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ABSTRACT

From the continuous growth of data that arises in this new era of
Big Data, the old assumption of one size fits all solutions is no
longer valid. There is a huge effort in development alternatives for
relational model. Generally, the study of these databases models
targets in providing solutions that increase performance of different
applications. For example, in nowadays applications, such as Big
Table analysis, analytic queries typically encompass aggregations
of huge datasets. To allow for data analysis to occur in a feasible
time, it is necessary for database systems to offer good performance
in ETL (extract, transform, and load) operations. This paper briefly
presents the performance of some representative database models
in addressing a set of analytical queries.
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1. INTRODUCTION

The amount of data produced worldwide has grown in an expres-
sive way characterizing the data flood phenomenon. In 2010, the
zettabyte barrier was broken and, in 2011, the volume of existing
data on internet was 1.8ZB [1]]. The advent of technologies capable
of collecting large amount of data in different formats and preci-
sions promote the new era of Big Data [2].

Facing the challenge of storing the collected data, the alternatives
that could increase the scalability and decrease the computational
cost of the database management systems became objects of study.
Observing the advent of exploring different database models, char-
acterizing the new NoSQL era [3]. These new database models,
commonly gives up one of the properties covered by the CAP the-
orem (consistency, availability, partition tolerance) [4] in order to
achieve the desirable performance [3].

A representative example of such Big Data scenario [6] includes
the observation of logistics/transport systems, such urban mobil-
ity. It generates a big volume and variability of data [7] monitored.
In order to enable the analysis and studies of urban mobility data,
it is necessary to support analytic processing over collected data
set [8]. Online analytical processing (OLAP) commonly involves
queries with aggregations and joins [9] in order to enable data an-
alytics. Due to the different natures of Big Data, adopting a partic-
ular database model, therefore, can directly influence in the execu-
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tion time of the analytic queries, affecting, consequently, its perfor-
mance [10].

This article is a preliminary study that aims to evaluate the sup-
port for OLAP queries in different database models. In additional
to relational database models and column-oriented, also evaluated
by [10], in this article was also analyzed the document-oriented
database model. The exploration of these models was made through
the execution of typical analytic queries patterns initially instanti-
ated. From this preliminary study, it is aimed to apply this general
querying processing results to support relevant new issues such as
urban mobility and spatial-time series.

Besides this introduction, this article contains four more sections.
Section [2| presents a brief explanation about the main features of
the three database models discussed and OLAP queries. Section [3]
describes the benchmark used, the adopted queries with their re-
spective justifications. Section[d]describes the way in which differ-
ent database models were evaluated, and results obtained from the
experiments. At last, Section[5]presents the conclusion of the work.

2. DATABASE MODELS AND ANALYTIC
QUERIES

Each database model covered in this article has specific features,
that are best suited to a given scenario. In this section, such fea-
tures are described, highlighting the contexts in which it is expected
that they stand out. Moreover, are presented the types of operations
common to OLAP queries, regardless of the domain.

Relational Databases (RDB) are composed of a collection of tables.
Each table has one or many attributes, represented by columns.
Each row of the table, in turn, represents a relationship between
the values of the table attributes [11]]. This database is traditionally
transactional. In this way, they are optimized to support queries that
affects a small portion of the database [12].

Column-oriented databases (CDB) are also composed of a collec-
tion of tables. However, unlike the relational database, its attributes
are represented in rows, and its values are stored in columns [13].
Due to this structure, the CDB is optimized for queries that scan a
limited set of attributes [9}[10].

In document-oriented databases (DDB), the unit of data is a doc-
ument and the set of documents is a collection [14]]. Unlike RDB
and CDB, documents do not have default attributes nor fixed size.
They are composed of pairs of key-value [15] objects. Moreover,
nested documents and arrays are allowed. This distinct structure al-
lows them to represent more complex data relationships, such as
hierarchies [|16]].



Despite the need for performance in the process of data storage
in many of nowadays applications, the demand for support to an-
alytic queries is generally necessary. Besides the aggregations and
several joins, OLAP queries include rollup, drill-down and pivot
operations. These operations are based in different levels of aggre-
gations, selections, projections, and transpositions [17] over a large
data set. Such operations are often required regardless of the ex-
plored domain.

3. METHODOLOGY

In order to enable a preliminary performance analysis of the
database models presented in section [] it was necessary to adopt
a framework containing data and representative queries, i.e., that
simulates a real problem. This simulation was done through the in-
stantiation of a subset of TPC-H benchmark mapped to different
database models. Three databases were adopted, each one repre-
senting a model discussed in the article.

