
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.2, November 2016

25

Devising Solution to SQL Injection Attacks

Ruta Pathak
Assistant Professor

Thakur College of Engineering
& Technology

Ananta Bhatt
Student

Thakur College of Engineering
& Technology

Shivam Choudhary
Student

Thakur College of Engineering
& Technology

ABSTRACT

Web application plays an important role in different fields like

finance sector, business, shopping etc. There is no. of web

application vulnerabilities such as SQL injection, Buffer

overflow etc. Above these SQL Injection vulnerabilities are

very harmful for web applications. In literature survey there

are number of technique used to prevent SQLIA in application

level, but not in database level. SQL injection attacks occur

due to vulnerabilities in the design of queries where a

malicious user can take advantage of input opportunities to

insert code in the queries that modify the query-conditions

resulting in unauthorized database access. In this paper we

design an effective algorithm to prevent stored procedure

from SQLIA in database level. Hirschberg‘s algorithm is used

to prevent the stored procedure, which reduces both time as

well as space complexity. We also analyse several aspects

which have been discussed further.

Keywords
SQL injection, Hirschberg‘s Algorithm, Database security,

DBMS audit

1. INTRODUCTION
Most of the web applications contain security vulnerabilities

which enable attackers to exploit them and launch attacks.

Architectural approaches attempt to prevent malicious code

execution by making certain pages of memory non-

executable. This protection methodology is effective for many

of circumvent the traditional attacks; however, attackers still

manage to them. As a result of the attacks confidentiality,

integrity and availability of information are lost. The cross site

scripting attacks, SQL Injections attacks and Buffer Overflow

are the major threat in the web application security through

this input validation security issues. SQL Injection Attacks

(SQLIA‘s) constitute an important class of attacks in web

application. By leveraging insufficient input validation, an

attacker could obtain direct access to the database underlying

an application. Recently the incident of SQLIA is so high that

in year 2008 it increases by 134% and become a predominant

type of web vulnerabilities. The vulnerability exploited by

SQLIA is based on maliciously updating the actual query

conditions that are dependent on user-inputs. SQL injection

leads to violation of privacy, security and integrity of data

stored in the database. The rest of this paper is arranged as

follows: Section 2 introduces SQL injection attacks; Section 3

describes about SQLIA in stored procedure; Section 4 shows

the evolution and recent scenario; Section 5 describes the

proposed work and Section 6 describes Conclusion and

outlook.

2. SQL INJECTION ATTACKS
With the recent rapid increase in interactive web applications

that employ back-end database services, an SQL injection

attack has become one of the most serious security threats. It

attempts to modify the parameters of a Web-based application

in order to alter the SQL statements that are parsed to retrieve

data from the database. Attackers would send SQL to interact

with RDBMS servers or modify existing SQL to retrieve

unauthorized information without any authentication. The

result of these attacks is often disastrous and can range from

leaking of sensitive data to the destruction of database

contents. There is very little emphasis on securing objects

residing in the database layer such as stored procedure which

are also vulnerable to SQLIA. Attacker injects malicious SQL

codes through the web application and causes unexpected

behaviour from the database. It has been estimated that at

least 50% of the large ecommerce sites and about 75% of the

medium to small sites are vulnerable to SQLIA. Consider the

following, in order to login to the website, the user inputs his

name and password, by clicking on the submit button the

following SQL query is generated:

SELECT * FROM user_table WHERE user_id= ‗sonal‘ and

password= ‗2345‘

if the user input the following user_id: (―‗or 1=1 -- ‗‖)

SELECT * FROM user_table WHERE user_id= ― ‗ or 1=1 --

‗ ― and password = ‗2345‘

This is always returns true results. (‗) called the quotation

mark tells the parser that the username string is finished,

(―or 1=1 -- ―) called fragment appended to the statement

which always true, (--) comment mark which tells the parser

that the statement is finished and password will not be

checked.

Stored procedure are very harmful against SQLIA because it

is a set of one or more SQL statements that are together stored

in database. A procedure is logically a grouped set of SQL

statements that perform a specific task and stored in the data

dictionary. Once it is modified, all clients automatically get

the new version.

3. EVOLUTION & RECENT SCENARIO
Various SQL prevention techniques have been proposed are

as follows:

 Ke Wei, M Muthuprasanna and S. Kothari [2],

proposed the prevention technique in stored

procedure, combines static application code analysis

with runtime validation to eliminate the occurrence

of SQLIA. The limitation of the given technique is

that it uses session id which is used to separate the

user inputs from the SQL statement that might be

guessed by the attacker.

 R. Ezumalai, G. Aghila [2] proposed a signature

based approach to block SQLIA. This technique is

used to address security problems related to input

validation.

 William G.J Halfond and Alessandro Orso [3]

proposed WASP (Web Application SQl-Injection

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.2, November 2016

26

Preventer) prototype tool is based on dynamic

tainting which marks and tracks at runtime.

 In Ankit Anchlia et al [4] proposed to test the

applications that interact with the databases using

SQL queries embedded in the code. There are

automated ways to test the applications written in

imperative and structured languages. However, the

methodologies to test the applications with

embedded SQL queries are still in the nascent

phase.

 In 2010, Michelle Ruse, et al. [5] proposed a novel

technique to identify the possibilities of such

attacks. Technique is based on automatically

developing a model for a SQL query such that the

model captures the dependencies between various

components (sub-queries) of the query.

4. PROPOSED WORK
New framework is proposed for stored procedure, describes

three modules. Supervision module gets the input from the

user and send it to the analyse module. Analyse module uses

Hirschberg‘s Algorithm for comparing the two strings of SQL

statements from the specifications. The following figure 1

clearly gives the framework to prevent SQLIA in stored

procedure. The following section gives the detail.

