
International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

41

Implementation of Decimal - Floating Point ALU

Component on Reconfigurable Logic

Harshit Shrivastava
Dept. of Electronics & Communication

Engineering
Sagar Institute of

Research & Technology
Bhopal (M. P.)

Himanshu Nautiyal
Dept. of Electronics & Communication

 Engineering
Sagar Institute of

Research & Technology
 Bhopal (M. P.)

ABSTRACT
This paper presents the FPGA implementation of a Decimal

Floating Point (DFP) arithmetic unit. The design performs

addition, subtraction and multiplication on 64-bit operands

that use the IEEE 754-2008 DPD encoding of DFP numbers.

The design uses an equal bypass adder, this adder reduces the

power consumption and it also reduces the delay by reducing

the gate count. The design also uses barrel shifter instead of

sequential shifter to reduce delay. Also 64 bit parallel BCD

multiplier is used to perform fixed point multiplication. The

proposed DFP arithmetic unit supports operations on the

decimal64 format and it is easily extendable for the

decimal128 format.

Keywords
Floating point addition, Floating point multiplication, Floating

point subtraction, FPGA, Delay, Area overhead, IEEE P754-

2008

1. INTRODUCTION
The binary floating point (BFP) arithmetic has certain flaws

namely; it cannot provide correct decimal rounding and

cannot precisely represent some decimal fractions such as

0.001, 0.0475 etc [1]. There are many applications where a

precision is required such as billing, insurance, currency

conversion, banking and some scientific applications.

European Union requires that currency conversion to and from

EURO is to be calculated to six decimal digits [2]. One study

estimates that errors generating from BFP arithmetic can sum

up to a yearly billing of over dollar 5 million for a large billing

organization [3]. Therefore decimal floating point (DFP)

arithmetic becomes very important in many current and future

applications as it has ability to represent decimal fractions

precisely. DFP arithmetic also has the ability to provide

correct decimal rounding that will mimic the manual

rounding.

Applications which cannot tolerate errors generating from

BFP arithmetic, these application use software platforms to

perform DFP arithmetic [1]. There are many software

packages which are available for example: the java

BigDecimal library [5] and IBM‟s decNumber library [4].

Also Intel published results for a decimal arithmetic library

which uses Binary integer decimal (BID) encoding. These

software packages are good enough for current applications,

but trends towards globalization and e-commerce are

increasing, so faster response of these systems is required.

Software designs to these systems may be inadequate with the

increasing performance demands of future systems. So

hardware implementation of these systems is the need of the

hour.

In 2008, the IEEE 754-1985 floating point standard has been

revised and the new standard called the IEEE 754-2008

floating point standard was setup [6], which includes

specifications for DFP formats, encoding and operations. The

IEEE 754-2008 standard includes an encoding format for DFP

numbers in which the significand and the exponent (and the

payloads of NaNs) can be encoded in two ways namely;

binary encoding and decimal encoding. [7]

Both the encoding formats break a number into a sign bit s, an

exponent E, and a p-digit significand c. The value encoded is

(−1)s × 10E × c. In both formats the range of possible values

is identical, but the significand c is encoded differently. In the

decimal encoding, it is encoded as a series of p decimal digits

using the densely packed decimal encoding (DPD). In the

binary encoding also known as binary integer decimal (BID)

encoding, it is encoded as a binary number.

In this paper a floating point arithmetic unit is proposed. This

floating point arithmetic unit is IEEE P754 – 2008 complaint

and based on densely packed decimal (DPD) encoding for

DFP arithmetic. The proposed floating point arithmetic unit

uses low power equal bypass adder to reduce the power

consumption of the design. A parallel 64 bit (16 x 16 digits)

BCD multiplier is used to reduce delay.

2. DECIMAL FLOATING POINT

REPRESENTATION
In IEEE 754-2008, the value of a finite DFP number with an

integer significand is

V = (−1)s × 10q × c

Where „S‟ is the sign, „q‟ is the unbiased exponent, and „C‟ is

the significand. The precision or the length of the significand

is denoted as „p‟, which is equal to 7, l6, or 34 digits, for

decimal32, decimal64, or decimall28, respectively. Figure 1

shows the double precision decimal64 Decimal Floating Point

format.

