
International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

28

User-Centric Cloud Service Broker

Hanan Elazhary
Computer Science Department,

 Faculty of Computing & Information Technology,
 King Abdulaziz University

Jeddah, Saudi Arabia
Computers and Systems Department,

 Electronics Research Institute,
Cairo, Egypt

ABSTRACT

Cloud computing technology has gained enormous attention

due to its promising capabilities such as virtualization,

elasticity and the pay-per-use paradigm. Theoretically, cloud

computing can offer Everything as a Service (XaaS).

Selecting suitable cloud services matching the Quality-of-

Service (QoS) requirements of the user is one of the

prominent problems in the literature. A considerable number

of research studies attempted to address this problem from

different perspectives such as service discovery, service

matching and ranking (against QoS requirements of the user)

in addition to QoS evaluation and monitoring. In this paper,

we argue that we need to integrate all those functionalities to

help the cloud service user make more informed selection

decisions. Accordingly, we propose a comprehensive user-

centric Cloud Service Broker (CSB). We describe the

architecture of this broker and discuss how it integrates and

orchestrates the different required functionalities. We also

discuss different possible methods to realize and implement

each of its modules and pinpoint open points of research that

need to be explored further. As a proof of concept, we present

an example prototype implementation of CSB and discuss a

case study using this prototype to justify the advantage of the

integration. Towards this goal, we propose a novel evaluation-

aware matching and ranking technique that integrates cloud

services evaluation results with their matching and ranking

against the user QoS requirements for more informed

selections of suitable cloud services by taking into

consideration the credibility of the cloud service providers.

General Terms

Distributed Systems

Keywords

Cloud Computing, Cloud Service Selection, Quality of

Service

1. INTRODUCTION
Cloud computing is a relatively new technology that has

emerged as a successor to Grid computing with a similar goal

of providing computing services to end users analogous to

other utilities such as water and electricity [1]. Nevertheless,

the power of cloud computing lies in its inherent capabilities

including virtualization (to offer virtual resources based on

physical machines); the ease of configuring the resources by

the end users; elasticity (where a user does not have to reserve

a fixed amount of resources throughout the duration of the

service, but variable amounts according to his/her applications

usage) and the pay-per-use paradigm (where users pay only

for the resources that they use). This is in addition to the

convenient on-demand ubiquitous access to the cloud services

anywhere and at any time [2].

The three prominent offerings of cloud computing are

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Nevertheless, this

classical vision has been extended such that the cloud can

provide Everything as a service (XaaS) [3]. This is especially

important in fields such as Big Data where huge amounts of

data need to be stored and processed [4] and mobile

applications that suffer from the limited mobile resources and

delegate a portion of the required processing power and

storage to the cloud [5]. Cloud computing is also useful for

Enterprise Resource Planning (ERP), E-learning and E-

Government [6].

One of the prominent problems of cloud computing is the

cloud service selection problem. Cloud service providers offer

services with different attributes and variable capabilities and

cost [7]. Additionally, each may partially match the Quality-

of-Service (QoS) requirements of the user requiring a

compromise. The fact that the number of service providers is

enormous and is consistently increasing makes the task of

searching, browsing and comparing the available services

overly tedious. This is in addition to the fact that the different

providers do not display information about their services in a

uniform way and do not even use a unified terminology.

Moreover, end users are not always professional enough to

analyze the different offerings and make informed service

selection decisions [8], which calls for a cloud service broker

to help them with the selection.

This paper presents a literature review discussing different

perspectives in the literature for addressing the problem. This

is followed by an explanation of the architecture of a proposed

comprehensive user-centric Cloud Service Broker (CSB)

explaining its different modules and how it integrates and

orchestrates the different functionalities. We discuss different

possible ways to realize and implement each module and

point out open points of research. As a proof of concept, to

justify the advantage of the integration of several

functionalities in such a comprehensive broker, we present an

example implementation of a prototype based on CSB in

addition to a case study using this prototype. The

contributions of the paper can be summarized as follows:

 Pinpointing different aspects of the cloud service selection

problem and presenting prominent research efforts in

each.

