
International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

Data Pre-processing for a Neural Network Trained by an
Improved Particle Swarm Optimization Algorithm

Tuan Linh Dang
Kochi University of Technology

Tosayamada, Kami City
Kochi 782-8502, JAPAN

Thang Cao
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656, JAPAN

Yukinobu Hoshino
Kochi University of Technology

Tosayamada, Kami City
Kochi 782-8502, JAPAN

ABSTRACT
This paper proposes an improved version of particle swarm op-
timization (PSO) algorithm for the training of a neural network
(NN). An architecture for the NN trained by PSO (standard PSO,
improved PSO) is also introduced. This architecture has a data pre-
processing mechanism which consists of a normalization module
and a data-shuffling module. Experimental results showed that the
NN trained by improved PSO (IPSO) achieved better performance
than both the NN trained by standard PSO and the NN trained by
back-propagation (BP) algorithm. The effectiveness concerning the
recognition rate and the minimum learning error of the data pre-
processing modules (normalization module, data-shuffling module)
was also demonstrated through the experiments.

General Terms
Neural network, Particle swarm optimization, Data pre-processing

Keywords
Normalization, Data shuffling, Neural network, Particle swarm op-
timization, C language

1. INTRODUCTION
Nowadays, a classification system becomes an attractive target of
research. The core of the classification system is a machine learn-
ing algorithm. One of the most widely used machine learning algo-
rithms is a neural network (NN) [1–3].
To have the ability to solve a classification problem, the NN needs
to be trained. Researchers have used the NN trained by particle
swarm optimization (PSO) algorithm to overcome the limitation
of NN trained by back-propagation (BP) algorithm in terms of the
recognition rate and the convergence speed [4–7].
The classification tasks of the NN trained by PSO (NN-PSO) have
been investigated in previous studies [7–10]. However, these stud-
ies used only standard PSO that may easily stick to a local mini-
mum. It is beneficial to have a mechanism to keep the particle out
of the local minimum in PSO algorithm.
The range of data attributes in a real-world application is diverse.
There are the attributes that have higher values than other attributes.
On the other hand, an activation function of the NN has an ef-
ficiency range. If input values in the training phase are too big,

the activation function always fires. The NN becomes unable to
learn [1, 11]. It needs to normalize the input data in the efficiency
range of the NN in a pre-processing module of the NN-PSO system.
Another aspect is also important for the pre-processing is the order
of training data of the NN. The data-shuffling mechanism may pre-
vent the situation of highly correlated training data when the unique
information presented by each input data is small. In addition, the
NN may learn faster with unpredicted data. If the NN learns all data
from class one, it has the optimized weights for this class. In this
situation, this NN needs to forget the class one before learning class
two. The data-shuffling method may generate the training data that
is not familiar with the NN [1, 11]. The data-shuffling module is
also necessary for the pre-processing of the NN-PSO system.
The main contribution of this research is to propose an improved
version of the PSO algorithm (IPSO). An architecture for the NN
trained by PSO (standard PSO, IPSO) is also presented. This archi-
tecture has the pre-processing modules that contain the normaliza-
tion module and the data-shuffling module. The comparison among
three algorithms (NN trained by IPSO, NN trained by standard
PSO, and NN trained by BP) is investigated in this paper. The oper-
ation of the standardization and the data-shuffling is also evaluated.
These experiments were conducted with several public recognized
databases.
This paper is presented as follows. Section 2 describes the related
work about the NN and the PSO algorithm. Section 3 introduces the
proposed IPSO algorithm. This section also presents the proposed
design for the NN-PSO system with data pre-processing modules.
Section 4 discusses the experiments and analyzes the results. Sec-
tion 5 concludes this paper.

2. RELATED WORK
2.1 Neural network
The development of the NN is inspired by a human brain. Typically,
The NN contains three classes of layer called the input layer, the
hidden layer, and the output layer, respectively. The NN has only
one input layer and one output layer, but it may have more than
one hidden layers. Each layer has several nodes. The input data are
transmitted from a node in one layer to the nodes in the next layer
through an activation function. In this activation function, if the
input of the node is high enough, the output of this node becomes

1

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

one. The sigmoid function has been widely used as the activation
function as can be seen in equation 1 [1–3].