Sign

(S)

Combination (w + 5)

(G)

Trailing Significand

(C)

1 Bit 13 bits 50 bits

Figure 1: Decimal 64 – Decimal floating point format
DPD encoded

The l-bit Sign Field, S indicates the sign of a number. The
(w+5)-bit Combination Field, G provides the most significand
digit (MSD) of the significand and a non-negative biased
exponent, E such that E = q + bias. The exponent is almost
always encoded in binary. The G Field also indicates special
values, such as Not-a-Number (NaN) and infinity (00). The
remaining digits of the significand are specified in the t-bit

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

42

Trailing Significand Field, T. Table 1 shows the combination
field.

Table 1: Combination field

Number

type

Combination

field

Exponents

Bits

Significand

MSD

Finite a b c d e a b 0 c d e

Finite 11 a b c a b 1 0 0 e

Infinite 1 1 1 1 0

NaN 1 1 1 1 1

3. DECIMAL FLOATING POINT

ARITHMETIC UNIT
Decimal floating point arithmetic unit performs three
operations on IEEE P754-2008 decimal64 numbers namely,
addition, subtraction and multiplication. Addition and
subtraction operation on floating point operands are
accomplished using a combined adder/subtractor unit, whereas
multiplication on floating point unit is performed using a
separate multiplication unit. Figure 2 shows the high level
block diagram of floating point arithmetic unit.

Figure 2 (a): High Level Block diagram – Design I -
Conventional Floating point Arithmetic Unit

The inputs to the decoder block are two 64 bit IEEE P754-

2008 floating point numbers encoded in DPD namely “Apkt”

and “Bpkt”. Sign (As, Bs), exponent (Ae, Be) and mantissa

(Am, Bm) information is extracted from two input packets by

first converting the input information in DPD and then DPD is

converted to BCD. After the decoding process the exponent

(Ae, Be) and Mantissa (Am, Bm) are BCD numbers.

An operation selection block is used to determine the correct

operation, when the 2 bit “operation” input is “00” then the

selected operation is floating point addition and output of

FPA/S (Floating point adder/subtractor) is assigned to the

encoder block, when the operation input is “01” then the
selected operation is floating point subtraction and also in this

case output of FPA/S is assigned to encoder, when the

operation input is “10” then the selected operation is

multiplication and output of FPM (Floating point multiplier) is

assigned to encoder block and when operation input is “11”

then no operation is selected and output “Opkt” becomes 0.

FPA/S and FPM blocks are used to perform floating point

addition/subtraction and floating point multiplication

respectively. These blocks are explained in section 4 and

section 5 respectively. An encoder block is used to encode the

sign, exponent and mantissa of output to IEEE P754-2008

decimal64 format. The encoder block first converts the BCD

exponent and mantissa into DPD and then convert the DPD

numbers to decimal64 format

Figure 2 (b): High Level Block diagram – Design II –
Tri-State Floating point Arithmetic Unit

In this paper blocked I/O technique is also used to reduce the
power consumption. As shown in figure 2(a) & (b) there are
two major modules in the floating point arithmetic and logic
unit (FP_ALU) namely: Floating point adder (FPA) and
floating point multiplier (FPM), In conventional technique
inputs are assigned to both the modules at all times and hence
causes unnecessary power consumption because only one
operation can be performed at any given time. In blocked I/O
technique inputs are assigned to only one module at a given
operation depending upon the selected operation. If the
selected operation is either floating point addition or floating
point subtraction then the selected module is FPA/S and if the
selected operation is multiplication then the selected module is
FPM. In this technique one of the modules is always tri-stated
and hence does not contribute in dynamic power consumption
during that course of time, this reduces average dynamic
power consumption. The detail description of floating point
adder/subtractor (FPA/S) and floating point multiplier (FPM)
are discussed in following sections:

IEEE P754 DEC64

Numbers

Decoded signals

Apkt

Bpkt

Operation

Opkt

Decoder

Operation

Selection

FPA/S

FPM

Encoder

A

S

B

S

CLK

IEEE P754 DEC64

Numbers

Decoded signals

Apkt

Bpkt

Operation

Opkt

Decoder

Operation

Selection

FPA/S

FPM

Encoder

A

S

B

S

CLK

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

43

4. DECIMAL FLOATING POINT

ADDER/SUBTRACTOR
Figure 3 explains the algorithm for adding two decimal
floating point numbers encoded in DPD dec64 format.

