PRF.

key_block = PRF (secret_master, “key expansion”,

 MT_client_hello.random_no +

 MT_server_hello.random_no) (17)

vi. Padding: Unlike SSL, before encryption an arbitrary

length of padding bits, length between 0 to 28-1are

concatenated after MAC to make the chunk size multiple

of cipher block size. In SSL, minimum amount of padding

bits are added to make multiple of cipher block.

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

35

2.2.3 TLS Alert Protocol
In TLS, additional alert messages are introduced to make

communication reliable are listed in table 9 [2]. It supports all

SSL alert messages except alert code 41.

Table 9. Alert messages of TLS

Codes Alerts Representations Types

22 Record_overflow Payload size exceeded

more than 214 + 2048
bytes

Fatal

48 unknown_ca CA certificate cannot be

trusted or discovered

Fatal

49 accessed_

denied

Negotiation failed due

to access control
provided by receiver

Fatal

50 decode_

error

Information could not

be decoded properly

due to incorrect

message length

Fatal

51 decrypt_

error

Unable to decrypt the

secret key, verify digital

signature or authenticity
of finished message

Warnin

g/ Fatal

60 export_

restriction

Negotiation against

export restriction are

detected and terminated

Fatal

70 protocol_

version

Protocol version is not
supported by server

Fatal

71 insufficient_

security

Handshaking fail due to

stronger cipher suite

required by server

Fatal

80 internal_error Error associated to local

system and not related
to SSL.

Fatal

90 User_cancelled Abnormal termination
of session by user

Fatal

100 no_renegotiation Client or server

response w.r.t hello

request is not suitable
for renegotiation

Warnin
g

2.3 Cipher Block Chaining
Cipher Block Chaining is one of the block cipher mode

operations which is used to encrypt a series of plaintext

chunks. For creation of first cipher text chunk, it gets

initialization vector (IV) from KB represents in Eq.7. Plaintext

chunk from 2 to onwards required IVs are the previous cipher

text chunk respectively (see Figure 3).

Cipher (k) = E [key, (Plain (k) XOR cipher (k-1))]

Cipher (0) = IV (18)

Fig 3: CBC for encryption

In CBC decryption, XOR operation is taken placed after cipher

text decrypted by key where IV for first plaintext is from KB.

Previous cipher text acts as IV for next plain text (see Figure

4).

Plain (k) = D [k, Cipher (k)] XOR Cipher (k-1) (19)

Fig.4. CBC for decryption

3. TYPES OF ATTACKS
One of the biggest threats to transport level security due to

flaws in SSL/ TLS, which is used to secure the

communication between sender and receiver. Vulnerabilities

in SSL/TLS triggers both active and passive attacks such as

BEAST, CRIME, TIME, BREACH, LUCKY 13, RC4

BIASES, SSL Renegotiation, POODLE, Truncation, Bar

Mitzvah etc.[3] and their fixes are listed in table 10.

3.1 BEAST attack
It is the short form of Browser Exploit Against SSL/ TLS

attack occurs by exploit TLS 1.0 and was developed by T.

Duong and J. Riazo. It takes the advantages of symmetric

encryption and cipher block chaining (CBC) technique to

guess secret key which is used to encrypt the plaintext. In TLS

1.0, last cipher text block is the initialization vector for current

plaintext. XOR operation between initialization vector and

plaintext is encrypted by symmetric key to produce

corresponding cipher text. If the hacker can guess a plaintext

block, he can guess the symmetric key and check whether

cipher text is matched or not [4, 5]. It is one type of brute

force attack fixed by the corresponding TLS 1.1 and TLS 1.2.

3.2 CRIME attack
It is the short form of Compression Ratio Info Leak Mass

Exploitation attack occurs by hijacking the session by

decrypting the session cookies in TLS 1.0 and was developed

by J. Riazo and T. Duong [6]. It takes the advantages of TLS

and SPDY header compression. SPDY is an open networking

protocol and control HTTP traffic developed by Google. Both

TLS and SPDY compression techniques use DEFLATE

algorithm, which eliminates duplicate string by compression

then encrypt it. The key is obtained by cheating the browser

and sending encrypted compressed request to genuine website,

waiting for the HTTP response size and increasing attack with

respect to HTTP responses [7]. Hacker repeats the techniques

with different values until the key will be obtained. It is one

type of brute force attack fixed by disabling the compression

mechanism in TLS 1.1 and TLS 1.2.

3.3 Time attack
Timing Info-Leak Made Easy (TIME) attack by which

attacker extracts secret information without eavesdropping

into the network and was developed by T. Be‟ery and A.