 Designing the comprehensive user-centric cloud service

selection broker CSB that integrates all the necessary

functionalities in an orchestrated manner.

 Discussing different possible approaches to realize and

implement each of the modules of CSB to highlight open

points of research to stimulate further research studies.

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

29

 Presenting an example prototype implementation of the

broker and a case study to justify the advantage of the

integration of all the required functionalities in such a

comprehensive broker.

 Proposing a modeling technique for the cloud services and

for their evaluation.

 Proposing a novel evaluation-aware technique for

integrating cloud services evaluation results with their

matching and ranking (against the user QoS requirements)

for more informed selection decisions by taking into

consideration the credibility of the cloud service

providers.

The rest of the paper is organized as follows: Section 2

presents related research in the literature. The architecture and

example prototype implementation of CSB are presented in

Sections 3 and 4 respectively. The case study based on this

prototype is presented in Section 5. Finally, Section 6 presents

the conclusion and summarizes the directions for future

research and enhancements of CSB.

2. RELATED WORK
Several research studies in the literature have been concerned

with the automated discovery and ranking of suitable cloud

services matching the user QoS requirements. For example,

Liu et al. [9] used agents to retrieve information about the

candidate cloud services by accessing the Web services of the

cloud service providers. They consulted an ontology to

translate the user QoS requirements to be matched against the

retrieved information. Consumer agents select the best service

among the candidate ones using service ontology analysis. An

alternate approach involves the use of search engines to

discover the candidate cloud services. For example, Han and

Sim [10] utilized Google search engine for this purpose. They

consulted an ontology to match the user QoS requirements

against the extracted information about those candidate cloud

services determining the similarities and the equivalences. A

semantic similarity measure was used to determine the best

matching service. Gong and Sim [11] developed a centroid-

based search engine that utilizes the k-means clustering

algorithm for finding the best matching cloud services against

the user QoS requirements. They used a similarity matrix to

rank the discovered candidate services. Nevertheless, they

only addressed the clustering process without real crawling of

the cloud service providers Web pages.

The Service Measurement Index (SMI) framework

(https://spark.adobe.com/page/PN39b/) specifies seven top-

level attributes for comparing cloud services (accountability,

agility, assurance, cost, performance, security & privacy, and

usability). Each of those attributes is defined in terms of a set

of low-level SMI attributes that are based on ISO standards by

the Cloud Service Measurement Index Consortium (CSMIC).

To adopt the SMI framework, a set of measurable Key

Performance Indicators (KPIs) should be developed to

evaluate the SMI attributes. Garg et al. [7] proposed a

technique for comparing and ranking cloud services based on

quantitative SMI attributes only. The user is allowed to

specify relative weights for those attributes. Nevertheless, the

authors did not consider qualitative attributes. Additionally,

although they proposed monitoring the provided cloud

services, they do not address this issue explicitly in the paper.

Several other research studies in the literature have been

concerned with techniques for selection among a number of

candidate cloud services against the user QoS requirements.

For example, Rehman et al. [12] studied several Multi Criteria

Decision Making (MCDM) techniques including Analytic

Hierarchy Process (AHP) [13] for selecting one of thirteen

candidate IaaS services using five service attributes. They

showed that different techniques have different capabilities

and hence do not make the same selection. Nevertheless,

TOPSIS [14] is more suitable when the number of services is

large because of its computational simplicity, while

ELECTRE [15] and PROMETHEE [16] are better when the

number of services is small and the number of service

attributes is large. The authors concluded that this problem

has to be investigated further. Whaiduzzaman et al. [17]

provided a taxonomy and survey of some of the MCDM

techniques that have been applied for cloud service selection

in the literature. Sun et al. [18] made a similar survey but

considered also optimization-based approaches, logic-based

approaches and various other techniques such as using an

ontology to map applications to suitable PaaS according to

their requirements [19]. The authors identified types of

services (IaaS, PaaS, SaaS or general) to which each

technique has been applied. Ultimately, they made the same

conclusion regarding the need for further research studies and

identified some open research issues such as:

 Lack of a standard registry for cloud service publication,

querying and rating; the Cloudservicemarket Website is

the first platform that allows providers to publish their

services for users to browse and rate.