S(x) =
1

1 + e−x
(1)

where x is the input data, S(x) is the output of the activation func-
tion.

2.2 Particle swarm optimization algorithm
The PSO algorithm comes from social behaviors. When one par-
ticle in the swarm found an optimal position, other members will
follow this particle. The calculation of the new position of each par-
ticle is based on the new velocity. The velocity update function is
expressed in equation 2, and the new position update function is
shown in equation 3. The new velocity of each particle depends on
the current velocity, the best position of this particle, and the best
position of all particles [12, 13].

vt+1
p = wvtp + c1r1(x pbesttp − xt

p)

+c2r2(x gbestt − xt
p)

(2)

xt+1
p = xt

p + vt+1
p (3)

where vt+1
p , xt+1

p denote the velocity and the position of particle
p at time (t+ 1), c1 and c2 are coefficients, r1 and r2 are random
numbers.

2.3 Linearly decreasing inertia weight
The linearly decreasing inertia weight was presented to improve
the performance of the standard PSO algorithm by using a strat-
egy for the weight control. This algorithm reduces the weights by
iterations as can be shown in equation 4. The linearly decreas-
ing inertia weight strategy has two tasks called the exploration
and the exploitation, respectively. The particles in the swarm do
a global search at the beginning (the exploitation). When inertia
weight w is small, the particles conduct the exploration. This in-
ertia weight control has the possibility to search and find the local
solutions [14].

w = wmax − wmax − wmin

Niteration

× iteration (4)

where Niteration is the number of iterations, w is the inertia
weight.

3. NEURAL NETWORK TRAINED BY IMPROVED
PARTICLE SWARM OPTIMIZATION

3.1 Improved PSO algorithm
In the standard PSO, the particle may stick to the local minimum
and the training will stop at this point. To overcome this limitation,
an improved version of the PSO called IPSO algorithm is proposed
in this paper. The velocity update function of the IPSO is modified
as can be seen in equation 5.

vt+1
p = wvtp + c1r1(x pbesttp − xt

p)

+c2r2(x gbestt − xt
p)

+c3r3(
1

ev
t
p×vt

p
)

(5)

The first part of the proposed velocity update function is similar
to the velocity update function of the standard PSO as presented
in equation 2. To keep the particle out of the local minimum, the
proposed mechanism has the second part (c3 part). This algorithm
has two phases. In the first phase, the operation of IPSO is similar to
the operation of standard PSO. The second phase keeps the particle
out of the local minimum. The operation of the IPSO algorithm is
described as follows:

(1) When a particle has a high velocity, ev
t
p×vt

p becomes very high,
c3 part becomes 0. The velocity update function in the pro-
posed algorithm is identical to the velocity update function in
standard PSO.

(2) When the particle is near the local minimum, the velocity slows
down. In this situation, the new calculated velocity starts to be
influenced by the c3 part. This additive parameter improves the
exploration ability. The possibility of being trapped in the local
minimum of the particle is reduced.

The proposed IPSO algorithm also uses the linear decreasing inertia
weight which is presented in section 2.3.

3.2 Proposed architecture
An architecture for the implementation of the NN-PSO was de-
signed. This architecture has two versions called the architecture
for the training phase and the architecture for the testing phase.
The modules for the training of the NN-PSO are illustrated in Fig.
1. This architecture has four main components called the normal-
ization module, the data-shuffling module, the checking module,
and the NN-PSO module. In the training phase, raw data are pro-
cessed in the normalization module. The output data of the normal-
ization module become the input data of the data-shuffling module.
These data are shuffled in the data-shuffling module before being
processed in the NN-PSO module. The checking module is used to
check the results from the NN-PSO module.

Fig. 1. Training phase of the NN-PSO

In the testing phase, raw data are also standardized in the normal-
ization module. Finishing the normalization, the data are processed
in the NN-PSO module. The weights of the NN in this module are

2

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

already calculated in the training phase. The operation of the testing
phase is presented in Fig. 2.

