
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

1

New Strategy for Mitigating of SQL Injection Attack

Ammar Alazab
Al-Balqa' Applied University

Ansam Khresiat
Federation Universty, Australia

ABSTRACT
SQL injection attack (SQLIA) is a serious threat to web

applications. A successful SQLIAs can have serious

consequences to the victimized organization that include

financial lose, reputation lose, compliance and regulatory

breach. Therefore, developing approaches for mitigating SQLIA

is paramount important. To this end, we propose an approach

based on negative tainting along with SQL keyword analysis for

detecting and preventing SQLIA. We have tested our proposed

approach on all types of SQLIAs techniques by generating SQL

queries containing legitimate SQL commands and SQLIA. We

present an analysis and evaluation of the proposed approach to

demonstrate its effectiveness in detecting and protecting SQLIA

attack.

Keywords
Cybercrime, SQL Injection, SQLIA, Vulnerabilities, Web

Application Security

1. INTRODUCTION
SQL Injection Attack (SQLIA) is a type of attack on web

application, which occurs when an attacker inputs malicious

strings as parameters in legitimate SQL statement [1]. SQLIA

attacker takes advantage of improper coding of the web

applications that allow the hacker to inject SQL query to get

access to the data in the database. It is considered one of the

most popular web application attack techniques used nowadays.

It is a serious threat to the web application as it allows the

hackers to gain complete access to the database server.

Although defensive coding, such as input validation represents

a good mechanism to protect against SQLIA, they cannot protect

against evasion techniques [2]. Also, they cannot protect the

legacy web application that already has been deployed. A more

common technique is preparing the SQL statement. This is used

widely among commercial web development tools to protect

against SQLIA. These statements are mainly created for the

purpose of building efficient SQL queries and thus do not design

to prevent SQLIA. Moreover, defensive coding is expensive,

which makes it an impractical technique for protecting large

legacy systems.

Firewalls and Intrusion Detection Systems (IDSs) are

unworkable against SQLIA, because the signature keywords can

be passed using the evasion techniques or alternate character

encodings. SQLIA are still succeeding, and the defensive

mechanisms are failing, for instance for the nonexistence of the

right signature. Also, web application has been attack by using

SQLIA via the firewall on port 80 or 443[3].

Web applications are deployed in many diverse forms with a

wide range of functional capabilities. For that reason, there are

repeatedly several possible ways of malicious input to be

considered for these web applications. However, specifying all

of them is naturally problematic and leads to high negative

rate[4]. For instance, developers initially assumed that only

direct user input needed to be marked as tainted. Successful

SQLIAs confirmed that other malicious inputs sources, such as

browser cookies, also required to be considered [5]. SQLIA is

becoming extensively more widespread amongst hackers

community. SQLIA and DDOS (Distributed Denial of Service)

attacks are the most popular topics on hacker forums[6].

The most well-known malware and crime tool kits are those

associated with the SQLIA such as Asprox, Conficker, Zeus and

SpyEye [7-9]. These malware and crime tool kits are very

dangerous because they target online banks system and perform

a criminal activity. By using SQLIA help malicious writers to

generate illegitimate web site.Thus, the malicious writers

involve SQLIAs with crime tool kits. The Open Web

Application Security Project (OWASP) recorded SQL injection

as the most dangerous security threat affecting Web

applications[10] In 2010. In the previous list in 2007, SQL

injection was recorded at second place on their list of the ten

most critical web application security vulnerabilities[11]. A

recent survey conducted by GreenSQL, reveals that 88% of

organizations still fail to protect their databases against both

internal and external threats, and SQLIAs occur more than 70

times per hour [12].

 During the past few years, a great deal of attention has been

given to the problem of SQLIAs. Even though, most of the

exiting researches have difficulties to address the full aspects of

the SQLIAs. There are many techniques of SQLIAs and new

advanced evasion techniques are creating on these kinds. The

needs for consideration of these techniques are becoming urgent.

Otherwise, different cybercrime threats will be occurred, and

that you will be facing serious threats into business. In this

paper, we propose a general model for protecting and detecting

SQLIA based on SQL syntax at the web application layer, and

negative taint at the database layer. The central idea is

monitoring the data that comes from user’s web browsers and

matching with taint table on the database layer in the real time. If

any of its malicious is recognized from user input, we stop the

SQL statement from execution. Our techniques have been

successful against all types of SQLIAs because the dynamic

SQL statement is monitored through the database layer. The

main contributions of our work can be summarized as follows:

A new approach for detect and prevent SQLIA at the runtime.

Applying negative taint in database layer helps us to identify

untrusted data at the database layer. Thus, our method is able to

detect maliciousness caused by tricky data and obfuscation

techniques while minimizing false negatives. The major

advantage of our approach apart from efficiency is that it does

not change the web architecture.

The rest of the paper is organized as follows. An overview of the

problem and related work is discussed in Section 2. An overview

of the SQLIAs techniques are explained in Section 3. An evasion

method of the SQLIAs techniques are discussed in Section 4. An

overview of the proposed technique is presented in Section 5.

We then present the results of the evaluation of the proposed

approach in Section 6. The concluding remarks are presented in

Section 6.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

2

2. BACKGROUND
In this section, we present the system mode on web application.

We also formalize the SQLIA detection problem and present

review of related work.

2.1 System Model
Web applications are an application running over a network such

as the internet or an intranet. They enable websites to become

dynamic by making connections to the databases[13]. The high

level system components of web applications are shown in

figure 1. In the web application architecture, there are five

layers; browsers, networks, web servers, web applications and

databases. First, the client requests a page, either a static or a

dynamic page.