Shulman of Imperva. To perform this attack, hacker wants to

know cookies location, prefix/suffix and location to insert

plaintext. Information about the session cookies is obtained by

time taken to get the response from server/ receiver [8]. Due

to noise over the network, a single process will be repeated for

certain integral number of time and minimal response time is

taken as the final response time for that particular request.

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

36

Suppose client inputs contain “secret element = unknown

data” which is the payload and secret element and its value is

reflected in the response. In first iteration for arbitrary user

input the response size is 1028 bytes. If in the second iteration

the user input is “secret element = a” and the response size is

1008 bytes. So it is taken less time compare to first iteration.

With several requests the shortest response time for every

character for each position in the payload is computed which

is happened to be the correct guess and specific value of the

secret element.

3.4 BREACH attack
Browser Reconnaissance and Exfiltration via Adaptive

Compression of Hypertext is the crime attack against the

response body and it was developed by A. Prado, N. Harris

and Y. Gluck [9]. Attacker exploits the HTTP compression

technique (LZ77 algorithm) by guessing character and symbol

without downgrading or tampering SSL to launch this attack

and its guess will be reflected in response body [8]. It has

taken less than 30 seconds for fairly stable pages to obtain the

secret like CSRF token, view state etc... It is vulnerable to any

version of SSL or TLS. To launch breach attack, both attacker

and victim must be in the same network. The command and

control center has web server driver called iframe streamer

which is going to inject HTTP request in the victim, callback

listener whose work is to call back when response come to

victim and traffic monitor observes the length of the cipher

text coming back. Basic oracle logic is the collection of

algorithms is used to guess the secrets. For fighting against

Huffman coding, character set pool plus random padding is

used and for fighting against block cipher, window technique

is used. It is one of the most vulnerable attacks on SSL which

is yet to be patched.

3.5 LUCKY 13 attack
It is one of the most vulnerable attacks in SSL till now and

was developed by N. A. Fardan and K. Paterson at Royal

Holloway, University of London in February 2013. It uses

padding oracle technique is a side channel attack which is

affected on padding of a cipher text. Attacker exploits TLS‟s

cipher block chaining by replacing the last some bytes with

chosen bytes and watch amount of time taken by server to

respond [10]. TLS packets those contain true padding takes

less time to process. If TLS generates transaction to fail, it

produces a message that carries errors which helps the attacker

to send malicious packets in a new session repeatedly backing

every foregoing failure [6, 11]. Result shows that 223 sessions

required extracting information about cookies and 219 sessions

required if 64 bit encoding scheme is used by TLS. Overall

LUCKY 13 attack requires 213 sessions; if a byte of

information regarding MAC tag or padding is known.

3.6 RC4 BIASES attack
It is also known as ARC4 or ARCFOUR attack discovered by

Alfardan, Bernstein, Paterson, Poettering and Schuldt by

exploit all versions of SSL/ TLS. RC4-128 encryption

algorithm is used to encrypt the payload. It takes 128 keys and

generates string of random keys. These keys are XORed with

the different block of plaintexts to produce block of cipher

texts. The problem is that the random keys generated by RC4

are not quite random which helpful to recover some part of

plaintext with large number of TLS encryptions [12, 13]. If

same message is encrypted with different RC4 keys, then

random cipher texts will be generated. As keys are not quite

random or there are tiny biases, the cipher texts will be not

quite random or very small biases exist. Attackers tally up

these deviations from random by doing statistical analysis of

individual locations of the cipher texts. Experimental results

show that approximately 232 cipher texts give nearly all

plaintexts. Around 230 sessions required to extract plain texts

from cipher texts.

3.7 SSL Renegotiation attack
It is happened by exploit SSL 3.0 and all versions of TLS and

was discovered by M. Ray and S. Dispensa in August 2009.

Attacker hijacks HTTPs connection to add plaintext into the

conversion [14]. He/she doesn‟t decrypt the client server

communication. During secure online transaction, client

initiates SSL handshaking process. Hacker blocks the request

and captures those packets. Then he initiates new session and

complete the handshaking process. After completion of

handshaking process, attacker asks the server to credit

money to his account during banking transaction. Server
asks for renegotiation. Those block packets of victim will be

sent to server which will be the new SSL handshake over the

session that previously established. Two sessions are enough

to lunch attacks against victim. It can be fixed either by

disable renegotiation on server side or client-server has to

verify about previous handshaking.

