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ABSTRACT  
This paper presents the FPGA implementation of a Decimal 

Floating Point (DFP) arithmetic unit. The design performs 

addition, subtraction and multiplication on 64-bit operands 

that use the IEEE 754-2008 DPD encoding of DFP numbers. 

The design uses an equal bypass adder, this adder reduces the 

power consumption and it also reduces the delay by reducing 

the gate count. The design also uses barrel shifter instead of 

sequential shifter to reduce delay. Also 64 bit parallel BCD 

multiplier is used to perform fixed point multiplication. The 

proposed DFP arithmetic unit supports operations on the 

decimal64 format and it is easily extendable for the 

decimal128 format.  
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1. INTRODUCTION 
The binary floating point (BFP) arithmetic has certain flaws 

namely; it cannot provide correct decimal rounding and 

cannot precisely represent some decimal fractions such as 

0.001, 0.0475 etc [1]. There are many applications where a 

precision is required such as billing, insurance, currency 

conversion, banking and some scientific applications. 

European Union requires that currency conversion to and from 

EURO is to be calculated to six decimal digits [2]. One study 

estimates that errors generating from BFP arithmetic can sum 

up to a yearly billing of over dollar 5 million for a large billing 

organization [3]. Therefore decimal floating point (DFP) 

arithmetic becomes very important in many current and future 

applications as it has ability to represent decimal fractions 

precisely. DFP arithmetic also has the ability to provide 

correct decimal rounding that will mimic the manual 

rounding. 

Applications which cannot tolerate errors generating from 

BFP arithmetic, these application use software platforms to 

perform DFP arithmetic [1]. There are many software 

packages which are available for example: the java 

BigDecimal library [5] and IBM‟s decNumber library [4]. 

Also Intel published results for a decimal arithmetic library 

which uses Binary integer decimal (BID) encoding. These 

software packages are good enough for current applications, 

but trends towards globalization and e-commerce are 

increasing, so faster response of these systems is required. 

Software designs to these systems may be inadequate with the 

increasing performance demands of future systems. So 

hardware implementation of these systems is the need of the 

hour. 

In 2008, the IEEE 754-1985 floating point standard has been 

revised and the new standard called the IEEE 754-2008 

floating point standard was setup [6], which includes 

specifications for DFP formats, encoding and operations. The 

IEEE 754-2008 standard includes an encoding format for DFP 

numbers in which the significand and the exponent (and the 

payloads of NaNs) can be encoded in two ways namely; 

binary encoding and decimal encoding. [7] 

Both the encoding formats break a number into a sign bit s, an 

exponent E, and a p-digit significand c. The value encoded is 

(−1)s × 10E × c. In both formats the range of possible values 

is identical, but the significand c is encoded differently. In the 

decimal encoding, it is encoded as a series of p decimal digits 

using the densely packed decimal encoding (DPD). In the 

binary encoding also known as binary integer decimal (BID) 

encoding, it is encoded as a binary number.  

In this paper a floating point arithmetic unit is proposed. This 

floating point arithmetic unit is IEEE P754 – 2008 complaint 

and based on densely packed decimal (DPD) encoding for 

DFP arithmetic. The proposed floating point arithmetic unit 

uses low power equal bypass adder to reduce the power 

consumption of the design. A parallel 64 bit (16 x 16 digits) 

BCD multiplier is used to reduce delay. 

2. DECIMAL FLOATING POINT 

REPRESENTATION 
In IEEE 754-2008, the value of a finite DFP number with an 

integer significand is 

V = (−1)s × 10q × c 

Where „S‟ is the sign, „q‟ is the unbiased exponent, and „C‟ is 

the significand. The precision or the length of the significand 

is denoted as „p‟, which is equal to 7, l6, or 34 digits, for 

decimal32, decimal64, or decimall28, respectively. Figure 1 

shows the double precision decimal64 Decimal Floating Point 

format. 

Sign 

(S) 

Combination (w + 5) 

(G) 

Trailing Significand 

(C) 

1 Bit 13 bits 50 bits 

Figure 1: Decimal 64 – Decimal floating point format 
DPD encoded 

The l-bit Sign Field, S indicates the sign of a number. The 
(w+5)-bit Combination Field, G provides the most significand 
digit (MSD) of the significand and a non-negative biased 
exponent, E such that E = q + bias. The exponent is almost 
always encoded in binary. The G Field also indicates special 
values, such as Not-a-Number (NaN) and infinity (00). The 
remaining digits of the significand are specified in the t-bit 
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Trailing Significand Field, T. Table 1 shows the combination 
field. 