 Lack of a specialized search engine for the automatic

search and update of cloud service information.

 Lack of a standard normalization technique for cloud

service attributes for uniform cloud services

specifications.

 Lack of a practical technique for quantifying subjective

opinions of the users regarding the weights of the

different cloud service attributes and for dealing with

qualitative attributes and fuzzy expressions in addition to

considering interdependency of the attributes.

 Lack of a reliable monitoring technique for ensuring the

sustainability of provisioning the user QoS requirements

throughout the duration of the service.

It seems that cloud service selection will be studied

indefinitely due to the complexity of the problem that

typically involves a large number of services and a large

number of qualitative, quantitative, and fuzzy service

attributes. For example, a recent research study [20] proposed

a cloud service selection technique based on fuzzy ontology

and MCDM.

Other than the SMI framework effort, few research studies in

the literature addressed the problem of the normalization of

the cloud service attributes (uniform specification of the cloud

services). For example, Youseff et al. [21] developed a unified

Cloud ontology for better understanding of the cloud

technology. Binz et al. [22] developed the Topology and

Orchestration Specification for Cloud Applications (TOSCA)

to describe composite cloud applications and their

management in a modular and portable fashion.

Some other researchers have been concerned with the expert

evaluation of cloud services. For example, Hwang et al. [23]

developed cloud performance models for evaluating IaaS,

PaaS, SaaS and hybrid clouds and used them to evaluate

Amazon IaaS EC2 using various benchmarks such as Cloud

Suite [24], HiBench [25], TPC-W [26] and YCSB [27]. They

concluded that we need to develop application-specific

benchmarks especially for Big Data analytics and machine

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

30

learning intelligence. Antoniou [28] developed the SkyMark

framework for the performance evaluation of IaaS clouds

using complex workloads that stress the compute, memory

and disk components. He made a similar conclusion regarding

the need for applying more diverse and realistic workloads.

Provisioning and monitoring of QoS has been studied

extensively in networks [29, 30] and extends to cloud

computing to ensure sustainable provisioning of user QoS

requirements. In a recent research study, Rodrigues et al. [31]

addressed the problem of monitoring cloud computing

environments and compared fourteen different monitoring

solutions with respect to their goals and capabilities. The

authors pinpointed several open points of research such as

translating high-level cloud services into low-level metrics

against the infrastructure layer.

3. THE PROPOSED CLOUD SERVICE

BROKER (CSB) ARCHITECTURE
Figure 1 shows a block diagram of the proposed CSB

architecture. As shown in the figure, it is composed of six

modules: the Cloud Service Discovery (CSD) module, the

Service Normalization (SN) module, the Matching & Ranking

(MR) module, the Decision Support (DS) module, the Service

Evaluation (SE) module and the Service Monitoring (SM)

module. In addition to those modules, CSB includes two data

stores: the cloud service repository and the user log. They are

discussed in more details in the following sub-sections.

Fig 1: A block diagram depicting the architecture of the proposed cloud service broker (CSB)

3.1 The Cloud Service Discovery (CSD)

Module
The CSD module is responsible for discovering candidate

cloud services according to the user QoS requirements. Two

approaches are generally used in the literature for this

purpose: mobile agents [9] and search engines [10, 11] as

discussed in Section 2. Unfortunately, mobile agents are

associated with security threats since they are processes that

can affect the servers they visit or, alternatively, can be

modified on those servers [32]. In other words, unless there is

mutual trust between the cloud servers and the visiting agents,

cloud search engines might be a better option.

In addition to specifying an approach for discovering

candidate cloud services, there should be a specification of the

means of information extraction. As previously noted, Liu et

al. [9] assumed the existence of service provider Web services

for supplying the necessary information. It is also possible to

process HTML documents and other Semantic Web

documents including RDF, RDFs and OWL such as the

Swoogle search engine developed by Ding et al. [33]. Natural

language processing techniques can be also used for this

purpose [34]. Other possibilities include extracting

information from the data exchange XML files [35] or JSON

files [36]. The extracted information is stored in the cloud

service repository.