3.8 POODLE attack
Padding Oracle On Downgraded Legacy Encryption attack is

one of the man in the middle attack where attacker exploit

SSL 3.0 vulnerabilities to decrypt HTTP cookies [11]. It was

discovered by B. Moller, T. Doung and K. Kotowicz on 14th

October 2014. Attacker is sitting between client and server

downgrade TLS v1.0 or latter version handshake attempted

between them for secure transmission to SSL v3.0. Padding

technique is used in SSL v3.0 which is random in nature i.e.

padding 1 to L bytes which are not deterministic to obtain

integral number of chunks to perform cipher block chaining

operation. Those bytes are not covered by MAC and not

validated while decrypting. Last byte of the padding indicates

number of padding bytes is used which is helpful for hacker to

trigger the attack [15]. Attacker copy intermediate byte(s) to

last bytes and try to exploit. If the modified last byte is same

as previous byte then after decryption correct number of

padding bytes will be trunked without affecting MAC bytes.

Now the message will be accepted by the server which will be

helpful to hacker to recover plaintext byte by byte but one

byte at a time by performing XOR operation. 1 out of 256

times the message will be accepted; worst case 255 times out

of 256 results error message and session will be aborted but at

last time it will be normal.

3.9 FREAK attack
Factoring RSA Export keys (FREAK) is one of the TLS

vulnerabilities found in several well-known browsers (e.g.

Safari, Android browser, Cisco, Opera). It is also called server

spoof attack against browsers. A group of weak export cipher

suites used by TLS are targeted by the attacker. These

algorithm packages are implemented within several TLS client

libraries such as Open SSL, Boring SSL, LibReSSL, IBM

JSSE, SChannel etc. Implementation of above libraries in

browser makes use of export cipher suite incorrectly, even if

non export cipher suite is negotiated between server and client

for information exchange. Negotiation of export cipher suite

between server and client allows attacker to trick client‟s

browser to use weak export key by performing MITM attack

[16]. FREAK attack downgrades cipher suite that uses RSA

key exchange algorithm where key size is lesser than 512 bits.

Thus it will take less than 12 hours for factorization [17]. Like

FREAK, Logjam vulnerabilities of SSL/TLS allows attacker

to downgrade the export cipher suite that uses Diffie-Hellman

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

37

key exchange algorithm [18]. It can be prevented by disabling

export cipher suite in browsers.

3.10 Bar Mitzvah attack
Exploit RC4 steam cipher algorithm supported by SSL/TLS

helps to extract information over encrypted communication

[12, 19]. Attacker tries to extract weak keys by targeting first

100 bytes of encrypted information out of which 36 bytes

belongs to SSL/ TLS finished message. As finished message

carries most predictable information, plain finished messages

are XORed with encrypted finished messages to extract part of

Pseudo Random Number Generator Sequences (PRNGS).

After Discarding PRNGS which do not follow the pattern of

weak keys generated PRNGS, all the keys of selected PRNGS

are used to decrypt cipher text captured by attacker using RC4

algorithm. Keys with 0.5 probabilities are successfully

determined which minimizes the number of trials taken by

brute force attack as a difference of 211.2. This attack unable to

extract full plaintexts from cipher texts.

3.11 TLS Truncation Attack

Abnormal termination of TLS connection performed by

adversary to keep alive victim session using multiple browser

connection [20]. It was developed by B. Smyth and A. Pironti

in July 2013. To increase performance, web browser load

content through multiple connection. As TLS provides

integrity and confidentiality over a single connection, client

browser‟s multiple connections to single server are ordered

over TLS single connection. Prior to perform this attack,

attacker has full control over network which help to inject/

drop packets into different connections. It is triggered at the

time of client logout request by injecting TCP FIN or RESET

message for that connection prior to it causes request message

unavailable to server due to abnormal termination of

connection. As logout conformation come before logout

request received by server, attacker launch this attack to keep

alive the session without victim knowledge. At last, other

connection of browser is used to access victim account and
modify it.

Table 10. Attacks and their fixes

Attacks Fixes

BEAST Use RC4, 3DES, AES 256

CRIME Disable TLS compression

TIME Encrypt then MAC, use AES-GCM

ciphers

LUCKY 13

Add random time delays, use

authenticated encryption, use RC4

BREACH Disable HTTP compression

RC4 BIASES Disable RC4 in SSL/TLS

SSL Renegotiation Client and server verify previous hand

shake

POODLE disable SSL 3.0 in web browser

FREAK Configure SSL/TLS with higher version

of cipher

Bar Mitzvah Disable RC4 in SSL/TLS

TLS Truncation Centralized authentication and chain

sign outs

4. CONCLUSION
SSL/ TLS, the two isolated protocols are used to secure the

communication channels between two ends by providing two

layers of security such as authentication and encryption to user

data. A logical or operational error in these protocols gives a

way to attacker to exploit it. This paper outlines architecture

and operational flow of these protocols and summarizes

different types of attacks and their fixes. At last more research

on this field has to be done to increase the degree of safety of

SSL/ TLS by reducing bugs.