Figure 1. Web Application Architecture

Second, the web browser passes this request through the firewall

to the web server. Third, the web server handles this request

based on an initial configuration like Hypertext Transfer

Protocol (HTTP) and Hypertext Transfer Protocol Secure

(HTTPS), which can also handle these requests by “decoding"

the webpage. Fourth, the web server passes this request to the

web application server. Finally, the web application passes these

requests to the database. In addition, the web application

processes commands and verifies security access to the database

through middleware such as JDBC, SQLJ, or JDO API, ODBC.

After verifying the database access, the web application server

sends the Structured Query Language (SQL) requests to the

database server. Finally, the database server handle this requests

by allowing storage, deletion, updating of the data, depending

upon the SQL query and sends back the results to the application

server.

Generally, web applications use query statements to generate

strings to interact with the database. Usually these queries are

generated by the web application servers such as ASP, JSP and

PHP. A string contains both the query itself and its parameters

which can be the user name and password. Then, the string is

forwarded to the database server for checking as a single

Structured Query Language (SQL) statement, if the received

string compromised or injected it will cause data leakage.

Therefore, it is necessary to protect web applications from illegal

accesses.

Web applications are infamous for security vulnerabilities that

can be victimized by writers of malware and hackers. The global

accessibility of web applications is a serious problem, rendering

them vulnerable to attack. One of the main threats on the web

applications is SQLIAs that are extremely widespread in web

applications [14]. Web applications offer an excellent facility to

access the database through the internet [15], which has

provided the required service to customers. Unfortunately, these

advantages have raised a number of security vulnerabilities from

improper code. Resulting, Structured Query Language

Vulnerabilities (SQLV) that entitle hackers to have the ability to

influence the Structured Query Language (SQL) that a web

application passes to a back-end of a database. By inserting

malicious code into strings to gain unauthorized access to a

database to retrieve information or destroy the database (DB)

where all the data is sensitive[16]. Web application security

generally focuses on identifying vulnerabilities and malicious

strings within web applications layer. Firewalls and Secure

Sockets Layer (SSL) protocol information transferred between

the site and client, but does not protect information against web

application hackers, as they are built on top

of web application infrastructure [17]. Therefore, it is easy to

append data and commands into SQL statement. Even normal

users can attempt direct connections to the databases through

specific ports, bypassing the security mechanism [18].

2.2 SQL Injection Defined
SQLIA is one of the critical threats for web application. These

attacks are presented through specifically characters attacker

enters, on web applications that use on users browser to generate

SQL queries. It has been experience for bad impact to the

business, because it can lead to reveal of all of the critical data

stored in the database, in such as, passwords, credit card,

personal information and so on. SQLIA is normally used to

compromise data base systems through vulnerable web

applications. The SQLIA permits the attacker to get access to the

whole or partial contents of databases. Moreover, SQLIA can

make modifications to both the database schema and the

contents. To perform a SQLIA in the most cases Web forms are

used to inject part of SQL query. Entering SQL keywords and

control signs an attacker is capable to alter the structure of SQL

statement.

In SQLIA, malicious writers can take advantage of weakly web

application development to launch their attack. The vulnerability

happens when a web application improper authentication coded

to authenticate the data a user might enter on the web page.

Normally logion authentication in web page has two text box

fields for entering a user name and password. Let user_name and

user_password represent the names of these fields sequentially.

Figure 2. SQL Injection Example

The following code shows how to generate dynamic SQL query:

SELECT user_name user_ password FROM users

WHERE user_name=’" + user_name+ "’ AND

user_password=’" + user_password+ "’

The above the SQL statement aimed to check the user name and

password that exiting in the database with the user name and

password that entering by the user in web form a shown in figure

2. The basic method of SQLIA contains straight addition of

string into parameters that are attached with of the structure of

SQL. A very straightforward attack may be potential by easily

input string, like “1 OR 1=1” in the input field, the consequences

from these inputs retrieve all database data. Another scenario, if

an attacker is entered “user1 --” as user name and leaves

password empty. The user’s input is generated as the following

SQL query:

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

3

SELECT user_name,user_password FROM users

WHERE uname=’admin’’ AND pass=’ ’

The consequences from above query, the attacker can get access

to the database without correct user name or password.

3. RELATED WORK
There has been a lot of research performed in detecting and

preventing SQLIA. Abawajy has suggested SQLIA detection

and prevention approach for RFID (Radio Frequency

Identification) systems[19]. His techniques work very well in the

RFID tag based SQLIA. In another work for Fernando and

Abawajy address SQLIAs through developing a model of

legitimate SQL statements and then matching the generation

query to conform to this approach through runtime

monitoring[20]. The problem with this approach is that it

expects the existence of the original SQL structure. Unfortunate,

very little work exits to dealing with full aspects of the SQLIAs.

A simple technique is to check for single quotes and dashes, and

escape them manually. This is easily beaten, as attackers can

simply adjust their input for the escaped characters.

web based SQLIA attacks Static Analysis: Pixy [21] is an open

source prototype aimed at detecting SQL injection, cross-site

scripting, or command injection based on flow-sensitive, inter-

procedural and context-sensitive data flow analysis. In additional

Pixy uses literal analysis to improve the rightness and precision

for his results. Combined Static and Dynamic Analysis:

AMNESIA [22] is a technique that combines dynamic and static

for preventing and detecting web application vulnerabilities at

the runtime. AMNESIA uses static analysis to generate different

type of query statements. In the dynamic phase, AMNESIA

interprets all queries before they are sent to the database and

validates each query against the statically built models.

