
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.4, November 2016

18

Reservation Algorithm for Consistent Performance of

Distributed Systems

Muhammed Suhail T. S.
SE Tata Consultancy Services

Pooranam House
Nellikkunnu Kasaragod

ABSTRACT

In this paper, a study on how to stabilize the performance of a

distributed grid computing system is discussed. The key

performance characteristics such as response time, throughput

and scalability are vital to the operation of grid computing

systems. Moreover, it is of utmost importance to have a

computing network which is stable and less volatile. That is,

when the performance factors of grid increase, it is prone to

instability. Instability can arise due to rapid connection and

disconnection of systems in the grid. In volunteer computing

networks this is a huge problem that needs to be addressed. It

is impractical to implement a complex algorithm to stabilize

the grid as it would again require computing overheads and

delays in response, which will make the system slow. Instead

by using the data captured by the grid, the system needs to

employ an algorithm which does not utilize huge

computational power, at the same time, can be used as a

versatile reservation algorithm.

Keywords
GRA – Grid Reservation Algorithm

1. INTRODUCTION
Distributed systems are geographically separate systems,

connected through a network, working to accomplish a

common goal or task. In such a connected networking system,

the most important element is the systems itself which are

connected to the grid. As the performance of the grid is

completely dependent on the systems which are present in the

grid, the entry and exit of systems to and from the grid

environment will have an impact on its performance.

For any system to be operationally efficient, its performance

needs to be steady and reliable. If a computing environment is

highly volatile and unstable, the usability of the system is

decreased drastically. For a distributed computing network, it

is important to have a stable and reliable computation capacity

at all time, whereby it could be made usable.

2. CONCEPT
The Grid Reservation algorithm is the concept using which a

certain number of systems can be made as reserves

dynamically based on their availability in the grid, whereby a

reliable computing capacity is always retained by the grid.

The concept can be further explained using the following case

study below.

Case: Consider a grid system with 5000 systems connected to

it. Every system is performing its own immutable tasks and

provides output to the server for further calculation based on

the results obtained from other systems. If a certain number of

systems, say 300, suddenly drops out of the grid the entire

performance of the grid is impacted. The scheduler needs to

reroute the tasks which were currently handled by those 300

systems to the existing systems in the grid once they have

completed their tasks. Consider the performance graph in such

a scenario.

Figure 1.Relation between performance & number of

systems

For this example, the performance factor is calculated as

double that of the number of systems. In reality, the

throughput is much higher than what is depicted in the graph.

When the entire set of systems getting connected to the grid is

taken for computation at that moment itself, the performance

becomes highly volatile. That is, the continuous addition and

drop of systems in the grid makes the grid unstable.

The inference from the graph is that: when the number of

systems are either added up or removed at a particular point of

time, the performance of the grid is varied drastically. This

problem could be effectively solved by implementing the grid

reservation algorithm. However there are considerable amount

of challenges that needs to be addressed.

Let’s have a look at some of the important challenges that is

faced while solving the reliability problem.

2.1 Implementation Challenges
Berkeley Open Infrastructure for network computing viz.

BOINC is an extensively used distributed computing

environment. The working of this algorithm can be tested

effectively if employed in such a well-established network.

Any other distributed computing environment with large

amount of computational resources can also be considered.

But, before proceeding there are some initial challenges that

need to be solved.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.4, November 2016

19

Minimum Calculation overhead

The purpose of distributed computing systems is to connect

and leverage the computational capacities of geographically

disconnected computing systems, to achieve a common goal.

If any new computation is introduced to the existing system,

the primary challenge is to reduce amount of calculation

required. That is, more computation capacity cannot be spend

on making the system work. The output is rather required to

accomplish many other complex tasks. Hence only minimum

computation should be used to obtain a dynamic reservation

output.

Synchronization/Availability of systems

The next important measure under consideration is the

availability of the systems. Every distributed computing

system should be connected to the network. However, in some

cases it is possible to download the part which needs to be

executed by the system so that the can be done offline and the

result can be updated when network becomes available. But,

if a dynamic reservation algorithm is run on the system then a

dynamic quantifiable value to uniquely identify the system is

required, to be synched with the host so that the whole

dynamic execution could work. If offline computing systems

are present then the algorithm may not consider them for

reservation.