Fig. 2. Testing phase of the NN-PSO

Next subsections detail main components in the proposed architec-
ture.

3.2.1 Normalization module. This module is the first stage of the
data pre-processing. It receives raw input data and performs data
normalization. The z-score is used for the standardization process.
Equation 6 shows the z-score normalization [15]. This step converts
the input data to a common scale for the activation function.

S(x) =
attribute[i][j]− ave−attribute[i]

sd−attribute[i]
(6)

where attribute[i][j] is the jth data of the attribute[i],
ave−attribute[i] and sd−attribute[i] denote the mean and the
standard deviation of the attribute[i].
In this module, each attribute of the data is processed one-by-one.
If the data have S samples, the first attribute of all S samples will
be normalized in the first iteration. This processing step is repeated
until all attributes are standardized.

3.2.2 Data-shuffling module. This module generates a new or-
der of the data at any given training iteration. The operation of this
module is based on the random numbers. In each iteration, two ran-
dom numbers are generated N times. The data at the positions cor-
responding to these random numbers are swapped. For example in
Fig. 3 , if 2 and N −1 are generated, data[2] and data[N −1] will
be swapped.

Fig. 3. Operation of the data-shuffling module

3.2.3 NN-PSO module. This is an indispensable module in the
proposed architecture. In the training phase, this module imple-
ments both PSO algorithms (standard PSO, IPSO) and the NN. Fig.
4 shows the operation of the NN-PSO module in the training phase.
The data from the shuffling module are sent to P particles. Each
particle has D dimensions. D is also the size of the NN that can be
calculated by equation 7.

D = (NI+1)×NH+(NH+1)×NH×NL+(NH+1)×NO (7)

Fig. 4. Training operation of the NN-PSO module

where NI , NH , and NO are the numbers of the nodes in the input
layer, the hidden layer, and the output layer. NL is the number of
hidden layers as presented in Fig. 5.

Fig. 5. Neural network

The output data of the NN in each particle are processed in the
evaluation module. This module performs the mean squared error
as illustrated in equation 8.

fi =
1

T

T∑
j=1

(labeledj(k)− outputij(k))
2 (8)

where T is the number of training samples, labeled(k) and
output(k) are the kth component of the particle i in the labeled
data and the output data of the NN.
From the evaluation module, the minimum learning error of each
particle (Pbest) and the global minimum learning error (Gbest) of
all particles are calculated. The weights of the NN correspond with
the Gbest will be used for the testing phase as shown in Fig. 6. The
testing phase uses only the NN.

Fig. 6. The testing phase of the NN

3

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

In the NN-PSO module, the initial weights are very crucial. These
initial weights cannot have the same values such as all weights are
zeros. In this situation, all neurons act similar behaviors during the
training process. If the required weights for the NN are unequal
weights, the NN cannot learn. In addition, the different initial val-
ues may prevent the situation when the NN sticks to a local mini-
mum.

3.2.4 Checking module. This module checks the stopping crite-
ria in each training iteration. The stopping conditions could be the
number of iterations or the final Gbest. If the requirements are met,
the optimized NN weights are stored. These weights will be used
in the testing phase. Otherwise, a new iteration will start.

4. EXPERIMENT AND DISCUSSION
The proposed architecture was implemented in the Ubuntu oper-
ating system by the C language. Based on experiments, the PSO
algorithm obtained a high recognition rate and a low training error
with the parameters c1 = 0.3, c2 = 0.3, c3 = 0.4, w reduces from
0.9 to 0.0.
The experiments focused on two different aspects. The first issue
evaluated the normalization module and the data-shuffling mod-
ule of the proposed architecture. The second issue, the primary fo-
cus, investigated the performance of the NN trained by proposed
IPSO algorithm in the proposed design when compared with the
NN trained by standard PSO and the NN trained by BP.