AMNESIA stops all queries before they are sent to the database

and validates each query statement against the AMNESIA

models. However, the primary limitation in AMNESIA

according to Ramaraj [23] is that the technique is dependent on

the accuracy of its static analysis for building query models for

successful prevention of SQL injection. Furthermore,

AMNESIA doesn’t consider there are certain types of code

obfuscation or query development techniques that could make

this step less precise and result in both false positives and false

negatives.

Moreover, Martin, Livshits and Lam [24] proposed Program

Query Language(PQL) that used static analysis and dynamic

techniques to detect vulnerabilities in web applications. In static

analysis information flow techniques to detect when malicious

input has been used to generate an SQL query statement; these

statements are then flagged as SQLIA vulnerabilities. According

to Ramaraj [23] the limitation of this approach is that it can

detect only known patterns of SQLIA.

Taint Based Approaches: WebSSARI (Web application Security

via Static Analysis and Runtime Inspection) [25] is a tool

proposed to a statically validate existing web applications and

legacy web application code without any extra effort for the

programmer and automatically protect potentially defective

code. In this model, static analysis is applied to validate infect

runs versus given conditions for sensitive formulation.

Code Checkers are based on static analysis of web application

that can reduce SQL injection vulnerabilities and detect type

errors. For instance, JDBC-Checker [26] is a tool used to code

check for statically validating the type rightness of dynamically-

generated SQL queries. However, researchers have also

developed particular packages that can be applied to make SQL

query statement safe [27]. These techniques are good, but need

extra effort from programmers to build queries statements using

Application Program Interface APIs especially for legacy web

application because lack of information about the intent of the

programmer.

Tainted Data Tracking: this method is proposed by Halfond [28],

it is based on track tainted-ness of data and check specifically

for dangerous content that comes from user input. According to

Nguyen-Tuong et. al.[29] this can be done via instrumenting the

run time environment or interpreter of the back-end scripting

language. When an SQL statement is sent to the database server,

its syntax tree is first examined. However, this approach does

not provide any way to check the correctness of the input

validation routines [30]. However programs that use incomplete

input checking routines may pass these checks and still be

vulnerable to injection attacks [14] .

A number of commercial tools have a strong package library to

help a developer from SQLIAs. For instance, J2EE has an

especially SQL query against SQLIAs, and Microsoft’s NET has

the same. The efficiency of these SQL query statements at

protecting from SQLIAs are reliant on the development stage,

which is based in database layer, and these typically written by

the third party vendors. Thus, it is very difficult to use these

commercial tools for legacy web application.

4. IMPACT OF SQL INJECTION
Several of the prominence SQLIA has been affected on

information security because of the break of confidentiality in

the information stored in the Databases. This loss of

confidentiality and the resulting financial costs for recovery,

downtime, regulatory penalties, and negative publicity represent

the primary immediate consequences of a successful

compromise. The following table 1 shows the Impacts of

successful SQLIA.

Table1. Impacts of Successful SQLIA

Impacts Explanation

Authentication

Bypass

This attack allows SQLI attacker to get

access to a database layer, possibly with

admin privileges, without providing a

correct username or password.

Information

Disclosure

This attack allows SQLI attacker to gain

for sensitive information that is stored in a

database such as credit card information.

Compromised

Data Integrity

This attack allows SQLI attacker to

modify the contents of web page. The

consequence from this is defacing a web

page.

Compromised

Availability of

Data

This attack allows SQLI attacker to

remove information in order to cause

damage to information that is stored in a

database.

Remote Command

Execution

This attack allows SQLI attacker to

perform command execution through a

database, which let the attacker control for

the operating system.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

4

SQL injection attacks have been related with many high profile

data breached as shown in the following table. Attacked

increasingly, become targeted, and exploitation is faster.

Table 2. Real Examples of SQLIA Attack

Year Example References

2008 - Appear malware that use SQLIA

such as Asprox. Asprox is a kind

of malware that used the two

threat vectors of forming a botnet

and of generating SQLIAs.

.Asprox is used SQLIAs

techniques in order to expand its

Botnet. It is attack legitimate

websites and injects scripts that

redirected the users to illegitimate

web sites.

[31]

2009 - The site of BitDefender's

Portugese, Kaspersky and F-

Secure web sites were hacked

using the SQLIAs.

[32] [33].

2009 - The US Justice Department

charged an American citizen

Albert Gonzalez and two

unidentified Russian accomplices

on charges related to data

intrusions at Heartland,

Hannaford Bros., 7-Eleven Inc.

and three other retailers.

- Gonzalez is alleged to have

masterminded an international

operation that stole a staggering

130 million credit and debit cards

from those companies.

[34]

2010 - Half million web sites are hit with

automated SQLIA.

- Royal Navy web site has been

attacked by SQLIA.

[11]

2011 - Barracuda, vendor of web

application firewall, breached by

SQL Injection.

- Sony breached by automated SQL

injection attack: Sony BMG

Greece, Sony Music Japan, Sony

Canada, Sony Pictures France,

Sony, pictures Russia and Sony

Music Portugal.

- oracle owned MySQL has its

website compromised

[35]

2012 - SQLIA attackers have lunch

attack against the following sites:

LinkedIn, eHarmony, Last.fm,

Yahoo, Android Forums,

Billabong, Formspring, Nvidia,

and Gamigo.

- Nvidia acknowledged SQLIA

attacker swiped up to 400,000

user accounts.

[11]

2013 - SQL Injection Found on the Site

of Islamic Bank Bangladesh.

[6]

5. SQL INJECTION ATTACK

TECHNIQUES

5.1 Tautology
Tautology-based attacks work through injecting code by one or

more conditional SQL statement queries in order to make the

SQL command evaluate as a true condition. The most common

use of this technique is to bypass authentication on web pages

resulting in access to the database.