In a possible scenario, cloud service providers are able to post

information about their services manually in the cloud service

repository and update them as needed. Obviously, this

requires some sort of access control to ensure that no cloud

service provider tampers with the information of the others.

3.2 The Matching and Ranking (MR)

Module
The MR module is responsible for matching the user QoS

requirements against the candidate services in the cloud

service repository to return one or more possible matches

ranked according to their relevance. A good example is the

ranking technique proposed by Garg et al. [7] though they

considered only quantitative attributes. Other possible

techniques include the MCDA techniques, optimization-based

techniques and logic-based techniques discussed in Section 2.

Since the user QoS requirements are typically expressed in

natural language, semantic matching and quantization of the

QoS requirements might be required. As previously noted, Liu

et al. [9] consulted an ontology for translating user QoS

requirements to be matched against information about the

candidate cloud services. Consumer agents select the best

service using service ontology analysis. Similarly, Han and

Sim [10] consulted an ontology to match the user QoS

requirements against candidate cloud services information

determining the similarities and the equivalences. A semantic

similarity measure is used to determine the best matching

service.

cloud
service
providers

Cloud

Service

Repository

Decision

Support

(DS)

query
Matching

& Ranking

(MR)

posting and updating

User

Log

Service

Monitoring

(SM) monitoring

evaluation
Service Evaluation

(SE)

Cloud
Service
Discovery
(CSD)

Service

Normalization

(SN)

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

31

An ideal technique should be able to deal with all types of

qualitative and quantitative attributes whether nominal,

binary, ordinal or numeric. It should be also able to deal with

all types of numeric attributes including interval-scaled and

ratio-scaled attributes both discrete and continuous. This is in

addition to considering dependent attributes. At the same

time, it should be computationally efficient. This is one of the

open and most active areas of research in the literature.

3.3 The Decision Support (DS) Module
The DS module is responsible for helping the user in selecting

the most suitable cloud service matching his/her QoS

requirements. When the user submits a query to the DS

module describing the requirements, it consults the MR

module to match those requirements against the candidate

services in the cloud service repository to return one or more

possible matches ranked according to their relevance.

Since none of the candidate services may satisfy the user QoS

requirements to the letter, the user should be given the chance

to give relative weights to his/her QoS requirements and

prioritize them. Besides, the DS module should be able to

negotiate the relevant services with the user specifying the

pros and cons of each. The user log information specifying the

user previous selections may be also used in this process.

The above discussion assumes that the users are professional

enough to specify their QoS requirements. Since this is not

always the case, the DS module should be able to deduce the

required QoS requirements automatically by analyzing the

user applications. This is another area of research that

deserves considerable attention.

3.4 The Service Normalization (SN)

Module
The SN module is responsible for normalizing the cloud

service specifications. Most of the normalization techniques in

the literature have been developed for Web services such as

the Web Service Description Language (WSDL) [37] and the

Semantic Markup for Web Service Description Language

(WSDL-S) [37]. Normalization of the service specifications is

crucial for smooth matching of the services against the user

QoS requirements. In addition to the SMI framework effort,

few researchers attempted to address this issue [21, 22] as

discussed in Section 2 and this calls for further research

studies.

3.5 The Service Monitoring (SM) Module
The SM module is responsible for monitoring the services

provided to the users by the cloud service providers to ensure

that the users get what they pay for, that they pay per service

according to the Service Level Agreements (SLAs) and that

the provisioning of the QoS requirements is sustained

throughout the durations of the services.

This is an essential part of the cloud service broker since the

users cannot do it on their own and cannot rely on the service

providers for this purpose and so need a monitoring third

party. Several monitoring solutions exist in the literature [31],

but they are inadequate to cover all monitoring requirements

calling for further research studies.

3.6 The Service Evaluation (SE) Module
The SE module is responsible for evaluating the services

offered by the different cloud service providers. Unlike the

SM module, this module does not monitor the services

provided to specific users; it evaluates the services offered by

the service providers with the goal of ensuring the accuracy of

the information in the cloud service repository.