4.1 Data pre-possessing experiment
Three different approaches for the IPSO algorithm were imple-
mented. The first approach did not use the normalization mod-
ule (No−Normalized−PSO). The data-shuffling module was not
applied in the second approach (No−Shuffle−PSO). The final ap-
proach had both normalization and data-shuffling (Full−PSO). The
parameters of the NN-PSO were modified randomly to investigate
the operation of three algorithms in different situations, different
scenarios. These parameters are the number of particles and the
number of iterations.
The wine dataset was chosen from UCI machine learning database.
This data set comes from the chemical analysis of Italian wines. It
has three classes and thirteen attributes. In this data set, the proline
attribute is much higher than other attributes. The number of data
samples of this database is 178 [16].
In this experiment, 120 samples of the wine data set were selected
randomly as training data, 58 remaining samples were considered
as testing data. The NN used in this experiment had thirteen input
nodes (corresponding to thirteen attributes), thirteen hidden nodes,
three hidden layers, and three output nodes (corresponding to three
classes). The parameters of the IPSO training were modified from
small values to high values in three different scenarios as presented
in Table I.
The approach that used both data-shuffling and normalization tech-
niques (Full−PSO) obtained better performances than two other ap-
proaches (No−Normalized−PSO, No−Shuffle−PSO) regarding the
recognition rate and the minimum learning error (Gbest) in all sce-
narios. Even with a small number of particles and iterations (10
particles, 50 iterations), the Full−PSO approach got more than 80%
recognition rate.
Fig. 7 shows the reduction of the global minimum of the learn-
ing error (Gbest) in the first scenario. In this test, the pa-
rameters were 10 particles, and 50 iterations. The Full−PSO
produced better Gbest (the final Gbest = 0.1848) than the

Table I. The data pre-processing experiment of IPSO algorithm

Parameters Approaches Gbest Recognition rate

10 particles No−Normalized−PSO 0.3315 32.76%
50 iterations No−Shuffle−PSO 0.2936 55.45%

Full−PSO 0.1848 82.76%
25 particles No−Normalized−PSO 0.2466 48.28%

100 iterations No−Shuffle−PSO 0.0703 86.21%
Full−PSO 0.0437 86.21%

50 particles No−Normalized−PSO 0.1919 63.79%
1000 iterations No−Shuffle−PSO 0.0108 93.10%

Full−PSO 3.31× 10−7 96.56%

0.0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
Number of iterations

G
be

st

Algorithm
Full_PSO
No_Normalized_PSO
No_Shuffle_PSO

Fig. 7. 10 particles, 50 iterations

No−Shuffle−PSO (Gbest = 0.2936), and the No−Normalized−PSO
(Gbest = 0.3315).

0.0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
Full_PSO
No_Normalized_PSO
No_Shuffle_PSO

Fig. 8. 50 particles, 1000 iterations

Fig. 8 illustrates the reduction of Gbest when the number of parti-
cles was 50, and the number of iterations was 100. The final Gbest
of the Full−PSO still reduced to the lowest value (3.31× 10−7).
This data pre-possessing experiment confirmed the need of using
both normalization module and data-shuffling module in the pro-
posed architecture. Next section describes the IPSO experiments,
the main experiments. These experiments evaluated the operation
of the proposed IPSO algorithm in the proposed architecture.

4

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

4.2 IPSO experiments
These experiments investigated the NN trained by three different
algorithms in the proposed architecture. The first algorithm is con-
ventional BP algorithm. The second algorithm is standard PSO al-
gorithm. The final algorithm is the proposed IPSO algorithm. All
three algorithms were implemented in the design which had both
normalization module, and data-shuffling module.
The number of iterations and the number of particles were also as-
signed randomly to investigate the operation of three algorithms in
different situations. These experiments used three separate public
recognized data sets.

4.2.1 Wine dataset . The first experiment also used the wine data
set as the data pre-processing experiment. The wine data set was
divided randomly into two smaller sets. Each set had 89 samples.
The 2-fold cross validation was conducted. When set 1 was used
as the training data, set 2 was chosen as the testing data and vice
versa. The configuration of the NN in this experiment was identical
to the configuration of the NN in data pre-processing experiment
(thirteen input nodes, thirteen hidden nodes, three hidden layers,
and three output nodes).
Table II illustrates the operations of three algorithms when set 1
was considered as the training data. In this test, the number of par-
ticles was fixed (50 particles), and the number of iterations was
changed from 750 iterations to 1000 iterations. The IPSO obtained
the highest recognition rate and the lowest Gbest in both two sce-
narios (750 iterations, and 1000 iterations).