SQL injected command below shows how the attacker can make

the SQL command evaluate as true without knowing neither the

password or the username, attackers can achieve this by many

methods, one of these methods is by using blank statements for

the username and for password using a true condition such as

(1=1) or (- -) resulting in accessing the database or returning all

data in the table username.

SELECT * FROM userTable WHERE

username=’’OR 1=1 --AND password=’’

Detect tautology techniques could be extremely difficult. AS

SQL statements allow a broad scope of user definition function

and open permitting inputs values. However, the attackers can

input many forms of tautologies like:

2=2, 3=3, ‘1’=’1’, 'b'=‘b” or "name"="name”

….

Which will considered valid statement regardless of the

username input by the SQLIAs, and will be able to bypass

authentication mechanisms. For example, other SQL tautologies

are 'user1' LIKE '%user%’ which are created from operators.

However, the SQLIA attacker can simply handle the original

SQL query by adding character to include a tautology, such as

22 OR 1=1.

5.2 Union Query
Union attack uses an operator used to combine result to retrieve

addition information, since UNIONS added to an addition

statement to execute a second statement and third statement to

retrieve information from a specified table. If the Attacker

identified the structure of the tables, it can simply attach another

statements using union query, as the following example

SELECT pass FROM user_table1 WHERE

loginID=’’ UNION SELECT pass from

user_table2 where Username=xxx -- AND

pass=’’.

5.3 Stored Procedures
A stored procedure is a subroutine available to most commercial

database in order to reuse the code more than time. Once the

stored procedure is modified, all clients automatically get the

new version. Stored procedures provide developers with an

extra layer of abstraction because they can enforce business

wide database rules, independent of the logic of individual

Web applications. Unfortunately, it is a common misconception

that the mere use of stored procedures protects an

application from SQLIAs. Attackers try to execute stored

procedures that are stored in the database. Specially, most

database companies store procedures that extend the

functionality of the database and allow for interaction with the

targets beyond the database and operating system. With stored

procedures, the code that creates the query is stored and

executed on the database. The following example of stored

http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290
http://www.zdnet.com/blog/violetblue/sex-tech-bitcoin-louis-theroux-booth-babe-life-eharmony-password-scandal/1357
http://www.zdnet.com/blog/security/last-fm-investigating-security-issue-passwords-leaked/12358
http://www.zdnet.com/yahoo-fixes-flaw-behind-450000-account-hack-7000000894/
http://www.zdnet.com/android-forums-hacked-1-million-user-credentials-stolen-7000000817/
http://www.zdnet.com/over-21000-plain-text-passwords-stolen-from-billabong-7000000842/
http://www.zdnet.com/formspring-resets-millions-of-passwords-amid-breach-7000000643/
http://www.zdnet.com/nvidia-confirms-hackers-swiped-up-to-400000-user-accounts-7000000903/
http://www.zdnet.com/8-24-million-gamigo-passwords-leaked-after-hack-7000001403/
http://news.softpedia.com/news/SQL-Injection-XSS-Vulnerabilities-Found-on-the-Site-of-Islami-Bank-Bangladesh-318899.shtml
http://news.softpedia.com/news/SQL-Injection-XSS-Vulnerabilities-Found-on-the-Site-of-Islami-Bank-Bangladesh-318899.shtml
http://en.wikipedia.org/wiki/Subroutine

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

5

procedures shows how the attacker exploits a parameterized

stored procedure.

CREATE PROCEDURE DBName .is Authenticated

@user Name varchar2, @pass varchar2, @pin

int AS EXEC("SELECT accounts FROM users

WHERE login='" +@user Name+ If' and pass='"

+@password+ and pass=" +@pass);

The authorized/unauthorized user stored procedure returns

true/false. If the SQLIAs input SHUTDOWN; - -" for username

or password. Result, the stored procedure generates the

following query statement:

SELECT Username FROM UserTable WHERE

username= user1 AND pass=' '; SHUTDOWN;

5.4 Piggy-Backed Queries
Piggy-backed Queries is a type of attack that compromises a

database using a query delimiter, such as "; ", to inject additional

query statements to the original query. Since the original query

is a legitimate query, whereas additional queries could be illicit.

The result is the attacker can inject any SQL command to the

database. In the following example, the attacker injects 0; drop

table user" into the pin input field instead of logical value. Then

the application would produce the query:

SELECT pass FROM userTable WHERE

login='user1' AND Password = 0; drop table

users

Since the database accepts both queries statements and executes

them. The second query is an illegal statement, and the result

drops the users table from the database.

5.5 Blind Injection
This occurs when programmers forget to hide an error which

renders the web application insecure, this error message help

SQLIA to compromise the database through asking a series of

logical questions through SQL statements.

SELECT pass FROM userTable WHERE username=

'user' and 1 =0 -- AND pass = AND pin= 0

SELECT info FROM userTable WHERE username=

'user' and = 1 -- AND pass = AND pass= 0

In the above example, first the SQLIAs send the first query with

a logical error and receive an error message like “1 =0 because

this error message enables the attacker to understand the

structure of database. Once the attacker understands the structure

he sends a query which is mostly true.

5.6 Timing Attacks
The SQLIAs collects information from a database by monitor

the response time of the database. This kind of attack used if

condition statement to achieve a time delay purpose.

declare @varchar(8000) select @ =

db_Alias() if (ascii(substring(@, 1, 1)) &

(power(2,0))) > 0 waitfor delay '0:0:6'

6. EVASION METHODS
Signature detection or pattern matching engine has been proven

inefficient in the detection of SQL injection [36]. There are

many methods adopted by malicious authors in order to evade

from the detection engines [37] [38]. For every signature

created, a new evasion technique can be developed as the

malicious authors take advantage of the rich language provided

by SQL to fool and thwart the signature based detection. Also, a

recent effort by malicious writer to automate the finding of web

application vulnerability has increased. The following sub

section outlines the popular evasion methods that adopted by

malware authors.