Dynamic re shuffling of reserved systems

Similar to what is mentioned above, a dynamic re-shuffling of

reserved system will happen as time progresses. This is based

on a calculation which the algorithm would execute. However

this might include many unforeseen factors which need to be

considered before execution. Hence the complexity might

increase making the dynamic reservation algorithm obsolete.

The dynamic re-shuffling of systems, i.e. the reservation

queue will not be having the same systems over a period of

time. The systems will continuously enter and exit the queue

based on a threshold.

Reservation factor calculation

The dynamic reservation algorithm mainly works based on a

particular value. It is obtained by dividing the amount of time

(in hours) the system was running on the grid and the total

grid uptime. It requires least calculation and is stored in the

central system where the recalculation happens every 15

minutes. It is easier to assign and release the systems in the

reservation queue by using this technique. This is another

important aspect of implementing this algorithm.

Once the above mentioned challenges are addressed and

resolved, the reservation should work properly. The next

question that needs to be addressed is “what is the advantage

of implementing such a system?”

2.2 Advantages
For any distributed computing system, performance is the key

factor. The implementation of a reservation algorithm

enhances the reliability and the overall performance of a

distributed network.

1. Performance factor increase

The performance of a distributed computing environment is

mainly monitored using three aspects viz. throughput,

scalability and reliability. By implementing a reservation

algorithm in the existing grid environment, the reliability

factor is enhanced considerably. This in turn increases the

overall performance of the system.

As the reservation algorithm comes into play, the grid

performance graph no longer shows varying spikes. Instead a

considerably stable performance output would be obtained.

Figure 2. Throughput spikes with change in number of

users

Note: The values used in the graph is absolute

The above figure represents how a normal distributed

computing network performs. As the number of users in the

network shows variation, the corresponding variation is seen

in the throughput of the system. In turn, the overall network

seems to be highly unstable.

However, once the reservation algorithm is employed in the

grid, it automatically queues the system into the reservation in

such a way that more active systems form the buffer and this

buffer is always dynamically scheduled. This dynamic

scheduling ensures that no system stays in the reservation

pool for more than a particular amount of time. Either the

system exit the reservation queue when the required threshold

is reached or when the system goes below the current

reservation factor. The below graph depicts the distributed

system after the reservation algorithm is employed.

Figure 3. Stable throughput with change in number of

users

Note: The values used in the graph is absolute

From the graph the important inference is, whenever there is a

large amount of user drop out or user drop in from/to the

distributed network there is only minimal change in the

throughput. Thus exponential increase or decrease of

throughput, with change in number of users is avoided. This

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.4, November 2016

20

increases the reliability of the grid which ultimately improves

the grid performance.

2. Reliability Enhancement
The reliability of the whole distributed network could be

enhanced once the reservation algorithm comes into play. The

overall performance of the grid is never put into its full power.

Always, a minimum percentage of systems are kept in

standby, which is shuffled dynamically, and could be used as

immediate replacement for a number of systems exiting the

grid. The result is a stable throughput which is hard to achieve

in a distributed computing environment. Reliability is one of

the major factors affecting a distributed networking system, If

the reliability factor of the system could be enhanced it will

improve the overall performance of the distributed system.

The following graph depicts the reliability enhancement

which could be accomplished if the grid reservation algorithm

is deployed.

Figure 4. Reliability factor change - on a scale of 10

3. Stable throughput

Throughput is vital for all systems. It is a measure of how

many operations could the system perform with in particular

amount of time. By implementing the reservation algorithm in

distributed systems, a stable throughput is achieved. The

system is never powered to its complete extent and the

performance doesn’t show huge variations with drop out of a

limited number of systems from the grid. The stable

throughput factor is achieved at the expense of never

completely utilizing the maximum computational potential of

the grid. However where stability matters over complete

utilization the reservation algorithm could be used. Figure 3

represents how reservation algorithm provided a stable

throughput to the distributed systems when there is a

substantial amount of change in the total number of systems

connected to the grid.

It should be noted that, if a huge change in the number of

systems occurs at a particular point in time, then the

reservation algorithm becomes obsolete.