Table II. Set 1 used for training, PSO and IPSO had 50 particles

iterations Algorithm Gbest Recognition rate

750 BP with data pre-processing 0.0615 82.02%
PSO with data pre-processing 0.0303 87.64%
IPSO with data pre-processing 9.8× 10−6 93.26%

1000 BP with data pre-processing 0.0600 83.15%
PSO with data pre-processing 0.0077 92.14%
IPSO with data pre-processing 2.6× 10−9 95.51%

0.0

0.1

0.2

0.3

0.4

0.5

0 200 400 600
Number of iterations

G
be

st

Algorithm
BP
IPSO
PSO

Fig. 9. Set 1 training, 750 iterations, PSO and IPSO had 50 particles

Fig. 9 and Fig 10 show the learning curve in two scenarios of this
test. The Gbests of the IPSO algorithm in both scenarios achieved
the lowest values that indicated the performance of the IPSO algo-
rithm. These results may be explained by the using of the proposed

0.0

0.1

0.2

0.3

0.4

0.5

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
BP
IPSO
PSO

Fig. 10. Set 1 training, 1000 iterations, PSO and IPSO had 50 particles

c3 part. This part may improve the exploration ability of the PSO
algorithm. Each particle may continue to search the best location
near the local minimum.
For the 2-fold cross validation, set 2 was also used as the training
data and set 1 was selected as the testing data. In PSO algorithm,
two important parameters are the number of iterations and the num-
ber of particles. In the previous test, the number of iterations was
modified. Therefore, the changing of the particle numbers was in-
vestigated in this test. The number of iteration was kept at 1000
iterations.

Table III. NN-PSO and NN-NP when set 2 used for training, 1000
iterations

Algorithm Particles Gbest Recognition

BP with data pre-processing - 0.0922 84.27%
PSO with data pre-processing 55 0.0156 87.64%

70 0.0071 89.89%
IPSO with data pre-processing 55 3.9× 10−7 91.01%

70 1.8× 10−7 95.51%

Table III presents the experimental results when the number of par-
ticles in the PSO, IPSO algorithms was changed from 55 particles
to 70 particles. In both configurations of the particle numbers, the
IPSO algorithm got better performance regarding the recognition
rate, and the Gbest than the standard PSO and the BP algorithm.

0.0

0.1

0.2

0.3

0.4

0.5

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
BP
IPSO
PSO

Fig. 11. Set 2 training, 55 particles, 1000 iterations

5

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

Fig. 11 shows the reduction of Gbest when set 2 was used as the
training data, set 1 was considered as the testing data. The parame-
ters for PSO, IPSO were 55 particles, 1000 iterations. The Gbest of
the IPSO, declined to the lowest values, confirmed the performance
of the proposed IPSO.

4.2.2 Statlog (heart) data set . This is the heart disease database
which has thirteen attributes, and two classes called the presence
of heart disease and the absence of heart disease [16]. The serum
cholesterol attribute in this database has a higher value than other
attributes. The purpose of the experiment with this data set is to
investigate the operation of the NN-PSO system with different
databases. The settings of the NN were thirteen input nodes, two
output nodes, thirteen hidden nodes, and three hidden layers.
In this experiment, 100 samples were chosen randomly as the train-
ing data; another 50 samples were selected randomly as the testing
data. The number of particles was 100 particles; the number of it-
erations was 1000 iterations.

Table IV. Stalog data set

Algorithm Gbest Recognition rate

BP with data pre-processing 0.1279 84.00%
PSO with data pre-processing 0.0637 86.00%
IPSO with data pre-processing 0.0186 92.00%

0.0

0.1

0.2

0.3

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
BP
IPSO
PSO

Fig. 12. Statlog (heart) data set, 100 particles, 1000 iterations

Table IV and Fig. 12 present the results of this experiment. Exper-
imental results showed that the proposed IPSO achieved the best
performance among the three algorithms (IPSO, PSO, and BP) con-
cerning the recognition rate and the global minimum of the learning
error.