3.1 TPC-H

The TPC is a non-profit organization that provides benchmarks
for testing the databases and transaction processing performance.
Transactions are operations that include reading and/or writing to
disk, calls to operating systems or data transfer between systems
[[18]]. The TCP Benchmark H (TPC-H) is designed to decision sup-
port systems that examine a big volume of data and run complex
analytic queries [18]. The database structure is shown in (Figure
[I). The benchmark provides data for populating tables and analytic
queries, and are made available by the organization.

3.2 Queries

The TPC-H defines twenty-two decision support queries and in-
structs ways to execute and vary them. From the twenty-two queries
defined by the TPC-H, four were selected to be run on the three se-
lected databases. Four queries were selected as they present a set of
query features (Table[I) to be explored in different database mod-
els.

Query Q1 (Figure[2]a) corresponds to the prices report. It presents a
report of items billed, delivered, and returned on a given period. Q1
access just one table and uses aggregation (average and counting).
Applying the period indicated by the benchmark as a query filter,
it is expected that 95% to 97% of the table content to be scanned.
This type of query, without join and with access to a big data vol-
ume, is very common in many of nowadays applications (Big Table
modeling) [20].

Besides the parameters specified by TPC-H (Q1.1), some varia-
tions of this query were executed. The first one (Q1.2) uses just
one delivery day as selection criteria, while the second one (Q1.3)
considers a specific day and hour for the selection. While query
(Q1.1) does selection by period, in queries (Q1.2) and (Q1.3), it
is intended to verify the performance of the databases when run-
ning range queries. The third variation (Q1.4) selects data by key.
Although these types of queries are not described by TPC-H docu-
mentation, they were included to better explore database models.
Query Q4 (Figure[2]b) verifies the order priority. It returns the num-
ber of orders in the period of a quarter, where at least one item has
been received by the customer after it is confirmation. The results
set is grouped by date and ordered by priority. This query makes
possible to define if the priority order system is working in a sat-
isfactory way. With this query, it is intended to mainly explore the
behavior of existential queries in databases.
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Query Q13 brings the distribution of customers (Figure[2]c). It has
the goal of searching a relation between customers and their orders.
Special categories of orders are filtered by the query. The special
categories of orders are identified by the content of the attribute
relative to the order comment (o_comment). This query is particu-
larly interesting for exploring joins (left join) and aggregations.
Finally, query Q14 analysis the effect of promotions (Figure [2]d)
in sales. This query monitors the market response to promotions
and special campaigns, computing the revenue (l_extendedprice *
(1-1_discount)) of a given month when influenced by promotions.
This query explores advanced conditional evaluation during aggre-
gation. In this context, Table [I| presents a summary of features ex-
plored in each selected query.

4. EXPERIMENTAL EVALUATION
4.1 Databases

The TPC-H benchmark was applied to the databases models
described in section [2] PostgreSQL, MonetDB, and MongoDB
databases were also selected to respectively represent RDB, CDB,
and DDB. In this way, it is possible to explore the performance of
different databases in the context of OLAP queries.

PostgreSQL is a traditional relational Database Management Sys-
tem (DBMS), free and open-source [21]. Like other relational
databases, PostgreSQL supports the traditional transactions mech-
anisms including the ACID properties. The query language used by
this DBMS is SQL.

MonetDB is also free and open-source column-store pioneer
Database Management System [22]. Although its structure is dif-
ferent from the structure of RDB, MonetDB has some similarities
to this database, such as support for SQL language and ACID prop-
erties. MonetDB also supports operations and resources common
to RDB, such as foreign keys and joins. In addition, the system
has query execution plan that intensively use RAM memory and
dynamic optimization techniques.

MongoDB is a DDB [23]]. MongoDB documents are serialized as
JSON (Javascript Object Notation), and stored using the JSON
BSON binary encoding [24]. Unlike the previous databases, Mon-
goDB is not compatible with SQL. It has a syntax that provides
navigations in document hierarchy, being closer to the JSON syn-
tax. In addition, MongoDB gives up on resources common to RDB,
like join [16], in favor of complex documents storage.

4.2 Instantiation of the TPC-H

Initially it is necessary to create the structure defined by TPC-H
(Figure [T) for the three databases. The CDB and RDB representa-
tions makes use of SQL, what causes the scripts for creating the
tables, used by the two databases, be very similar. The DDB rep-
resentative, in turn, uses a differentiated language, what causes the
script for creating the collections different from the scripts used by
other databases.