6.1 Encoding Evasion
One of the earliest methods noted and used by malicious authors

is using the equivalent of text in order to defeat detection

engines, in the same way as Domain Name Server (DNS)

changes the domain name to IP address. Hence the user does not

know the IP address but knows the domain name. Encoding

evasion method is illustrated in Table 3.

Table 3. Encoding evasion method

Logical and Equivalence

Expressions
SQL statement SQL injection

Base 64 1=1 MT0x

Encoding Decimal 1=1 1=1

Encoding Hex 1=1 313d31

URL Encoding 1=1 1%3D1

UTF-8 Base10 1=1 049 061 049

6.1.1 White Spaces Evasion
Since keyword sequence is counted as a string, the malicious

authors are adopting the use of white spaces in order to evade

from detection. White space around the same code will lead to

evasion from the detection engine because the signatures method

are generally looking for the exact text match, and by adding one

or more spaces around the SQL keywords would fool the

signature detection of text with no spaces. Table 3 below shows

an example. However, detection engines can remove all the

white spaces from the SQL statement in order to detect

malicious code. Therefore, malicious authors are using not just

whitespace they also use special characters such as Tab, Enter

key (carriage return) and line feed around SQL keywords in

order to evade from signature based detection. Examples of such

evasion are the use of '\t' for tab, ‘\n’ for a new line, as shown in

table 4.

Table 4. white spaces evasion method

Comment Evasion SQL statement SQL injection

Using comment /* */ Union Un/* */ ion

Using comment -- Union Un--ion

6.1.2 Comment Evasion
Malicious writer use comments to break the SQL keywords

without any effect on the code in order to evade from signature

detection. Table 5 illustrates this method.

Table.5 Comment evasion

Comment Evasion SQL statement SQL injection

Tab 1 '\t'=1 Char(9)

Carriage return 1 ‘\n’=1 Char(13)

Line feed 1=1 Char(10)

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

6

6.1.3 Logical and Equivalence Expressions

Evasion
Malicious authors use the logical, mathematical or equivalence

expressions in order to evade detection as shown in table 6.

Generic signature is likely to lead to false positives since some

combination of “or” and “=” are likely to legitimately occur

within normal Web content. But even if it did not lead to false

positives, it can also be easily evaded by simply replacing such

an expression with a malicious expression that evaluates as true.

Table 6. Logical and equivalence expressions evasion method

Encoding Evasion

Method
SQL statement SQL injection

Logical expression 2>1 2>1

Mathematic

expression
4=4 1+3=2+2

Equivalence

expression
1=1 user=user

6.1.4 String Techniques Evasion
Hackers evade from signature detection by breaking SQL

keywords using concatenation symbols. Examples of such

methods are shown in table 7.

Table 7. string techniques evasion method

String Techniques

Evasion
SQL statement SQL injection

Variable a$=union a$

Concatenation Union Un||ion

7. SQLIA DETECTION AND

PREVENTION APPROACH
As explained earlier the client first requests a page, either static

or dynamic, and the web browser pass the request to the web

server. Our proposal methodology explained in figure 3. The

web server handles the requests by decoding the webpage.

Subsequently, the web server passes this request to the web

application server, and the web application server activates the

business tier that allows connection to the database. This layer

processes commands, verifies security access to database

through middleware such as JDBC, SQLJ, or JDO API, ODBC,

etc. and makes logical decisions. After verifying the database

access, the web application server sends the SQL requests to the

database server. The database server processes the request by

allow to store, delete and update the data depend upon the SQL

query and sends back the results to the application server. Our

approach performs negative taint by storing untrusted markings,

based on the evasion methods discussed above, at the database

layer. Also, performs syntax-aware evaluation in web

application server of query strings, before executing the query in

the database, by validating queries whose input matches with

untrusted markings that contain one or more characters without

trust markings, the matching process done with SQL keywords

and operators.

In the situation of preventing SQLIAs, these conceptual

advantages of positive tainting are especially significant. The

way in which Web applications create SQL commands makes

the identification of all untrusted data especially problematic

and, most importantly, the identification of all trusted data

relatively straight forward. In the situation of detecting SQLIAs,

the technique uses runtime checking to examine the SQL queries

and match them against the signature database. The proposed

model accomplished by evaluating the query and check for

parameterized queries that are widely used in web technology

(such as JSP, ASP, and PHP) so that the data gets separated

through parameters [3])

Figure3.Methodology

Table. 8 Input validation

Usernames Password SQL

Legitimate

Database Access

T T T YES

T T F NO

T F T NO

T F F NO

F T T NO

F T F NO

F F T NO

F F F NO

For effective of prevention, we implemented the signature with

regular expression style in the database to capture illegitimate

SQL statements. Table 9 shows the contents of a SQLIA

signatures and matching expression symbols. Alphanumeric

means the alphabets. Comment Mark points that the rest of the

SQL statement is ignored and do not have any effect on SQL

statement Quotation Mark is indicating the boundary of SQL.

Type means the data variable in SQL statement. Type

Conversion its indicate Converting a SQL data type to anther a

SQL data type. SQL Keyword contains all SQL data

manipulation keywords such as select, insert, update and delete.

Data definition keywords such as create a table and drop table.

Data control keywords such grant and revoke privileges.

Delimiter Mark is indicating of end an SQL query statement.

Square brackets used to encase characters or ranges of characters

in database searches.

TABLE.9 Elements and symbols in signature.