Figure 3: Floating Point Addition - Algorithm

Figure 6 shows the floating point adder architecture for
decimal floating point number system. The decoder generates
mantissa (Am,Bm), exponent(Ae,Be) and sign (As,Bs).

The XOR gate determines the effective operation (EOP) by
xoring the two signs (As, Bs). If eop signal is zero then the
effective operation is addition and if the eop signal is 1 then
the effective operation is subtraction. This eop signal is
assigned to the BCD adder/subtractor unit.

A comparator unit is used to identify the larger of two
numbers, if Ae > Be then swap signal is assigned to 0, and if
Ae < Be, then swap signal is assigned to 1. Also the two
exponents Ae and Be is subtracted and assigned to RSA (right
shift amount) signal.

Swapping logic is used to assign the larger to the L channel
and the smaller number to the S channel. When Swap signal is
0 then number A is larger than B, so Lm is assigned with Am,
Le is assigned with Ae and Ls is assigned with As. Similarly
so Sm is assigned with Bm, Se is assigned with Be and Ss is
assigned with Bs. And if swap signal is 0 then B is greater
than A and hence L channel is assigned with B and S channel
is assigned with A.

Now the smaller mantissa Sm is shifted right using a low
delay barrel shifter, the right shifting amount is determined by
RSA signal generated in comparator unit. The output is Srsm
(small right shifted mantissa).

Next the two mantissas Srsm and Lm are operated. The
operation is determined by eop signal generated earlier using
XOR gate. The two mantissas are added/subtracted using 17
digit BCD adder/subtractor. Here a low power low delay full
adder circuit is used to implement a BCD adder/subtractor to
reduce the power consumption and delay of the design.

Figure 4 shows the 4 bit BCD adder, this BCD adder uses two
4 bit ripple carry adder, these 4 bit ripple carry adder uses
conventional full adder.

Figure 5 shows the conventional full adder. All the logic gates

in this design are applied with inputs all the time and this

consumes power at all times, also the gate count for sum is

two and the gate count for carry is three. In this work

conventional full adder is replaced by equal bypassing full

adder. Figure 7 shows the low power low delay equal

bypassed full adder.

In this full adder when input „A‟ and input „B‟ are equal then

the output of XOR gate is „0‟, this makes the control input of

tri-state buffer „0‟, now the output of tri-state inverter is high

impedance „Z‟, this blocks one channel of the multiplexer and

reduces the power consumption. And if the two inputs „A‟ and

„B‟ are different then the output of the XOR gate is „1‟ and

control input of tri-state inverter is also „1‟, the input „C‟ is

complemented. Also at all times the gate count of Cout is

reduces to 1, this is 2 less than the conventional full adder. So

the power consumption and delay of the BCD adder is

reduced.

The rounding logic unit truncates the 17 digit mantissa

generated by the BCD adder/subtractor to 16 digit mantissa

Rm.

The exponent calculation unit generates the output exponent.

The large exponent Le is assigned to the result exponent Re if

truncation is not needed, if the output mantissa is truncated

then the resultant exponent is added with 1.

The sign calculation unit generates the output sign. The sign

of greater number is assigned to the resultant sign Rs. Here the

sign of greater number is Ls.

The three information Rm, Re and Rs are applied to the
encoder block for encoding it to decimal64 number.

Figure 4: BCD Adder

Figure 5: Conventional Full Adder

Step 1: Decode the inputs A and B to obtain

 (As,AE,Am) and (Bs,BE,Bm)

Step 2: Determine effective operation (EOP)

 EOP <= As XOR Bs;

 EOP = 0 Addition

 EOP = 1 Subtract

Step 3: if Ae < Be, then Swap A and B

Step 4: Calculate d <= Ae – Be

Step 5: Shift right ‘Bm’ by d

Step 6: Add ‘d’ to ‘Be’

Step 7: Compute Zc <= Am ± Bm (Depends on EOP)

Step 8: Ze <= Ae

Step 9: Zs <= Sign(greater(A,B))

Step 10: Encode to IEEE P754-2008 decimal64 format

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

44

Figure 7: Low Power – Low Delay Full Adder

5. FLOATING POINT MULTIPLIER
Figure 8 depicts the basic algorithm for floating point

multiplication.