4. Ensures continuity of operations if a region outage

occurs

Assume that a distributed network consists of 15000 nodes

connected to it. Now, based on geographical region, 3000

nodes present in the network are from Asia. 5000 nodes are

from United States, another 4000 from Europe, 1000 from

Africa and the rest distributed across the globe. Suppose a

regional outage occurs in the African region of the distributed

network. The result would be a sudden drop of 1000 systems

in the grid which in turn results in a rapid drop in the

computational power of the systems. Most of the tasks being

performed by these systems would be incomplete and the

intermediate checkpoints results would be available in the

central system.

Such a case could be effectively handled by the reservation

algorithm if deployed in a carefully monitored scenario. The

reservation algorithm always keeps on shuffling the systems

in reserve whereby it never sets a system completely to

reserve over a long period of time. If the reservation algorithm

is used based on region and the systems in the US region is set

to be considered for reservation, then the drop out of systems

in the African geography could be substituted by systems

from US region coming online from the reserve. However, if a

drop of Asian region occurs, the case would be different.

Since the number of systems supporting the distributed

network from Asia is high, the reserve system cannot

completely nullify the effect of a huge dropout.

If employed based on insight into the network the reservation

algorithm could make the grid a continuous high performing

network.

3. ALGORITHM
The grid reservation algorithm is a novel approach whereby

the overall performance of a distributed computing

environment could be increased and made stable. The

algorithm is defined below.

Algorithm:

1. Central System monitors whether the specified

number of systems are available in the grid (Say

variable s). The variable s varies in a range of

integer values.

2. Once the central system gets confirmation that the

grid has crossed the threshold of variable s, the

system checks for a predefined reservation

percentage for the project viz. variable Tp, which

varies from 0 to 25 and is a percentage value.

3. Based on Tp value, calculate the number of systems

to be considered for reservation, viz. Ns, which is

also an integer value. Ns = (Total number of

systems in the grid / 100) * Tp

4. Reservation factor, viz. Rf is calculated for all

systems connected in the distributed network. Rf is

a fractional value obtained on dividing the amount

of system uptime to that of the total grid up time. Ie,

Rf = Total system uptime in grid (mins/hours) /

Total grid uptime (mins/hours).

Note: Maximum Rf value = 1. It varies as follows

1<= Rf <= 0 . The Rf value is calculated every 15

mins, as a new broadcast should be added to the

client side which updates the values to the central

system.

5. Reservation counter, Rc, is a counter which is

started once the system goes into reservation. No

system remains in reserved state for more than 30

mins as once the reservation counter is activated

that system has a cool off timer Ct, which prevents

the system from going to reserve again, even if it

meets the Rf value set by the central system

6. Once all Rf values are calculated the central system

can set an Rf threshold, viz. Rft values which varies

between 1 & 0. The systems with Rf value above

Rft is directly assigned to the reservation pool till

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.4, November 2016

21

the total number of systems in reservation pool is

equal to variable Ns.

7. When a system is in reservation pool the uptime

won’t be increased as the reservation counter is

active. After the reservation counter expires the Rf

value is calculated which remains to that of the last

known Rf value. The Cool off timer is activated and

till its end no more Rf factor updation is done for

that system.

8. The Reservation factor threshold, Rft, is also varied

based on the average of all Rf values in the grid. Ie,

there is a dynamic changing of Rft based on the

below calculation, but initially the value could

either be set from the central system or it could

leverage the below formula from the beginning

itself

Rft = Sum of all Rf values / Total number of

systems (s)

The reservation algorithm is thus simple, dynamic and easy to

employ in any grid system with least modifications to be done

to the code architecture. However the choice of

implementation is completely dependent on the application

behavior. I.e. a system where continuous availability and

reliability is more important over maximum throughput the

reservation algorithm could be useful to a great extent.

3.1 Implementation Feasibility,

Considering Existing System
Grid Reservation Algorithm could be easily integrated to

existing system with minor changes to the existing code base.

The primary concern while creating this algorithm was its

integration to existing systems. Only a minimum overhead

calculation is introduced and very limited additional usage of

network. The result is a highly stable output rather than a

continuously varying output. The following are the major

factors considered while developing the Grid reservation

algorithm.

1. Complexity
Providing a new feature at the expense of valuable

resources is never advised in a distributed network.