Elements Symbols

Alphanumeric {a, b,…,z},

{A,B,..,Z},{0,1,..,9}

Comment Mark {//,--}

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

7

Quotation Mark {“,’}

Arithmetic operation {+,-,/,*}

Logical Keyword {AND, OR}

Delimiter Mark {;}

SQL keyword {create, select, drop, delete

…… …….

The goal of this work is to detect illegitimate access to the

database, where the username and password are correctly

validated, as showing in table 8. To achieve our goal, we

maintain a lookup table containing possible vulnerabilities that

malicious authors exploit using evasion methods as discussed

above. Using our negative taint model, all requests (whether

legitimate or not) received by the web server are validated for

authentic database connections through username and password

match, for markings with vulnerability table before they are

forwarded to the database server.

Algorithm 1 shows the checking negative taint; the algorithm

takes the user name input, password input and table that contain

malicious string from database. The algorithm runs the users

inputs against collect taints set which is a store in the database, if

user’s inputs match with database then it’s raise alarm, if user’s

input contain the keyword from taint set then creates attack

vectors.

Algorithm 1 to prevent SQLIA.

Inputs: UserName, Password, Table Taint

Output: Injection= True/False

While username not null OR password not

null do

Validate UserName and Password against

TaintSets Table

If (UserName OR Password In Table Taint)

then

Return true

Else

Return False

8. PERFORMANCE EVALUATION
In this section, we present an analysis and performance

evaluation of the proposed approach to show its efficiency in

preventing SQLIA attack. We also discuss the results of the

experiment.

8.1 Experiment Setup
We implemented our method by using oracle 10g for the

database layer and simulated a hacking environment using

dataset containing both SQL injected Queries and legitimate

queries. The middle tier is configured as the web application

server. Also, we created the login tables for all the users’ names

with their passwords as shown in table 10.

TABLE.10 Login table

The vulnerabilities in table 9 configure as the following: First,

create table

Algorithm 2 to create login tables in the

Database

Create table login (usernames varchar(20),

password varchar(20), primary key (username));

The following table, used to store a SQLIA

Algorithm 3 to create TAINTS tables in the

Database

Create table TAINTS (keyword varchar2 (20)

primary key);

The following Java code, used to perform a login function, and

perform SQLIA detection at the web application layer:

Algorithm 4 to detect the SQLIA.

UserPass = request.getParameter("password").toSt

ring();

strQuery="select * from login where”

IF(request.getParameter("username")!=null && req

uest.getParameter("username")!="" && request.get

Parameter("password")!=null &&

 request.getParameter("password")!="") AND

request.getParameter("username")!= NOT

IN (select keyword from TAINTS) AND

request.getParameter("password") != NOT

In (select keyword from TAINTS)){

strQuery="

username='"+username+"' AND password='"+userpas

s+"'";

 st = conn.createStatement();

 rs = st.executeQuery(strQuery);}

Else

 response.sendRedirect("login.jsp");

The SQL statement with username and password matched

correctly may not be always mean it is a legitimate statement as

they may contain vulnerabilities exploited by malicious authors

using the abovementioned evasion methods. Using our proposed

model, SQL queries that contain vulnerabilities are identified as

SQLIAs blocked, and a report generated is sent to web developer

and database administrator.

8.2 Empirical Evaluation
In our evaluation, we evaluated the effectiveness and efficiency

of our method.

Q1. What Percentage of correctly identified SQLLA? This

question address True detection Rate (TP rate)

Q2. What Percentage of wrongly identified SQLLA? This

question addresses False Negative alarm Rate (FN rate).

Q3. What Percentage of wrongly identified legitimate SQL

query? This question address False Positive (FP rate).Which

means an activity is normal but it is identified as the SQLIA.

We conducted our experiments to test our proposed model by

generating 1,200 SQL queries containing all evasion methods of

SQL injection attacks, as well as 1,320 SQL queries contain

legitimate SQL commands. We evaluated the results by using

three applications that are available on the internet GotoCode

(http://www.gotocode.com/) which are; Employee Directory,

Online Bookstore, and Online Portal. Such application sources

have been utilized by other researchers [28] too for testing

purposes. Table 11, table 12, and table 13 provide the overall

results of our experiments, which indicate that our model

username password

User1 Pass1

 User2 Pass2

…. …..

http://www.gotocode.com/

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

8

provide 100% web application protection and 0% for false

negative rate and false positive rate. Also it shows that our

proposed model has been successful in identifying any of the

abovementioned popular evasion methods adopted by an

SQLIA.

Standard performance metrics are used to analyze the different

test cases which are defined as follows:

 True detection Rate (TP rate): Percentage of correctly

identified malicious code.

 False alarm Rate (FP rate): Percentage of wrongly

identified benign code, given by:

 Overall Accuracy: Percentage of correctly identified

code, given by:

Table below shows Percentage of wrongly identified SQLIAs

and Percentage of correctly identified SQLLAs.

Table 11. Percentage of wrongly identified SQLIAs and

Percentage of correctly identified SQLLAs

Application Name

Total

number

of

attacks

Successful

attack

(FN)

True

detection

(TP)

Employee Directory 1200 0 1200

Online Bookstore 1200 0 1200

Online Portal
1200

0
1200

Table below shows percentage of wrongly identified legitimate

SQL query - false positive (FP rate).

Table 12. Percentage of wrongly identified SQLIAs and

Percentage of correctly identified SQLLAs

Application Name
Total number of

legitimates
 False positive

Employee Directory 1320 0

Online Bookstore 1320 0

Online Portal 1320 0

Fig. 4 shows the results of the experiment. The result provides

some assurance that the proposed model can be implemented

without significant oversight. The timing results show that the

proposed approach is quite efficient as it imposes virtually very

low overhead on the system, that it would be determined by the

network speed and database server access.