This is of ultimate importance to preserve the credibility of

the cloud service broker that should not rely solely on

information obtained from the service providers. Techniques

for cloud service evaluation include the different cloud

benchmarks and complex workloads discussed earlier [23-28].

4. AN IMPLEMENTATION OF CSB
In Section 3, we described the architecture of the proposed

cloud service broker, CSB. We also discussed several possible

ways to realize and implement each of its modules. In other

words, various implementations can be developed based on

this architecture. Each implementation may include some or

all of those modules. Nevertheless, regardless of the

implementation, the functionalities of the implemented

modules should be integrated to help the user make more

informed decisions regarding the selection of the relevant

cloud service according to his/her QoS requirements.

In this section, we present the details of an example prototype

implementation of CSB including the DS module, the MR

module and the SE module in addition to the cloud service

repository as shown in Figure 2. To integrate the

functionalities of those modules, we propose a novel

evaluation-aware matching and ranking technique. This

matching and ranking technique takes into consideration not

only the results of the evaluation of the services offered by the

cloud service providers, but also the history of the service

providers in satisfying or violating their SLAs.

In this example implementation, we assume that the cloud

service providers publish information about their offered

services in the cloud service repository. The user query is

handed in to the DS module that forwards it to the MR

module for matching and ranking. The MR module matches

the user QoS requirements against the information in the

cloud service repository and returns one or more matching

services to the DS module ranked in order of priority. The DS

modules helps the user make an appropriate selection. The SE

module conducts regular evaluation of the services offered by

the cloud service providers in the repository and updates their

information accordingly. With each violation of the published

information, the service provider is penalized resulting in a

decrease in its rank. The rate of decrease increases with each

violation.

4.1 The Cloud Service Repository
In the cloud service repository, each cloud service provider

has a unique ID represented by the following equation:

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝐼𝐷 = 𝑡𝑦𝑝𝑒, 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, < 𝑃1𝑎𝑃1𝑒 >,
< 𝑃2𝑎𝑃2𝑒 >, … , 𝑛 (1)

In this equation:

 The type refers to the service type such as IaaS, PaaS,

SaaS, or Big Data as a Service (BDaaS).

 The function refers to any further specification of the type

such as the specification of the software offered in SaaS.

 Pia refers to the advertised value of the service attribute

(or performance metric) number i of the service provider.

 Pie refers to the evaluated value of the service attribute (or

performance metric) number i of the service provider.

 The value n is a measure of the frequency with which the

evaluated values of the service attributes of the service

provider do not match the advertised ones; the

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

32

computation of n will be explained in the next sub-

section.

It is worth noting that a cloud service provider can have more

than one ID in case more than one type of service and/or more

than one function are offered.

4.2 The SE Module Implementation
The SE module uses several benchmarks to regularly evaluate

the offered services of the different cloud service providers. In

other words, it evaluates the service attributes of each service

provider on regular basis indicating whether or not the

evaluated values match the advertised ones in the cloud

service repository. The result of the evaluation of each

service provider is represented by the following equation:

𝐸 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝐼𝐷 = < 𝑃1𝑒 >, < 𝑃2𝑒 >, … (2)

In this equation:

 The service ID is the unique ID of the cloud service

provider under evaluation.

 Pie refers to the evaluated value of the service attribute (or

performance metric) number i of the service provider.

In other words, the evaluation results in an evaluated value for

each of the service attributes of the service provider.

Fig 2: A prototype implementation of CSB

In case the evaluated value of any of the service attributes of

the service provider does not match the advertised one, the

evaluated value in the cloud service repository is updated

accordingly. Additionally the value of n is incremented. On

the other hand, if none of the evaluated values of the service

attributes of a given service provider differs from the

advertised ones, n is decremented. This continues with each

evaluation until the value of n is reset to 0 (since a negative

value of n is meaningless and hence not allowed).