Hence the complexity of the algorithm is kept to a

minimum. The algorithm only leverages basic operations

such as addition, division & multiplication of mainly

integer values and some floating point values. However,

the complexities of these operations are very minimal

and don’t affect the overall system performance.

2. Minimal Network Usage

The resources in a distributed network uses internet for

calculations, control as well as result updates. So when

implementing a new approach in distributed computing

space care should be taken to minimize the network

usage of the algorithm. The Grid Reservation Algorithm

uses very minimal amount of network for its functioning.

It is one of the novel features of this algorithm.

3. Minimal Resource Usage

For effectively employing any algorithm to distributed

networks another major factor is resource usage. Suppose

the total grid computing capacity is 10 FLOPS and the

algorithm needs 1 FLOPS to run. Implementing such a

system is only an overhead and drastically reduces the

performance of the grid. But here the amount of

computation and storage required for the algorithm to

effectively run is very minimal whereby making it a

suitable candidate for adoption.

So the GRA could be introduced and run on the existing

distributed network because of its ease of use and very low

complexity as well as resource utilization.

3.2 Further Enhancement
The algorithm presented in this paper is least complex and an

easy to employ method. But, further enhancements could be

made to this algorithm with a goal to increase the throughput

and making the algorithm even more agile. As mentioned

previously, the GRA is a highly agile algorithm wherein it

ensures that no system stays in the reservation pool forever, at

the same time provides a considerable reliability enhancement

to the system.

However, the implementation of GRA restricts the grid from

full utilization of its resources at any point of time. This

reduces the throughput of the system. Since the GRA would

be employed in projects which require availability over

complete utility, it is of less concern. The throughput

reduction is an area which could be improved, as it is possible

to handle the throughput difference in an effective way, along

with GRA feature. Moreover the possible migration of GRA

to other distributed networks and the impact it would cause is

also a new area of study.

3.3 Implementation Scope In Cloud

Systems
Cloud computing is a new method through which users can

access a shared pool of computing resources, viz. servers,

storage, applications, services etc. through a connected

network. Cloud systems are an extension of the distributed

computing systems. Many methodologies and performance

factors which is key to distributed networks, remain the same

in cloud computing. Hence any new concept applicable to

distributed systems could be a part of cloud as well.

In cloud systems, unlike volunteer computing grid, large

systems and servers are available with the key focus on cheap

availability of resources. Primary aim of cloud systems is to

bring in a new business model, wherein the users pay as they

use (on demand). Previously, what used to exist was a system

where the user has to pay a fixed amount for storage

space/computation which is allocated to him/her. It doesn’t

matter whether the user is always using that or not, the

payment is done for the whole. But in the cloud paradigm, the

users only have to pay for what he/she uses. It is highly

scalable and easy to use. The performance factors of cloud

systems are of huge importance.

Cloud is derived from distributed computing. Hence, GRA

will have a very active role in cloud systems as well. Any

distributed computing network is prone to failure due to

network issues. In cloud as well the same threat exists. So, if

an enterprise requires availability over max throughput, the

GRA could be used in such a cloud system, where the end

users don’t see the switching of resources when something

goes wrong. Instead the users have a reliable experience while

using the resources through cloud. Availability is a key

performance factor of the cloud systems. Since the GRA only

enhances the same its application could also be found in cloud

systems. As the availability of resources in cloud increases its

performance also increases whereby it helps to improve the

user satisfaction while using cloud services and helps in user

retention for cloud services.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.4, November 2016

22

The larger possibilities and challenges when integrating GRA

to cloud should be discussed in another paper. Hence only the

possibility that GRA could be used in cloud is explored and

being discussed in this paper.

4. CONCLUSION
Distributed computing network occupies a large part in our

daily life. From search engines to services to applications,

everything is using one or the other form of distributed

networks. As more and more systems are coming online, the

possibilities to tap into the humungous potential of distributed

systems remains a challenge. A lot of research is already

being conducted in this field. However, its evolution is

making it all the more a hot spot for new concepts as well as

paradigms.

The performance of distributed systems is a key characteristic

which defines its quality. The performance is mainly

attributed by throughput, availability & reliability. If it is

possible to enhance any one of these three, then a

considerable increase in the performance factor could be

obtained. GRA is an algorithm which enhances the

availability and reliability of the distributed network at a

minor expense of throughput. Its application would be mainly

in areas where reliability is important over 100% throughput.