Figure 8: Floating Point Multiplication - Algorithm

Figure 9 shows the architecture of floating point multiplier.

Figure 9: Floating Point Multiplication - Architecture

The sign (As, Bs), exponent (Ae, Be) and mantissa (Am, Bm)
information is extracted from the decimal64 number in
decoder unit. This information along with the a clk (not shown
in figure) is used in floating point multiplier to generate the
result R.

First the two sign bits As and Bs are XORED to generate the
result sign bit Rs. The exponent is generated by adding the
two input exponents Ae and Be. The input exponents are
biased and hence the result of the addition is further subtracted
with the bias value. In decimal64 format the bias value is 398.

So the result exponent is calculated as:

Re = Ae + Be – bias

Parallel to the sign and exponent calculation, the product is
generated by multiplying the two mantissas Am and Bm. This
multiplication is accomplished by a 16 digit parallel BCD

multiplier.

Figure 10 represents an area optimized BCD digit multiplier.
This multiplier produces the result of multiplication in binary

XOR

Exp

Cal.

BCD Multiplier

(16 digit)

Round

Logic

As

Bs

Ae

Be

Am

Bm

product

Rm

Re

Rs

1. Extract As, Ae, Am, Bs, Be,Bm by decoding the
incoming packets.

2. Rs <= As XOR Bs

3. Re <= Ae + Be – bias

4. Product <= Am * Bm

5. Truncate product to generate 16 digit mantissa Rm

6. Generate appropriate flags InF, NaN, Zero, OF, UF.

7. Encode to output result format.

Comparator

Ae

Be

XOR

As

Bs

swap

Swapping Logic

A

B

RSA

Ls

L

m

Le

Ss

Sm

Se

Right Barrel Shifter

eop

BCD Adder/Subtractor

 (17 BCD Digits)

Srsm

eop

Lm

Exponent

Calc.

Sign

Calc.

Le

Se

Re

Ls

Ss

Rs

Rm17

Round

Logic

Rm

Legend

A(77 bit): Number A {1 bit sign, 12 bit exp, 64

 bit mantissa}

B(77 bit): Number B {1 bit sign, 12 bit exp, 64

 bit mantissa}

Am (64 bit): 16 digit mantissa of number A

Bm (64 bit): 16 digit mantissa of number B

As (1 bit): Sign of number A

Bs (1 bit): Sign of number B

Ae (12 bit): 3 digit exponent of number A

Be (12 bit): 3 digit exponent of number B

RSA (4 bit): Right shift amount

eop (1 bit): effective operation – add/sub

swap(1 bit): swap signal

Lm (64 bit): 16 digit mantissa of number L

Sm (64 bit): 16 digit mantissa of number S

Ls (1 bit): Sign of number L

Ss (1 bit): Sign of number S

Le (12 bit): 3 digit exponent of number L

Se (12 bit): 3 digit exponent of number S

Rm17 (68 bit): 17 digit mantissa of number R

Rm (64 bit): 16 digit mantissa of number R

Rs (1 bit): Sign of number R

Re (12 bit): 3 digit exponent of number R

Figure 6: Floating Point Adder/Subtractor architecture

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

45

and a binary to BCD converter is needed which is shown in
figure 11. The B is the higher nibble of the multiplication and
C is the lower nibble of multiplication. [23]

Figure 10: Area Optimized BCD digit Multiplier

Figure 11: Binary Product to BCD Converter

Figure 13 depicts the 4 x 4 multiplier architecture to
implement the algorithm shown figure12. In the process of
floating point multiplication this 4x4 multiplier is extended to
implement 16 x 16 multiplier. The multiplication is the critical
operation the design of floating point arithmetic unit and
hence in order to reduce delay a parallel BCD multiplier is
used on this work.