4.3 The MR Module Implementation
The MR modules receives the QoS requirements of the user

from the DS module. It starts by selecting the candidate

services in the cloud service repository according to the

service type and function specified by the user. The second

step involves matching the service attributes of those services

against the QoS requirements of the user and ranking the

relevant ones in order of priority. In this implementation, we

extend the relative rankings technique proposed by Garg et al.

[7]. They start by computing a relative ranking for each

service attribute of each candidate service such that the

summation of the relative rankings of a given service attribute

over all services is equal to one. For example, the relative

rankings of the security attributes of three services may be

0.25, 0.5 and 0.25 respectively. The details of computing the

relative rankings of the different attributes are beyond the

scope of this paper. To rank the services, they compute for

each the aggregation of the relative rankings of all of its

attributes and order them accordingly. Nevertheless, the user

is allowed to specify relative weights for the attributes such

that the sum of the relative weights across all the attributes is

equal to one. In such a case, the value of each attribute is

multiplied by its relative weight before the aggregation.

We extend this technique by considering the evaluated values

of the different service attributes rather than their advertised

ones. Additionally, we multiply the final rank of each service

by the following penalty factor:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒−𝑛2∗𝑐 (3)

In this equation:

 c is a constant value representing a penalty increment.

 The value n is a measure of the frequency with which the

service provider is penalized as previously explained and

is obtained from the cloud service repository.

Our first thought was to use a simple exponential function

(simple penalty factor) as follows:

𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑒−𝑛∗𝑚∗𝑐 (4)

In this equation:

 m is a multiple of c.

Using such a simple penalty factor, the rank of the penalized

service decreases exponentially with each penalty. Figure 3(a)

shows the curves of three example simple penalty factors with

a value of m equal to 1, 2, and 3 respectively and a value of c

equal to 0.025. It is clear that in case of a simple penalty

factor, the service penalty increases with the increase of n, but

it increases only exponentially.

cloud
service
providers

Cloud

Service

Repository

Decision

Support

(DS)

query
Matching

& Ranking

(MR)

evaluation
Service Evaluation

(SE)

posting and updating

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

33

We decided to select the penalty factor (equation 3) such that

m itself increases with each penalty. The dashed curve shown

in Figure 3(a) is that of the selected penalty factor. As shown

in the figure, it intersects the three simple penalty factor

curves successively with each penalty. Figure 3(b) clarifies

this more by depicting the curve of the penalty factor against a

set of simple penalty factors with values of m ranging from 1

to 5.

In effect, we increase the rate of the penalty for the service

providers who consistently violate their SLAs. In other words,

the implemented MR module considers not only the services

advertised by the cloud service providers, but also the log of

the evaluation trail.

4.4 The DS Module Implementation
The implemented DS module accepts a query from the user

and sends the QoS requirements to the MR module to match

the candidate services and return a set of suitable services

ranked according to their priority. The DS module does not

select the highest ranking service directly, but negotiates the

selection with the user for many reasons such as:

 Assume a service has a low ranking due to a penalty and

(a) the penalty is because the evaluated value of one of the

attributes does not match the advertised one, (b) the

evaluated value of this attribute is higher than that of the

other services. In such a situation, the user has the right to

accept the risk and select this risky service.

 None of the services match the QoS requirements of the

user to the letter.

Fig 3: Several possible penalty factors

5. CASE STUDY
In this section, we provide a case study using the example

prototype implementation of CSB presented in Section 4 as a

proof of concept to justify the advantage of the integration of

the different functionalities in such a comprehensive broker.

In this case study, we consider three IaaS service providers:

Amazon EC2, Windows Azure and Rackspace. A number of

service attributes (performance metrics) have been collected

by Garg et al. [7] from several evaluation studies.

Nevertheless, since many assumptions are made in this case

study, we will use the metrics of those service providers but

assume they belong to other three service providers A, W and

R respectively. We make the following assumptions:

 The collected values are equal to both the advertised

values and the evaluated values of the service attributes of

the three providers.

 The three services are all of the same type and have the

same function and so we compare them only according to

the evaluated values of the service attributes and n.