5. REFERENCES
[1] Stalling, W. (2011). Transport-Level Security. In

Cryptography and Network Security (5th ed., pp. 485-

520). Upper Saddle River, NJ: Pearson.

[2] Panday, K. K. SSL/ TLS Alert Protocol and the Alert

Codes. Retrieved October 10, 2014, from

https://blogs.msdn.microsoft.

com/kaushal/2012/10/05/ssltls-alert-protocol-the-alert-

codes/

[3] Sarkar, P. G., and Fitzgerald, S. (2013). Attack on SSL:

A Comprehensive study of BEAST, CRIME, TIME,

BREACH, LUCKY 13 and RC4 BIASES [PDF]. San

Francisco, CA: ISECPartners.

[4] Newman, R. Taming the B.E.A.S.T. - owasp.org.

Retrieved October 21, 2014, from

https://www.owasp.org/images/1/10/ Taming

_the_B.E.A.S.T..pdf

[5] Luedtke, D. (2012, April 18). BEAST attack on SSL/TLS

explained-SlideShare [PPT]. Munich: University of

German Federal Armed Forces.

[6] BEAST vs. CRIME Attack. (13, October 14). Retrieved

November 01, 2014, from

http://resources.infosecinstitute.com/ beast-vs-crime-

attack/

[7] Beery, T. and Shulman, A. (2013, March). A Perfect

Crime? Only Time Will Tell [PDF]. Amsterdam,

Netherlands: Blackhat.

[8] Beery, T., and Shulman, A. (2013, October 10). Black

Hat EU 2013 – A Perfect CRIME? Only TIME Will Tell.

Retrieved November 15, 2014, from

http://www.youtube.com/watch?v= rTlpFfTp3-w

[9] GLUCK, Y., HARRIS, N., and PRADO, A. (2013, July

12). BREACH: Reviving the CRIME Attack [PDF].

[10] Fardan, N. J., and Paterson, K. G. (May 2013). 2013

IEEE Symposium on Security and Privacy (pp. 526-540).

IEEE.

[11] Franke, D. F. (2014, October 14). How POODLE

Happened. Retrieved December 21, 2014, from

https://www.dfranke.us /posts/2014-10-14-how-poodle-

happened.html.

[12] Bar Mitzvah Attack. Retrieved December 25, 2014, from

https://www.blackhat.com/docs/asia-15/materials/asia-

15-Mantin-Bar-Mitzvah-Attack-Breaking-SSL-With-13-

Year-Old-RC4-Weakness-wp.pdf

[13] Paterson, K. (2013, August 28). On the security of RC4

in TLS and WPA. Retrieved December 25, 2014, from

http://www.isg. rhul.ac.uk/tls/

[14] Zoller, T. (2005). TLS/ SSLv3 renegotiation vulnerability

explained – G-SEC. Retrieved December 28, 2014, from

http://www.g-sec.lu/practicaltls.pdf.

[15] Bowes, R. (2013, January 2). Padding oracle attacks: In

depth. Retrieved July 10, 2015, from

https://blog.skullsecurity.org/2013/ padding-oracle-

attacks-in-depth

https://blogs.msdn.microsoft/
https://www.owasp.org/images/1/10/
http://resources.infosecinstitute.com/
http://www.youtube.com/watch?v
https://www.dfranke.us/
http://www.isg/
https://blog.skullsecurity.org/2013/

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No5, November 2016

38

[16] Vulnerability Notice: FREAK – Factoring attack on

RSA-Export keys. (2015, March 20). Retrieved April 12,

2015, from http://learn

.extremenetworks.com/rs/extreme/images/VN-2015-

003_FREAK.pdf.

[17] Understanding Common Factor Attacks: An RSA-

Cracking Puzzle. Retrieved April 30, 2015, from

http://www.loyalty.org/ ~schoen/rsa/

[18] Kerner, S. M. (2015, May 20). Logjam SSL/TLS

Vulnerability Exposes Cryptographic Weakness

Retrieved August 10, 2015, from

http://www.eweek.com/security/logjam-ssltls-

vulnerability-exposes-cryptographic-weakness.html

[19] Roos, A. (1995, September 22). Weaks in RC4.

Retrieved July 13, 2014, from

https://netfuture.ch/1995/09/weak-keys-in-rc4/

[20] Smyth, B., and Pironti, A. (2013, July). Truncating TLS

Connections to Violate Beliefs in Web Applications.

Retrieved May 10, 2015, from

https://media.blackhat.com/us-13/US-13-Smyth-

Truncating-TLS-Connections-to-Violate-Beliefs-in-Web-

Applications-WP.pdf.

IJCATM : www.ijcaonline.org

http://www.loyalty.org/