Time critical applications are a brilliant example where

availability matters. Most Enterprise systems as well require

availability over throughput. The GRA helps to improve the

reliability to a considerable extent. However large fluctuations

in the connected systems (likely beyond 25% of the total)

cannot be effectively tackled with GRA. However, limited

changes could be tackled and a continuous reliable

performance could be provided if GRA is used in distributed

networks.

The distributed computing space still has a lot to explore and

remains a hotspot for researchers around the globe.

5. ACKNOWLEDGMENTS
My thanks to the experts who have contributed towards

development of the template.

6. REFERENCES
[1] Fangpeng Dong and Selim G. Akl Scheduling Algorithms

for Grid Computing:State of the Art and Open Problems

School of Computing, Queen’s University, Kingston,

Ontario, January 2006

[2] Manjeet Singh1, Shourabh Sholliya2, Palak Gupta3,

Scheduling in Grid Computing – a Review, Department

of Computer Engineering, 1NIT Kurukshetra, 2Thapar

University Patiala, 3MIET Meerut 1Haryana, 2Punjab,

3U.P. INDIA

[3] Anthony Sulistio and Rajkumar Buyya, A GRID

SIMULATION INFRASTRUCTURE SUPPORTING

ADVANCE RESERVATION, GRIDS Laboratory and

NICTA Victoria Laboratory, Department of Computer

Science and Software Engineering, The University of

Melbourne, Australia, ICT Building, 111 Barry Street,

Carlton, VIC 3053

[4] Randeep Kaur1 ,Supriya Kinger2, Analysis of Security

Algorithms in Cloud Computing, 1Student Masters Of

Technology, Shri Guru Granth Sahib World University,

Fatehgarh Sahib. 2Assistant Professor, Shri Guru Granth

Sahib World University, Fatehgarh Sahib.

[5] Marish Kr. Singla, Task Scheduling Algorithms for Grid

Computing with Static Jobs: A Review, M.E. Scholar,

Dept. of CSE, NITTTR, Chandigarh

[6] Atsuko Takefusa1, Hidemoto Nakada1, Tomohiro

Kudoh1, and Yoshio Tanaka1, An Advance Reservation-

based Co-Allocation Algorithm for Distributed

Computers and Network Bandwidth on QoS-guaranteed

Grids, National Institute of Advanced Industrial Science

and Technology (AIST)

[7] N. Krishnamoorthy1 and R. Asokan2, Optimized

Resource Selection to Promote Grid Scheduling Using

Hill Climbing Algorithm, 1Department of Computer

Science and Engineering, Kongu Engineering College,

Erode, India. 2Kongu Nadu College of Engineering and

Technology, Thottiyam, Trichy, India

[8] Daniel Funke, Fabian Brosig and Michael Faber,

Towards Truthful Resource Reservation in Cloud

Computing, Karlsruhe Institute of Technology,

Karlsruhe, Germany

[9] Nabeel Zanoon, Ph.D, Nashat Al Bdour, Ph.D, Evon

Abu-Taieh, Ph.D, Survey of Algorithm: Scheduling

Systems and Distributed Resource Management in Grid,

1.Al- Balqa' Applied University (BAU), Department of

Applied Science, Aqaba-Jordan, 2.TafilaTechnical

University Tafila - Jordan 66110, 3.Faculty of Computer

Information Systems, Jordan University -Aqaba, Aqaba-

Jordan

[10] J.SRINIVAS1, K.VENKATA SUBBA REDDY2,

Dr.A.MOIZ QYSER3, CLOUD COMPUTING BASICS,

Assistant Professor, Dept. of CSE, M. J College of Engg

& Tech, Hyderabad, India, Assistant Professor, Dept. of

CSE, M. J College of Engg & Tech, Hyderabad, India,

Professor, Dept. of IT, M. J College of Engg & Tech,

Hyderabad, India

[11] Charu Sharma, Tanu, Dynamic Resource Allocation in

Grid Computing, Department of Computer Science &

Engineering, Punjab Technical University, Jalandhar,

India

[12] Wikipedia, the free encyclopedia,

https://en.wikipedia.org/wiki/Distributed_computing

https://en.wikipedia.org/wiki/Grid_computing

IJCATM : www.ijcaonline.org