Using the relative ranking technique explained in Section 4,

we obtain the following relative rankings matrix based on the

evaluated values:

𝑅𝑅 =
0.2500 0.3360 0.3812 0.4073 0.2846 0.2500
0.5000 0.3125 0.2671 0.3338 0.1181 0.5000

 0.2500 0.3516 0.3517 0.2589 0.5973 0.2500

In the above matrix, the elements in the rows are the relative

rankings of the attributes of the service providers A, W and R

respectively. The elements in the columns, on the other hand,

are the relative rankings of the attributes security, agility,

assurance, cost, performance, and accountability respectively.

By aggregating the relative rankings of all the attributes

across each service provider, we obtain the rankings 1.9091,

2.0315, 2.0595 for the three providers respectively.

Accordingly, R obtains the highest ranking while A has the

lowest.

Schad et al. [38] showed considerable variabilities in the CPU

performance of Amazon EC2 over the weekdays in addition

to variabilities in the network performance. Accordingly, it is

reasonable to assume that the evaluated values of the

attributes of any service provider may not match the

advertised ones. Accordingly, when we consider the evaluated

values, we get different relative rankings for the attributes, a

different relative ranking matrix and different rankings for the

service providers.

According to our proposed technique, we not only compute

the relative rankings using the evaluated values instead of the

advertised ones, but also multiply the ranking of each service

provider by a penalty factor in case n is not equal to 0. So,

assuming, for example, that the value of n for the service

provider R is equal to 1 and that the value of the penalty

increment c is 0.025, the ranking of this provider is multiplied

(a) (b)

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

34

by the penalty factor 𝑒−12∗0.025 , which is equal to 0.975 and

so the ranking of S becomes 2.008. In other words, W gets the

highest ranking instead of R. If R is penalized one more time,

its ranking is multiplied by the penalty factor 𝑒−22∗0.025 ,

which is equal to 0.904 and so the ranking of S becomes 1.863

and obtains the lowest ranking. It is clear that integrating the

results of the evaluation with the matching and ranking

process helps the user make more informed decisions and

helps him/her avoid service providers with low credibility.

6. CONCLUSION
This paper presents CSB, a proposed comprehensive user-

centric cloud service broker. CSB is designed to help users

select suitable cloud services matching his/her QoS

requirements. The paper discusses related research in the

literature highlighting the different research directions dealing

with different aspects of the problem. Accordingly, it

describes the architecture of CSB explaining how it integrates

and orchestrates all those functionalities.

The different possibilities for realizing and implementing the

different modules of CSB are discussed with prominent

examples from the literature and open points of research are

highlighted. These can be summarized as follows:

 Efficient and accurate techniques for the automatic

extraction of information about the different offered

cloud services from the Web pages of the cloud service

providers.

 Techniques for the semantic matching and quantization

of the user fuzzy QoS requirements and those expressed

in natural language.

 Computationally inexpensive techniques for matching

the user QoS requirements against the candidate services

to select the relevant ones and rank them in order of

priority.

 Matching and ranking techniques that are able to deal

with all types of qualitative and quantitative service

attributes whether nominal, binary, ordinal or numeric

and with all types of numeric attributes including

interval-scaled and ratio-scaled attributes both discrete

and continuous.

 Negotiation techniques with the user in case a

compromise is needed when none of the candidate

services satisfy all the QoS requirements.

 Techniques for the automated specification of the QoS

requirements relevant to the user application.

 Normalization techniques for the cloud service

specifications.

 Monitoring techniques that ensure the user receives the

required QoS requirements specified in the SLA

throughout the duration of the service.

 Evaluation techniques for evaluating the services offered

by the different cloud service providers so as not to rely

on the information they provide.

As a proof of concept, to justify the advantage of the

integration of several functionalities in such a comprehensive

broker, we present an example implementation of a prototype

based on CSB in addition to a case study using this prototype.

In this example implementation, we propose a modeling

technique for the cloud services and for their evaluation. We

also propose a novel evaluation-aware matching and ranking

technique for integrating evaluation results of the cloud

services with their matching and ranking against the user QoS

requirements for more informed selection decisions by taking

into consideration the credibility of the cloud service

providers.