Figure. 4 Overhead performance

Halfond[23] and Lee etc. [39] are categorized SQLIA into

several categories and used them to evaluate the effectiveness

for prevention SQLIAs. We used the same techniques of

Halfond to evaluate our techniques via other techniques. The

results are shown in Table 13.

Table 13 Comparison of SQLI Detection/Prevention

Techniques with Respect to Attack Types

Techniques

T
au

to
lo

g
ie

s

Il
le

g
al

U
n

io
n

P
ig

g
y
 Q

u
er

y

S
to

re
d

 P
ro

ce
d
u

re
s

In
fe

re
n

ce

A
lt

er
n

at
e

E
n
co

d
in

g

AMNESIA[40]

CSSE[41]

SQLCheck[42]

SQLGuard[43]

SQLrand[44]

Tautology-
checker

Checker[43]

Web App.

Hardening[45]

IDS[46]

Our approach

9. CONCLUSIONS
Web applications have become an essential and integral part of

internet usage today as they provide the convenience of business

and personal transactions anywhere anytime. However, SQLIAs

pose a serious threat to web applications hence; the primary

purpose of this research was to present a new model to protect

and detect web applications against SQLIAs with least

modification of the Web architecture. Our proposed model was

developed based on negative tainting and SQL syntax-aware

methods, and was evaluated through SQL penetration testing in

web application and database server. The negative tainting and

SQL syntax-aware that we use gives our technique several

significant advantages over techniques based on other

mechanisms.

Evaluations have been performed using three different

applications. We were able to successfully distinguish between

legitimate SQL queries and malicious ones that had adopted

various evasion methods such as encoding, comments and white

space evasion methods as well as logical expressions and string

techniques that were not captured by commercially available

detection engines.

10. REFERENCES
[1] C. Torrano-Gimenez, A. Perez-Villegas, and G. Alvarez,

"WASAT-A New Web Authorization Security Analysis

Tool," Web Application Security, pp. 39-49, 2010.

[2] P. Bisht, P. Madhusudan, and V. Venkatakrishnan,

"CANDID: Dynamic candidate evaluations for automatic

prevention of SQL injection attacks," ACM Transactions on

Information and System Security (TISSEC), vol. 13, p. 14,

2010.

[3] A. Alazab, J. H. Abawajy, and M. Hobbs, "Web Malware

that Targets Web Applications," in Social Network

0

10

Employee Directory Online Bookstore Online Portal

Average over head (MS)

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

9

Engineering for Secure Web Data and Services, ed: IGI

Global, 2013, pp. 248-264.

[4] W. G. Halfond, A. Orso, and P. Manolios, "Using positive

tainting and syntax-aware evaluation to counter SQL

injection attacks," in Proceedings of the 14th ACM

SIGSOFT international symposium on Foundations of

software engineering, 2006, pp. 175-185.

[5] A. Alazab, M. Alazab, J. Abawajy, and M. Hobbs, "Web

application protection against SQL injection attack," in

ICITA 2011: Proceedings of the 7th International

Conference on Information Technology and Applications

ICITA 2011, 2012, pp. 1-7.

[6] Softpedia. (2013, April). Stories about: SQL injection.

Available:

http://news.softpedia.com/newsTag/SQL+injection

[7] Y. Shin, S. Myers, and M. Gupta, "A Case Study on Asprox

Infection Dynamics," Detection of Intrusions and Malware,

and Vulnerability Assessment, pp. 1-20, 2009.

[8] N. Lowe, "Shields Up! Protecting browsers, endpoints and

enterprises against web-based attacks," Network Security,

vol. 2009, pp. 4-7, 10// 2009.

[9] A. K. Sood, R. J. Enbody, and R. Bansal, "Dissecting

SpyEye – Understanding the design of third generation

botnets," Computer Networks, vol. 57, pp. 436-450, 2/4/

2013.

[10] Open Web Application Security Project. (2010, 3 April).

The Top 10 Most Critical Web Application Security Risks.

Available: https://www.owasp.org/index.php/Main_Page

[11] D. Hartley, "Chapter 1 - What Is SQL Injection?," in SQL

Injection Attacks and Defense, ed Boston: Syngress, 2012,

pp. 1-25.

[12] Greensql. (2013, April). GreenSQL December Survey.

Available: http://www.greensql.com/content/greensql-

december-survey-88-all-companies-surveyed-do-not-

protect-their-databases-external-a

[13] A. Alazab, J. Abawajy, and M. Hobbs, "Web Malware That

Target Web Application," Social Network Engineering for

Secure Web Data and Services, Luca Caviglione, Mauro

Coccoli, Alessio Merlo (Eds.) IGI Global, USA., 2013.

[14] P. Bisht, P. Madhusudan, and V. Venkatakrishnan,

"CANDID: Dynamic candidate evaluations for automatic

prevention of SQL injection attacks," ACM Transactions on

Information and System Security vol. 13, pp. 1-39, 2010.

[15] C. S. Peng, S. K. Chen, J. Y. Chung, A. Roy-Chowdhury,

and V. Srinivasan, "Accessing existing business data from

the World Wide Web," IBM Systems Journal, vol. 37, pp.

115-132, 2010.

[16] A. Alazab, M. Alazab, J. Abawajy, and M. Hobbs, "Web

application protection against SQL injection attack," in

ICITA 2011: Proceedings of the 7th International

Conference on Information Technology and Applications

ICITA 2011, 2011, pp. 1-7.

[17] W. D. Yu, D. Aravind, and P. Supthaweesuk, "Software

vulnerability analysis for web services software systems,"

2006, pp. 740-748.