The data for populating the tables are provided by the TPC. The
format of the provided files is TBL, making it possible to import
the data to RDB and CDB. To import data into DDB, however, it
is necessary for the input file to be in JSON format. Thus, data
was converted from 7BL to JSON. The file obtained through this
process was then imported to the DDB following the architecture
proposed by the TPC-H. The scale factor adopted was 1.
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Fig. 1.

select 1 returnflag, 1 linestatus, sum(l quantity) as sum gty,
sum (1l _extendedprice) as sum base price, ..,

count (*) as count order

from lineitem

Entity Relationship Diagram of TPC-H (Adapted from TPC Benchmark H specification document [[19])

select 1 returnflag, 1 linestatus, sum(l quantity) as sum gty,
sum (1l _extendedprice) as sum base price, ..,

count (*) as count order

from lineitem

where 1 shipdate < = date '1998-12-01' -interval '[DELTA]' day (3) where 1 shipdate < = date '1998-12-01' -interval '[DELTA]' day (3)

group by 1 returnflag, 1 linestatus group by 1 returnflag, 1 linestatus

order by 1 returnflag, 1 linestatus; order by 1 returnflag, 1 linestatus;

(a) (b)
select 1 returnflag, 1 linestatus, sum(l quantity) as sum gty, select 1 returnflag, 1 linestatus, sum(l quantity) as sum gty,
sum(l extendedprice) as sum base price, .., sum(l extendedprice) as sum base price, ..,
count (*) as count order count (*) as count order

from lineitem from lineitem

where 1 shipdate < = date '1998-12-01' -interval '[DELTA]' day (3) where 1 shipdate < = date '1998-12-01' -interval '[DELTA]' day (3)

group by 1 returnflag, 1 linestatus group by 1 returnflag, 1 linestatus

order by 1 returnflag, 1 linestatus; order by 1 returnflag, 1 linestatus;

(c) (d)
Fig. 2. Queries used for performance evaluation of the different database models
Table 1. Relation between the queries and operations explored by them

Feature Ql.1 Q1.2 Q1.3 Ql.4 Q4 QI3 Q14
Exists X
Nesting X
Conditionals X X
Selection by key X
Selection by date X
Joins X X

4.3 Execution of the Queries

The access to the three databases and the execution of the four
queries were automated in Python. This automation makes it pos-
sible to use the same parameters on the three databases so that the
query returns the same result. Each selected query was executed
thirty times and, except for the query QI.1, for each time that the

queries were executed, their parameters were randomly selected.
The average runtimes can be seen in Figure[3]

Query Q1.1 was executed faster by the CDB, with an average dif-
ference of the query runtime greater than 10 seconds when com-
pared to the time required by the other databases. DDB had a small
advantage over RDB, when it is considered the average time of the
query executions. However, the first execution of the query had a
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Fig. 3. Average elapsed time for runtime queries

runtime of 24,1 and 16,2 seconds for DDB and RDB, respectively.
From the second execution, the runtime of the query on DDB had
a significant reduction, while RDB showed a much inferior reduc-
tion. This result indicates that for recurring queries, without joins
and with access to a big data volume, the DDB can have a better
performance than the RDB. In both situations, CDB had a better
performance.

Queries Q1.2 and Q1.3 also had an inferior runtime when executed
on CDB. However, unlike the previous query, in these two queries,
RDB had a better performance than DDB. A factor that justifies this
result is the high selectivity of the queries. The high selectivity is
also a characteristic of the query Q/.4, but, in contrast to the result
of the queries Q1.2 and Q/.3, DDB had shorter runtime, with a
subtle difference when compared to the runtime of the query on
CDB. RDB had the worst performance. This result can be justified
by the use of index as selection criteria.

RDB excelled in query O4, which uses the exists operation. CDB
took an average of one-tenth of a second longer in the execution
time of this query, when compared to RDB. DDB had the worst per-
formance, with a difference of more than 3 seconds when compared
to other databases. This big difference of DDB in relation to other
databases, was, probably, influenced by the absence of existential
clause on DDB. The behavior of this clause was implemented in
the application layer.

Queries Q73 and Q14 were executed faster by CDB, followed by
RDB, and DDB. The two queries explore sorts and joins, which are
operations that do not exist in DDB. The join operation was done in
the application layer, what may have influenced the big difference

in the runtime. The difference from the CDB to RDB is more than
1 second of difference in their average runtime.

5. CONCLUSION

In the scenario of Big Data, it is mandatory that OLAP queries run
quickly. OLAP queries commonly have aggregations, join, projec-
tions, and transpositions. In order to preliminary evaluate such rep-
resentative access patterns in different database models, the bench-
mark TPC-H was adopted. The experimental evaluation performed,
points out which databases models were more efficient in the exe-
cution of representative queries of TPC-H benchmark. In the eval-
uation, it was predominantly considered the runtime of the queries.
From the obtained results, it can be seen that the CDB had, in
general, better performance in processing of OLAP queries. On
the other hand, the results obtained with the DDB pointed a po-
tential deficiency of the document-oriented model when subjected
to the scenarios proposed by the TPC-H benchmark. For a wider
analysis, other database models needs be included in the study
and OLAP queries from different applications must be explored.
Among the models to be explored, it can be mentioned trajectory
and spatial-temporal series, both relevant to support problems of
logistics/transport such as urban mobility.
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