4.2.3 Mesothelioma dataset. In wine experiment and statlog ex-
periment, the data sets have only thirteen features. This experiment
investigated the operation of the NN trained by proposed IPSO al-
gorithm with a bigger data set. The mesothelioma dataset was used
in this experiment. This data set comes from the mesotheliomna
disease diagnosis of 324 patients. Each patient data has 34 fea-
tures [17]. To test on this database, the configurations of the NN
were 34 input nodes, 34 hidden nodes, three hidden layers, and two
output nodes.

From 324 patient data, 280 samples were considered as the train-
ing data; 80 remaining data samples were the testing data in this
experiment.

Table V. Mesothelioma dataset

Parameters Algorithm Gbest Recognition

40 BP with data pre-processing 0.0615 82.02%
500 PSO with data pre-processing 0.0303 87.64%

IPSO with data pre-processing 9.8× 10−6 93.26%
40 BP with data pre-processing 0.0600 83.15%

4000 PSO with data pre-processing 0.0077 92.14%
IPSO with data pre-processing 2.6× 10−9 95.51%

Table V shows the results of the mesothelioma experiment. In
the first scenario, the parameters were 40 particles and 500 iter-
ations. The NN trained by IPSO obtained the highest recognition
rate (93.26%). The recognition rate of the NN trained by PSO
was 87.64%, and the recognition rate of the NN trained by BP
was 82.02%. In the next scenario, the number of iterations was in-
creased to 4000 iterations. The recognition rates of all three algo-
rithms were improved. The IPSO still got the highest recognition
rate (95.51%).

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500
Number of iterations

G
be

st
Algorithm

BP
IPSO
PSO

Fig. 13. Mesothelioma data set, 40 particles, 500 iterations

Fig. 13 shows the reduction of Gbest, the global minimum learn-
ing error, in one scenario of this experiment. In this scenario, the
number of particles was 40 particles, and the number of iterations
was 4000 iterations. Among three algorithms, IPSO obtained the
lowest Gbest (9.8× 10−6).
The results came from the experiments with three different
databases confirmed the better performance of the proposed IPSO
concerning the recognition rate and the training error.

4.3 Two hidden layers experiments
In previous experiments presented in section 4.1 and section 4.2,
the three hidden layers NN was tested. It is beneficial to investigate
the operation of the proposed IPSO with different sizes of the NN.
The experiment presented in this section was conducted with two
hidden layers NN. Other configurations of the NN were thirteen in-
put nodes, thirteen hidden nodes, and three output nodes. The wine
data set was used in this experiment. The wine samples were di-
vided randomly into three different subsets. Set 1 had 60 instances,
set 2 had 60 instances and set 3 had 58 samples. The 3-fold cross

6

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

validation was done with three different algorithms (IPSO, PSO,
and BP). Each algorithm had three different approaches (without
the normalization module, without the data-shuffling module, with
both the normalization module and the data-shuffling module). The
number of particles P = 50, the number of iterations I = 1000.

Table VI. Two hidden layers NN

Algorithms Approaches Recognition

No−Normalized−BP 26.9767%
BP No−Shuffle−BP 90.4233%

Full−BP 90.4233%
No−Normalized−PSO 64.5966%

PSO No−Shuffle−PSO 88.1484%
Full−PSO 92.6437%

No−Normalized−PSO 70.23%
IPSO No−Shuffle−PSO 93.8317%

Full−PSO 95.4993%

Table VI shows the results of the 3-fold cross validation in three
different algorithms with two hidden layers NN. In all approaches,
the proposed IPSO got the highest recognition rate. These results
also demonstrated the efficiency of data pre-processing modules
which may improve the recognition rate.