[18] K. J. Vella. (2007, 2011). Web Applications: What are

they? What about them? Available:

http://www.windowsecurity.com/articles/Web-

Applications.html?printversion

[19] J. Abawajy, "SQLIA detection and prevention approach for

RFID systems," Journal of Systems and Software, vol. 86,

pp. 751-758, 3// 2013.

[20] H. Fernando and J. Abawajy, "Securing RFID systems from

SQLIA," in Algorithms and architectures for parallel

processing, ed: Springer, 2011, pp. 245-254.

[21] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: A Static

Analysis Tool for Detecting Web Application

Vulnerabilities," in IEEE Symposium on Security and

Privacy, Oakland, CA, 2006, pp. 258-263.

[22] W. G. J. Halfond and A. Orso, "Preventing SQL injection

attacks using AMNESIA," presented at the Proceedings of

the 28th international conference on Software engineering,

Shanghai, China, 2006.

[23] IndraniBalasundaram and Ramaraj, "An Approach to

Detect and Prevent SQL Injection Attacks in Database

Using Web Service," International Journal of Computer

Science and Network Security, vol. 11, pp. 197-205, 2011.

[24] M. Martin, B. Livshits, and M. S. Lam, "Finding

application errors and security flaws using PQL: a program

query language," ACM SIGPLAN Notices, vol. 40, pp.

365-383, 2005.

[25] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and

S.-Y. Kuo, "Securing web application code by static

analysis and runtime protection," presented at the

Proceedings of the 13th international conference on World

Wide Web, New York, NY, USA, 2004.

[26] C. Gould, Z. Su, and P. Devanbu, "JDBC checker: A static

analysis tool for SQL/JDBC applications," 2004, pp. 697-

698.

[27] R. A. McClure and I. H. Krüger, "SQL DOM: compile time

checking of dynamic SQL statements," 2005, pp. 88-96.

[28] W. G. J. Halfond, A. Orso, and P. Manolios, "Using

positive tainting and syntax-aware evaluation to counter

SQL injection attacks," 2006, pp. 175-185.

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and

D. Evans, "Automatically hardening web applications using

precise tainting," Security and Privacy in the Age of

Ubiquitous Computing, pp. 295-307, 2005.

[30] S. Bandhakavi, P. Bisht, P. Madhusudan, and V.

Venkatakrishnan, "CANDID: preventing sql injection

attacks using dynamic candidate evaluations," 2007, pp. 12-

24.

[31] Y. Shin, S. Myers, and M. Gupta, "A case study on asprox

infection dynamics," in Detection of Intrusions and

Malware, and Vulnerability Assessment, ed: Springer,

2009, pp. 1-20.

[32] A. K. Sood, "The crux and the myth — breaches in security

vendor websites," Computer Fraud & Security, vol. 2009,

pp. 11-13, 7// 2009.

[33] A. K. Sood, "The crux and the myth—breaches in security

vendor websites," Computer Fraud & Security, vol. 2009,

pp. 11-13, 2009.

[34] W. Kim, O.-R. Jeong, C. Kim, and J. So, "The dark side of

the Internet: Attacks, costs and responses," Information

systems, vol. 36, pp. 675-705, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.11, November 2016

10

[35] C. Tankard, "Advanced Persistent threats and how to

monitor and deter them," Network Security, vol. 2011, pp.

16-19, 8// 2011.

[36] D. Das, U. Sharma, and D. Bhattacharyya, "An Approach

to Detection of SQL Injection Vulnerabilities Based on

Dynamic Query Matching," International Journal of

Computer Applications, vol. 1, pp. 39-45, 2010.

[37] M. Alazab, S. Venkataraman, and P. Watters, "Towards

Understanding Malware Behaviour by the Extraction of

API Calls," in Second Cybercrime and Trustworthy

Computing Workshop, Ballarat, VIC, 2010, pp. 52-59.

[38] M. Alazab, S. Ventatraman, P. Watters, M. Alazab, and A.

Alazab, "Cybercrime: The Case of Obuscated Malware," in

7th International Conference on Global Security, Safety &

Sustainability, Thessaloniki, Greece, 2011.

[39] I. Lee, S. Jeong, S. Yeo, and J. Moon, "A novel method for

SQL injection attack detection based on removing SQL

query attribute values," Mathematical and Computer

Modelling, vol. 55, pp. 58-68, 1// 2012.

[40] W. G. J. Halfond and A. Orso, "Preventing SQL injection

attacks using AMNESIA," 2006, pp. 795-798.

[41] Z. Su and G. Wassermann, "The essence of command

injection attacks in web applications," SIGPLAN Not., vol.

41, pp. 372-382, 2006.

[42] S. Thomas and L. Williams, "Using Automated Fix

Generation to Secure SQL Statements," presented at the

Proceedings of the Third International Workshop on

Software Engineering for Secure Systems, 2007.

[43] G. Wassermann and Z. Su, "An analysis framework for

security in Web applications," in Proceedings of the FSE

Workshop on Specification and Verification of component-

Based Systems (SAVCBS 2004), 2004, pp. 70-78.

[44] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, "Using

parse tree validation to prevent SQL injection attacks,"

presented at the Proceedings of the 5th international

workshop on Software engineering and middleware,

Lisbon, Portugal, 2005.

[45] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and

D. Evans, Automatically hardening web applications using

precise tainting: Springer, 2005.

[46] F. Valeur, D. Mutz, and G. Vigna, "A learning-based

approach to the detection of SQL attacks," in Detection of

Intrusions and Malware, and Vulnerability Assessment, ed:

Springer, 2005, pp. 123-140.

IJCATM : www.ijcaonline.org