The result of the 16 x 16 BCD multiplier is a 32 digit BCD
mantissa. But Decimal64 only supports 16 digit of mantissa.
so a rounding logic unit is incorporated to round off the least
significant digits and adjust the exponent accordingly. The
rounding unit generated the 16 digit mantissa Rm. Now the
sign Rs, exponent Re and mantissa Rm are assigned to the

encoder unit.

6. RESULTS
All logics were described in VHDL. The design has been
implemented on Xilinx Virtex-5 device XC-5VLX50-FF676-
2. Resource utilization is shown in table 2.

Table 2 (A): Device Utilization Summary: Design I -
Conventional FP_ALU

Module Slice Registers Slice LUT’s Delay

Decoder 4 110 4.14ns

FPA/S 3 670 49.07ns

FPM 0 15125 84.53ns

Encoder 109 58 1.552ns

Arithmetic

unit
351 18481 -

Table 2(B): Device Utilization Summary: Design II
- Tri Stated FP_ALU

Module Slice Registers Slice LUT’s Delay

Decoder 4 110 4.14ns

FPA/S 3 670 49.07ns

FPM 0 15125 84.53ns

Encoder 109 58 1.552ns

Arithmetic unit 511 17034 -

It can be observed from the table 2(a) and table 2(b) that
resource usage of design I and design II is almost same.

Figure 12: 4 Digit BCD Multiplier

Table 3 shows the dynamic power consumption summary of
design I and design II at different clock frequencies. It can be
observed form table that design II Tri-state FP_ALU has
shows significant reduction in dynamic power consumption
compared to design I Conventional FP_ALU.

Table 3. : Dynamic Power Consumption

S. no Frequency

Design I:

Conventional

FP_ALU

Design II: Tri- stated

FP_ALU

1 0 Mhz 10mW 17mW

2 30 Mhz 120mW 114mW

3 50 Mhz 193mW 178mW

4 100 Mhz 376mW 339mW

7. CONCLUSION
In this work implementation of IEEE P754-2008 decimal

floating point arithmetic unit is accomplished. The advantage

of decimal floating point arithmetic over binary floating point

arithmetic is that decimal floating point representation does

not has errors with binary floating point arithmetic like

rounding error, arithmetic error and errors associated when

representing fraction decimal numbers.

The arithmetic unit performs three operations, floating point

addition, floating point subtraction and floating point

multiplication. A combined floating addition and subtraction

unit is used in the design; the combined floating point

adder/subtractor unit uses a low power low delay full adder to

implement the BCD adder/subtractor. The floating point

multiplication unit uses a parallel 16 x 16 BCD multiplier.

Parallel multiplier is opted because of its low delay compared

to serial multiplier. It is observed from table 1 and table 2 that

the 16 x16 BCD digit multiplier is most critical module of the

design, its takes the most resources and has the maximum

delay.

In future clock gating techniques will be used to reduce power

consumption of the design. Also bypassing techniques can be

International Journal of Computer Applications (0975 – 8887)

Volume 153 – No 6, November 2016

46

incorporated to reduce dynamic power consumption of the

BCD digit multiplier. This proposed floating point ALU can

be used in a floating point processor to reduce the power

consumption of the overall design. Also proposed design can

be used in DSP systems.

8. REFERENCES
[1] M.F. Cowlishaw, “Decimal Floating-Point: Algorism for

Computers,” Proc. IEEE 16th Symp. Computer

Arithmetic, pp. 104-111, 2003.

[2] IBM Corporation, The „Telco‟ benchmark,

http://speleotrove.com/ Decimal/telcoSpec.html, 2005.

[3] D.-G. for Economic and F. A. C. from the Commission

to the European Council, “Review of the Introduction of

Euro Notes and Coins,” EURO PAPERS, Apr. 2002.

[4] M.F. Cowlishaw The decNumber library, v3.68. IBM,

http://speleotrove.- com/decimal/decnumber.pdf, 2013.

[5] S. Microsystems BigDecimal Class, Java 2 Platform

Standard ed. 5.0,

APISpecification,http://docs.oracle.com/javase/1.5.0/doc

s/api/java/math/BigDecimal.html, 2013.

[6] M. Cornea, C. Anderson, J. Harrison, P.T.P. Tang, E.

Schneider, and C.