Table 1: Combination field 

Number 

type 

Combination 

field 

Exponents 

Bits 

Significand 

MSD 

Finite a b c d e a b 0 c d e 

Finite 11 a b c a b 1 0 0 e 

Infinite 1 1 1 1 0 . . . . . . 

NaN 1 1 1 1 1 . . . . . . 

3. DECIMAL FLOATING POINT 

ARITHMETIC UNIT 
Decimal floating point arithmetic unit performs three 
operations on IEEE P754-2008 decimal64 numbers namely, 
addition, subtraction and multiplication. Addition and 
subtraction operation on floating point operands are 
accomplished using a combined adder/subtractor unit, whereas 
multiplication on floating point unit is performed using a 
separate multiplication unit. Figure 2 shows the high level 
block diagram of floating point arithmetic unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (a): High Level Block diagram – Design I - 
Conventional Floating point Arithmetic Unit 

The inputs to the decoder block are two 64 bit IEEE P754-

2008 floating point numbers encoded in DPD namely “Apkt” 

and “Bpkt”. Sign (As, Bs), exponent (Ae, Be) and mantissa 

(Am, Bm) information is extracted from two input packets by 

first converting the input information in DPD and then DPD is 

converted to BCD. After the decoding process the exponent 

(Ae, Be) and Mantissa (Am, Bm) are BCD numbers. 

An operation selection block is used to determine the correct 

operation, when the 2 bit “operation” input is “00” then the 

selected operation is floating point addition and output of 

FPA/S (Floating point adder/subtractor) is assigned to the 

encoder block, when the operation input is “01” then the 
selected operation is floating point subtraction and also in this 

case output of FPA/S is assigned to encoder, when the 

operation input is “10” then the selected operation is 

multiplication and output of FPM (Floating point multiplier) is 

assigned to encoder block and when operation input is “11” 

then no operation is selected and output “Opkt” becomes 0. 

FPA/S and FPM blocks are used to perform floating point 

addition/subtraction and floating point multiplication 

respectively. These blocks are explained in section 4 and 

section 5 respectively. An encoder block is used to encode the 

sign, exponent and mantissa of output to IEEE P754-2008 

decimal64 format. The encoder block first converts the BCD 

exponent and mantissa into DPD and then convert the DPD 

numbers to decimal64 format 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (b): High Level Block diagram – Design II – 
Tri-State Floating point Arithmetic Unit 

In this paper blocked I/O technique is also used to reduce the 
power consumption. As shown in figure 2(a)  & (b) there are 
two major modules in the floating point arithmetic and logic 
unit (FP_ALU) namely: Floating point adder (FPA) and 
floating point multiplier (FPM), In conventional technique 
inputs are assigned to both the modules at all times and hence 
causes unnecessary power consumption because only one 
operation can be performed at any given time. In blocked I/O 
technique inputs are assigned to only one module at a given 
operation depending upon the selected operation. If the 
selected operation is either floating point addition or floating 
point subtraction then the selected module is FPA/S and if the 
selected operation is multiplication then the selected module is 
FPM. In this technique one of the modules is always tri-stated 
and hence does not contribute in dynamic power consumption 
during that course of time, this reduces average dynamic 
power consumption. The detail description of floating point 
adder/subtractor (FPA/S) and floating point multiplier (FPM) 
are discussed in following sections: 
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4. DECIMAL FLOATING POINT 

ADDER/SUBTRACTOR 
Figure 3 explains the algorithm for adding two decimal 
floating point numbers encoded in DPD dec64 format. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Floating Point Addition - Algorithm 

Figure 6 shows the floating point adder architecture for 
decimal floating point number system. The decoder generates 
mantissa (Am,Bm), exponent(Ae,Be) and sign (As,Bs). 

The XOR gate determines the effective operation (EOP) by 
xoring the two signs (As, Bs). If eop signal is zero then the 
effective operation is addition and if the eop signal is 1 then 
the effective operation is subtraction. This eop signal is 
assigned to the BCD adder/subtractor unit. 

A comparator unit is used to identify the larger of two 
numbers, if Ae > Be then swap signal is assigned to 0, and if 
Ae < Be, then swap signal is assigned to 1. Also the two 
exponents Ae and Be is subtracted and assigned to RSA (right 
shift amount) signal. 

Swapping logic is used to assign the larger to the L channel 
and the smaller number to the S channel. When Swap signal is 
0 then number A is larger than B, so Lm is assigned with Am, 
Le is assigned with Ae and Ls is assigned with As. Similarly 
so Sm is assigned with Bm, Se is assigned with Be and Ss is 
assigned with Bs. And if swap signal is 0 then B is greater 
than A and hence L channel is assigned with B and S channel 
is assigned with A. 