0.0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
Full_PSO
No_Normalized_PSO
No_Shuffle_PSO

Fig. 14. Set 1 and set 3 training, set 2 testing, PSO algorithm

Fig. 14 shows the results of PSO algorithm when set 1 and set 3
were used as the training data, set 2 was considered as the test-
ing data. The final Gbests in Full−PSO, No−Shuffle−PSO, and
No−Normalized−PSO were 0.011, 0.044, and 0.169, respectively.
Fig. 15 describes the reduction of the Gbest in IPSO algorithm
when set 1 and set 2 were used as training data, set 3 was used
as testing data. The final Gbest of the No−Normalized−PSO was
0.1838. On the other hand, the final Gbests of Full−PSO and
No−Shuffle−PSO were small. Comparing these two algorithms, the
Gbest of Full−PSO got a smaller value (7.36 × 10−9) than the
Gbest of No−Shuffle−PSO (3.93× 10−8).
Experimental results presented in Table VI, Fig. 14, and Fig. 15
suggested that the data pre-processing modules (normalization,
data-shuffling) may improve the recognition rate of all three algo-
rithms (IPSO, PSO, and BP). The proposed IPSO also obtained
the best performance among the three algorithms concerning the
recognition rate and the global minimum of the learning error.

0.0

0.1

0.2

0.3

0.4

0 250 500 750 1000
Number of iterations

G
be

st

Algorithm
Full_PSO
No_Normalized_PSO
No_Shuffle_PSO

Fig. 15. Set 1 and set 2 training, set 3 testing, IPSO algorithm

4.4 Discussion
In the light of the evidence, experiments confirmed that the pro-
posed IPSO achieved the highest performance among three algo-
rithms (IPSO, PSO, and BP) with different settings of the PSO
algorithms (number of iterations, number of particles), different
databases (wine, statlog, and mesothelioma data sets), different size
of the NN (two hidden layers, three hidden layers). The c3 part in
the IPSO algorithm improved the exploration ability of the stan-
dard PSO algorithm. This mechanism helps the algorithm continue
to search in the area that nears the local minimum. Even when the
standard PSO gets stuck in the local minimum, the IPSO may con-
tinue to search the optimal solutions.
Considering the experimental results, both two PSO algorithms
(standard PSO, IPSO) got better performance than the BP algo-
rithm.
In the experiments, the normalization module and the data-
shuffling module also increased the recognition rate and reduced
the learning error of the NN. These results confirmed the need of
the data-preprocessing not only with the NN trained by BP algo-
rithm but also with the NN trained by PSO (standard PSO, IPSO).
Once the input data has been sent to the NN-PSO or NN-BP, this
data must be pre-processed. Otherwise, the NN will not produce
accurate results.
Experimental results also demonstrated that the NN trained by
No−Shuffle−PSO got higher performance than the NN trained by
No−Normalized−PSO regarding the learning error and the recog-
nition rate. These results suggested that the normalization module
had a more significant role in the data-preprocessing than the data-
shuffling module in the NN-PSO architecture.

5. CONCLUSION
This paper proposes the improved version of PSO algorithm called
IPSO algorithm. Experimental results demonstrated the advantages
of the proposed IPSO regarding the recognition rate and the learn-
ing error when compared with the standard PSO algorithm and the
BP algorithm.
The architecture for the NN trained by PSO (standard PSO, ISPO)
was also successfully implemented in this paper. The operation of
NN trained by three different algorithms (IPSO, PSO, BP) in the
proposed architecture is evaluated in this paper. Each algorithm
has three different approaches. The first approach does not have
the data-shuffling module. The second approach does not use the
normalization module. The third approach consists not only the

7

International Journal of Computer Applications (0975 - 8887)
Volume 154 - No.1, November 2016

data-shuffling mechanism but also the normalization mechanism.
Experimental results showed that the third approach had the highest
recognition rate and the lowest global learning error. Considering
the results, the normalization method and data shuffling method are
the essential techniques for the training of the NN.
The future research will investigate the role of the data pre-
processing module with more complex data sets and bigger NNs.
Another possible avenue for the research is to investigate other
methods for the data pre-processing such as noise reduction, out-
lier reduction, or remove the redundancy. Further research about
the proposed IPSO algorithm will be conducted.
The future scope of this research is the development of a useful
architecture for the daily life. Therefore, the proposed architecture
with IPSO algorithm and the data pre-processing modules needs to
be confirmed with real-life applications. In this situation, the data
come from the daily life situations such as the credit card approval
of the credit card company or the clothes selection of the stores will
be fed to the proposed architecture.