[7] Tsen, “A Software Implementation of the IEEE 754R

Decimal Floating-Point Arithmetic Using the Binary

Encoding Format,” Proc. IEEE 18th Symp.

[8] ANSI/IEEE 754-1985, “Standard for Binary Floating-

Point Arithmetic”.

[9] R.K. Yu, G.B. Zyner, 167 MHz radix-4 floating point

multiplier, Proceedings 12th Symposium on Computer

Arithmetic, 1995, pp. 149-154.

[10] C. Gamez, R. Pang, Apparatus and method for rounding

operands, U.S. patent 5258943, 1993.

[11] M. Saishi, T. Minemaru, Multiplication circuit having

rounding function, U.S. patent 5500812, 1996.

[12] Guy Even, Silvia M. Mueller, Peter-Michael Seidel “A

dual precision IEEE Floating-point multiplier” Elsevier

INTEGRATION, the VLSI journal 29 (2000) 167-180.

[13] C. Tsen, M.J. Schulte, and S.G. Navarro, “Hardware

Design of a Binary Integer Decimal Based IEEE P754

Rounding Unit,” Proc. IEEE 18th Int‟l Conf.

Application-Specific Systems, Architectures and

Processors, pp. 115-121, 2007.

[14] B.J. Hickmann, A. Krioukov, M.J. Schulte, and M.A.

Erle, “A Parallel IEEE P754 Decimal Floating-Point

Multiplier,” Proc. IEEE 25th Int‟l Conf. Computer

Design, 2007.

[15] C. Tsen, S.G. Navarro, M.J. Schulte, B. Hickmann, and

K. Compton, “A Combined Decimal and Binary

Floating-Point Multiplier,” Proc. IEEE 20th Int‟l Conf.

Application-Specific Systems, Architectures, and

Processors, pp. 8-15, 2009.

[16] J. Di and J. S. Yuan, “Power-aware pipelined multiplier

design based on 2-dimensional pipeline gating,” in 13th

Great Lakes Symposium on VLSI. ACM, 2003, pp. 64–

67.

[17] Sunjoo Hong, Taehwan Roh and Hoi-Jun Yoo, “a 145w

8×8 parallel multiplier based on optimized bypassing

architecture”, department of electrical engineering, Korea

advanced institute of science and technology (KAIST),

Daejeon, Republic of Korea, IEEE, pp.1175-1178, 2011.

[18] Yin-Tsung Hwang, Jin-Fa Lin, Ming-Hwa Sheu and

Chia-Jen Sheu, “low power multipliers using enhenced

row bypassing schemes”, department of electronic

engineering, National Yunlin University of science &

technology, Touliu, Yunlin, Taiwan, IEEE, pp.136-140,

2007.

[19] George Economakos, Dimitris Bekiaris and Kiamal

Pekmestzi, “a mixed style architecture for low power

multipliers based on a bypass technique”, national

technical University of Athens, school of electrical and

computer engineering, heroon polytechniou 9, GR-15780

Athens, Greece, IEEE, pp.4-6, 2010.

[20] Meng-Lin Hsia and Oscal T.-C. Chen, “low power

multiplier optimized by partial-product summation and

adder cells”, dept. of electrical engineering, national

chung cheng University, chia-yi, 621, Taiwan, IEEE,

pp.3042-3045, 2009. [12] P. C. H. Meier, “analysis and

design of low power digital multipliers”, Ph.D. thesis,

Carnegie Mellon University, dept. of electrical and

computer engineering, Pittsburgh, Pennsylvania, 1999.

[21] Carlos Minchola, Martin Vazquez and Gustavo Sutter “A

FPGA IEEE 754 2008 decimal floating point adder

subtractor” 2011 IEEE.

[22] Yanyu Ding, Deming Wang, Jianguo Hu and Hongzhou

Tan, “A Low power Parallel Multiplier Based on

Optimized-Equal-Bypassing-Technique”, Third

International Conference on Information Science and

Technology March, 2013 IEEE, China

[23] Jaberipur, Ghassem, and Amir Kaivani. "Binary-coded

decimal digit multipliers." IET Computers & Digital

Techniques 1.4 (2007): 377-381.

IJCATM : www.ijcaonline.org