Now the smaller mantissa Sm is shifted right using a low 
delay barrel shifter, the right shifting amount is determined by 
RSA signal generated in comparator unit. The output is Srsm 
(small right shifted mantissa). 

Next the two mantissas Srsm and Lm are operated. The 
operation is determined by eop signal generated earlier using 
XOR gate. The two mantissas are added/subtracted using 17 
digit BCD adder/subtractor. Here a low power low delay full 
adder circuit is used to implement a BCD adder/subtractor to 
reduce the power consumption and delay of the design. 

Figure 4 shows the 4 bit BCD adder, this BCD adder uses two 
4 bit ripple carry adder, these 4 bit ripple carry adder uses 
conventional full adder.    

Figure 5 shows the conventional full adder. All the logic gates 

in this design are applied with inputs all the time and this 

consumes power at all times, also the gate count for sum is 

two and the gate count for carry is three. In this work 

conventional full adder is replaced by equal bypassing full 

adder. Figure 7 shows the low power low delay equal 

bypassed full adder.  

In this full adder when input „A‟ and input „B‟ are equal then 

the output of XOR gate is „0‟, this makes the control input of 

tri-state buffer „0‟, now the output of tri-state inverter is high 

impedance „Z‟, this blocks one channel of the multiplexer and 

reduces the power consumption. And if the two inputs „A‟ and 

„B‟ are different then the output of the XOR gate is „1‟ and 

control input of tri-state inverter is also „1‟, the input „C‟ is 

complemented. Also at all times the gate count of Cout is 

reduces to 1, this is 2 less than the conventional full adder. So 

the power consumption and delay of the BCD adder is 

reduced. 

The rounding logic unit truncates the 17 digit mantissa 

generated by the BCD adder/subtractor to 16 digit mantissa 

Rm. 

The exponent calculation unit generates the output exponent. 

The large exponent Le is assigned to the result exponent Re if 

truncation is not needed, if the output mantissa is truncated 

then the resultant exponent is added with 1. 

The sign calculation unit generates the output sign. The sign 

of greater number is assigned to the resultant sign Rs. Here the 

sign of greater number is Ls. 

The three information Rm, Re and Rs are applied to the 
encoder block for encoding it to decimal64 number. 

 

Figure 4: BCD Adder 

 

Figure 5: Conventional Full Adder 

Step 1: Decode the inputs A and B to obtain  

                (As,AE,Am) and (Bs,BE,Bm)  

Step 2: Determine effective operation (EOP) 

            EOP <= As XOR Bs;  

           EOP = 0  Addition  

           EOP = 1  Subtract  

Step 3: if Ae < Be, then Swap A and B 

Step 4: Calculate d <= Ae – Be 

Step 5: Shift right ‘Bm’ by d 

Step 6: Add ‘d’ to ‘Be’ 

Step 7: Compute Zc <= Am ± Bm  (Depends on EOP) 

Step 8: Ze <= Ae  

Step 9: Zs <= Sign(greater(A,B)) 

Step 10: Encode to IEEE P754-2008 decimal64 format 
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Figure 7: Low Power – Low Delay Full Adder 

5. FLOATING POINT MULTIPLIER 
Figure 8 depicts the basic algorithm for floating point 

multiplication. 

 

Figure 8: Floating Point Multiplication - Algorithm 

Figure 9 shows the architecture of floating point multiplier. 

 

Figure 9: Floating Point Multiplication - Architecture 

The sign (As, Bs), exponent (Ae, Be) and mantissa (Am, Bm) 
information is extracted from the decimal64 number in 
decoder unit. This information along with the a clk (not shown 
in figure) is used in floating point multiplier to generate the 
result R. 

First the two sign bits As and Bs are XORED to generate the 
result sign bit Rs. The exponent is generated by adding the 
two input exponents Ae and Be. The input exponents are 
biased and hence the result of the addition is further subtracted 
with the bias value. In decimal64 format the bias value is 398. 

So the result exponent is calculated as: 

Re = Ae + Be – bias 

Parallel to the sign and exponent calculation, the product is 
generated by multiplying the two mantissas Am and Bm. This 
multiplication is accomplished by a 16 digit parallel BCD 

multiplier.  