6. REFERENCES

[1] S. Haykin, Neural networks and learning machines, 3rd edn,
Prentice Hall, 2008

[2] R. H. Nielsen, Theory of the backpropagation neural network,
In processing of the international conference on neural net-
works, pp. 693-605, 1989

[3] R. Rojas, Neural networks - a systematic introduction,
Springer-Verlag, 1996

[4] J. R. Zhang, J. Zhang, T. M. Lok. M. R. Lyu, A hybrid particle
swarm optimizationback-propagation algorithm for feedfor-
ward neural network training, Applied mathematics and com-
putation, vol. 185, pp. 10261037, 2007

[5] Z.A. Bashir, M.E. El-Hawary, Applying Wavelets to Short-
Term Load Forecasting Using PSO-Based Neural Networks,
IEEE transactions on power systems, vol. 46, pp. 268-275,
2016

[6] A. Suresh, K. V. Harish, N. Radhika, Particle Swarm Opti-
mization over Back Propagation Neural Network for Length
of Stay Prediction, In processing of the international confer-
ence on information and communication technologies, vol.
24, no.1, pp. 20-27, 2009

[7] V. G. Gudise, G. K. Venayagamoorthy, Comparison of parti-
cle swarm optimization and backpropagation as training al-
gorithms for neural networks, In processing of 2003 IEEE
swarm intelligence symposium, pp. 110-117, 2003

[8] M. T. Das, L. C. Dulger, Signature verification (SV) toolbox:
Application of PSO-NN, Engineering applications of artifi-
cial intelligence, vol. 22, issue 4-5, pp. 688-694, 2009

[9] R. Mendes, et al., Particle swarms for feedforward neural net-
work training, In processing of the IEEE international joint
conference on neural networks, vol.2, pp.1895-1899, 2002

[10] K. W. Chau, Application of a PSO-based neural network in
analysis of outcomes of construction claims. Automation in
construction, vol. 16, no. 5, 642-646, 2007

[11] G. Montavon, G. B. Orr, K. R. Muller Neural networks: tricks
of the trade, 2nd edn, Springer, 2012

[12] J. Kennedy, R. Eberhart, Particle swarm optimization, In pro-
cessing of the IEEE international conference on neural net-
works, vol. 4, pp.1942-1948, 1995

[13] R. Eberhart, Y. Shi, Particle swarm optimization: develop-
ments, applications and resources, In processing of the 2001
IEEE international conference on congress on evolutionary
computation, vol. 1, pp. 81-86, 2001

[14] Y. Shi and R. Eberhart, Empirical study of particle swarm op-
timization, In processing of international conference on evo-
lutionary computation, pp. 1945-1950, 1999

[15] J. Han, M. Kamber, J. Pei, Data mining: concepts and tech-
niques, 3rd edn, Morgan Kaufmann, 2011

[16] M. Lichman, UCI Machine Learning Repository,
http://archive.ics.uci.edu/ml, accessed Sep. 03 2016

[17] E. Orhan, A. C. Tanrikulu, A. Abakay, F. Temurtasa, An ap-
proach based on probabilistic neural network for diagnosis of
Mesotheliomas disease, Comput electr eng, vol. 38, issue 1,
pp. 75-81, 2012

8

	Introduction
	Related work
	Neural network
	Particle swarm optimization algorithm
	Linearly decreasing inertia weight

	Neural network trained by improved particle swarm optimization
	Improved PSO algorithm
	Proposed architecture
	Normalization module
	Data-shuffling module
	NN-PSO module
	Checking module

	Experiment and discussion
	 Data pre-possessing experiment
	IPSO experiments
	Wine dataset
	Statlog (heart) data set
	Mesothelioma dataset

	 Two hidden layers experiments
	Discussion

	Conclusion
	References