Fig1.Proposed Framework for preventing SQLIA

3.1 Input Module
This module is used to do the supervision of the user input

and send it to the analyse module. It incorporated between

web server and web applications.

3.2 Specification Module
This module contains all the predefined keywords which are

stored in database. It includes the predefined keywords and

sends it to the analysis module for comparison.

3.3 Interpretation Module
Interpretation module is very important module in the given

framework. It uses Hirschberg‘s algorithm for comparison of

two sequences. It is a divide and conquer version of

Needleman–Wunsch algorithm. This algorithm is generally

applicable for finding an optimal sequence alignment.

3.4 Hotspot
Hot spot is that line where it gets the input from the user and

vulnerable in execution. This performs a simple scanning of

the application code to identify hotspots. Consider the

following stored procedure. This step identifies the hot spot

and it divides the hot spot into tokens and it sends it to query

validation phase.

Table1: pseudo code for stored procedure

3.5 Hirschberg’s Algorithm
It is a dynamic programming algorithm that finds the least

cost sequence alignment between two strings. This is a

generally applicable for finding an optimal sequence

alignment. If x and y are strings, where |x| = n and |y| = m, the

Needleman-Wunsch algorithm finds an optimal alignment in

O (nm) time, using O (nm) space. Hirschberg's algorithm

takes O (nm) time, but needs only O (min {m, n}) space.

F(i , j)= Max{F[i-1,j-1)+t(xi, yi), F(i,j-1)+px, F(i-1,j)+py)}

F (i ,j) =1 if(x i=yi) otherwise 0 ,t (xi ,yi) - score for aligning

the characters at positions i and j. p is the penalty for a gap.

There are three paths in the scoring matrix for reaching a

particular position i, j: (1) a diagonal move from position i-i,

j-1 to position i, j with no gap penalties, (2) a move from any

position in column j to i, j, with a gap penalty, or (3) a move

from any position in row i to i, j with a gap penalty. But

this system could not consider the gap penalty. It directly

matches between two sequences. For two sequences a = al a2

... an and b = bl b2 ... bn, where Sij =S (al a2 ... ai , bi b2 ...

bj),then: Where Sij is the score at position i in sequence a and

position j in sequence b, s (ai bj) is the score for aligning the

characters at positions i and j, d is the penalty for a gap of

length x in sequence a, and d is the penalty for a gap of length

y in sequence b. Sij is a type of running best score as the

algorithm moves of through every position in the matrix.

Eventually, all of the matrix positions (all Sij values) are

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.2, November 2016

27

filled. F (i, j) is a type of running best score as the algorithm

moves through every position in the matrix. But in our

approach, gap penalty has ignored. If Xi=Y i, then plot "1"

else "0" till all the character has been visited. The system

maintains the table which contains keywords which are

present in horizontal or vertical line and it will compare the

incoming tokens with these predefined values using this

algorithm for identity. In this SQL statement, this is a hot spot

which has been an identified by the analyze module and it

send to this table for detect and prevent SQLIA.

SQL= "SELECT * FROM user_table WHERE User_id=

“Usename&"'AND Password = "'&Password&"';

As per the algorithm, it divides the token and checks the each

token with the predefined tokens.

Select *from user_table where user_id= “„or 1=1 -- „” and

password=" anything";

This analyzer module detects SQL Injection taken place and

passes this token to prevent SQLIA. X strings are stored in

horizontal line & Y strings are stored in vertical line. Being a

divide and conquer methodology, it divide the problem in two

sub problem. It compares one sub problems with predefined

data and it compares another sub problem with another set to

match comparison and it combines the sub problem solutions

to main problem. It takes time complexity as O (nm) and it

needs space complexity O (min(m ,n)).

Table 3: Using Hirschberg’s Algorithm to find the

similarities

5. CONCLUSION & OUTLOOK
SQLIA occur due to vulnerabilities in the design of queries

where a malicious user can take advantage of input

opportunities to insert code in the queries that modify the

query-conditions resulting in unauthorized database access. In

this paper we design an effective algorithm to prevent stored

procedure from SQLIA in database level. Divide and Conquer

strategy is used, which reduces both time as well as space

complexity. We also analyze several aspects which have been

discussed further..

6. REFERENCES
[1] Ke Wei, M. Muthuprasanna, Suraj Kothari, ―Preventing

SQL Injection Attacks in Stored Procedures‖,

Proceedings of the 2006 Australian Software

Engineering Conference (ASWEC‘06), IEEE Ding, W.

and Marchionini, G. 1997 A Study on Video Browsing

Strategies. Technical Report. University of Maryland at

College Park.

[2] ―Buffer Overflow Attacks Bypassing dep (nx/xd bits)—

Part 2: Code Injection,‖http://www.mastropaolo.com/,

Dec.06

[3] William G.J Halfond, Alessandro Orso, P. Manolios,

―WASP: Protecting Web Application Using Positive

Tainting and Syntax-Aware Evaluation ―, IEEE

transaction of Software Engineering Vol 34, No 1,

January/February 2008..

[4] Ankit Anchlia, Sheela Jain,‖ A novel Injection Aware

Approach for the Testing of Database Applications‖,

2010 International Conference on Recent Trends in

Information, Telecommunication and Computing, IEEE.

[5] M.Ruse, Tanmoy Sarkar & Samik Basu, ―Analysis &

Detection of SQL Injection Vulnerabilities via Automatic

TestCase Generation of Programs‖, 2010 10th Annual

International Symposium on Applications and the

Internet, IEEE.

IJCATM : www.ijcaonline.org