Figure 10 represents an area optimized BCD digit multiplier. 
This multiplier produces the result of multiplication in binary 
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5. Truncate product to generate 16 digit mantissa Rm  
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7. Encode to output result format.  
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                  bit mantissa} 

Am (64 bit): 16 digit mantissa of number A 

Bm (64 bit): 16 digit mantissa of number B 

As (1 bit): Sign of number A 

Bs (1 bit): Sign of number B 

Ae (12 bit): 3 digit exponent of number A 

Be (12 bit): 3 digit exponent of number B 

RSA (4 bit): Right shift amount 

eop (1 bit): effective operation – add/sub 

swap(1 bit): swap signal 

Lm (64 bit): 16 digit mantissa of number L 
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Ss (1 bit): Sign of number S 

Le (12 bit): 3 digit exponent of number L 

Se (12 bit): 3 digit exponent of number S 

Rm17 (68 bit): 17 digit mantissa of number R 

Rm (64 bit): 16 digit mantissa of number R 

Rs (1 bit): Sign of number R 

Re (12 bit): 3 digit exponent of number R 

 

 

 

 

 

 

 

 

 

Figure 6: Floating Point Adder/Subtractor architecture 
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and a binary to BCD converter is needed  which is shown in 
figure 11. The B is the higher nibble of the multiplication and 
C is the lower nibble of multiplication. [23] 

 

Figure 10: Area Optimized BCD digit Multiplier  

 

Figure 11: Binary Product to BCD Converter 

Figure 13 depicts the 4 x 4 multiplier architecture to 
implement the algorithm shown figure12.  In the process of 
floating point multiplication this 4x4 multiplier is extended to 
implement 16 x 16 multiplier. The multiplication is the critical 
operation the design of floating point arithmetic unit and 
hence in order to reduce delay a parallel BCD multiplier is 
used on this work.  

The result of the 16 x 16 BCD multiplier is a 32 digit BCD 
mantissa. But Decimal64 only supports 16 digit of mantissa. 
so a rounding logic unit is incorporated to round off the least 
significant digits and adjust the exponent accordingly. The 
rounding unit generated the 16 digit mantissa Rm. Now the 
sign Rs, exponent Re and mantissa Rm are assigned to the 

encoder unit. 

6. RESULTS 
All logics were described in VHDL. The design has been 
implemented on Xilinx Virtex-5 device XC-5VLX50-FF676-
2. Resource utilization is shown in table 2. 

Table 2 (A): Device Utilization Summary: Design I - 
Conventional FP_ALU 

Module Slice Registers Slice LUT’s Delay 

Decoder 4 110 4.14ns 

FPA/S 3 670 49.07ns 

FPM 0 15125 84.53ns 

Encoder 109 58 1.552ns 

Arithmetic 

unit 
351 18481 - 

 

Table 2(B):  Device Utilization Summary: Design II 
- Tri Stated FP_ALU 

Module Slice Registers Slice LUT’s Delay 

Decoder 4 110 4.14ns 

FPA/S 3 670 49.07ns 

FPM 0 15125 84.53ns 

Encoder 109 58 1.552ns 

Arithmetic unit 511 17034 - 

It can be observed from the table 2(a) and table 2(b) that 
resource usage of design I and design II is almost same. 

 

Figure 12: 4 Digit BCD Multiplier 

Table 3 shows the dynamic power consumption summary of 
design I and design II at different clock frequencies. It can be 
observed form table that design II Tri-state FP_ALU has 
shows significant reduction in dynamic power consumption 
compared to design I Conventional FP_ALU. 

Table 3. : Dynamic Power Consumption 

S. no Frequency 

Design I: 

Conventional 

FP_ALU 

Design II: Tri- stated 

FP_ALU 

1 0 Mhz 10mW 17mW 

2 30 Mhz 120mW 114mW 

3 50 Mhz 193mW 178mW 

4 100 Mhz 376mW 339mW 

7. CONCLUSION 
In this work implementation of IEEE P754-2008 decimal 

floating point arithmetic unit is accomplished. The advantage 

of decimal floating point arithmetic over binary floating point 

arithmetic is that decimal floating point representation does 

not has errors with binary floating point arithmetic like 

rounding error, arithmetic error and errors associated when 

representing fraction decimal numbers.    

The arithmetic unit performs three operations, floating point 

addition, floating point subtraction and floating point 

multiplication. A combined floating addition and subtraction 

unit is used in the design; the combined floating point 

adder/subtractor unit uses a low power low delay full adder to 

implement the BCD adder/subtractor. The floating point 

multiplication unit uses a parallel 16 x 16 BCD multiplier. 

Parallel multiplier is opted because of its low delay compared 

to serial multiplier. It is observed from table 1 and table 2 that 

the 16 x16 BCD digit multiplier is most critical module of the 

design, its takes the most resources and has the maximum 

delay.  

In future clock gating techniques will be used to reduce power 

consumption of the design. Also bypassing techniques can be 
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incorporated to reduce dynamic power consumption of the 

BCD digit multiplier. This proposed floating point ALU can 

be used in a floating point processor to reduce the power 

consumption of the overall design. Also proposed design can 

be used in DSP systems.   
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