As a future work, we intend to continue working on

enhancing the implementations of the different modules of

CSB. In other words, different design options will be

explored, tested and compared in various scenarios to

implement the most advantageous ones. Additionally, we

intend to develop a complete implementation of the broker

and employ it in real cloud environments. More case studies

will be considered and the future enhancements and results

will be reported in subsequent papers. The paper stimulates

further research to enhance the different modules of CSB and

promote its adoption for the sole benefit of the cloud services

users.

7. REFERENCES
[1] Foster, I., Zhao, Y., Raicu, I., and Lu, S. 2008. Cloud

computing and grid computing 360-degree compared. In

Proceedings of IEEE Grid Computing Environments

Workshop, Austin, TX, USA, (2008).

[2] Mell, P. and Grance, T. 2011. The NIST definition of

cloud computing. Special Publication 800-145, National

Institute of Standards and Technology (NIST), U.S.

Department of Commerce, (2011).

[3] Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. and

Hu, B. 2015. Everything as a Service (XaaS) on the

Cloud: Origins, current and future trends. In Proceedings

of the 8th IEEE International Conference on Cloud

Computing, New York, USA, (2015), 621-628.

[4] Elazhary, H. 2014. Cloud computing for Big Data.

MAGNT Research Report (2014).

[5] Elazhary, H. 2015. A cloud-based framework for

context-aware intelligent mobile user interfaces in

healthcare applications. Journal of Medical Imaging and

Health Informatics 5(8) (2015) 1680-1687.

[6] Youssef, A. 2012. Exploring cloud computing services

and applications. Journal of Emerging Trends in

Computing and Information Sciences 3(6) (2012).

[7] Garg, S., Versteeg, S., and Buyya, R. 2013. A framework

for ranking of cloud computing services. Future

Generation Computer Systems 29 (2013) 1012-1023.

[8] Brock, M. and Goscinski, A. 2011. Enhancing Cloud

computing environments using a cluster as a service. In:

Cloud Computing: Principles and Paradigms, John Wiley

& Sons, (2011), 193-219.

[9] Liu, D., Xing, W., Che, X., and Bao, P. 2015. A

centralized service discovery approach for agent-based

cloud computing system. The Open Cybernetics &

Systemics Journal 9 (2015) 526-535.

[10] Han, T. and Sim, K. 2010. An ontology-enhanced cloud

service discovery system. In Proceedings of the

International MultiConference of Engineers and

Computer Scientists, Hong Kong, (2010).

[11] Gong, S. and Sim, K. 2014. CB-Cloudle: A centroid-

based cloud service search engine. In Proceedings of the

International MultiConference of Engineers and

Computer Scientists, Hong Kong, (2014).

International Journal of Computer Applications (0975 – 8887)

Volume 154 – No.7, November 2016

35

[12] Rehman, Z., Hussain, O., and Hussain, F. 2012. IaaS

cloud selection using MCDM methods. In Proceedings of

the 19th IEEE International Conference on e-Business

Engineering, Hangzhou, China, (2012), 246-251.

[13] Saaty, T. 2008. Decision making with the analytic

hierarchy process. International Journal of Services

Sciences 1(1) (2008) 83-98.

[14] Behzadian, M., Otaghsara, S., Yazdani, M., and Ignatius,

J. 2012. A state-of the-art survey of TOPSIS

applications. Expert Systems with Applications 39

(2012) 13051-13069.

[15] Roy, B. 1991. The outranking approach and the

foundations of ELECTRE methods. Theory and Decision

31 (1991) 49-73.

[16] Brans, J. and Vincke, P. 1985. A preference ranking

organisation method: (The PROMETHEE method for

multiple criteria decision-making). Management Science

31(6) (1985) 647-656.

[17] Whaiduzzaman, M., Gani, A., Anuar, N., Shiraz, M.,

Haque, M., and Haque, I. 2014. Cloud service selection

using multicriteria decision analysis. The Scientific

World Journal 2014(459375) (2014).

[18] Sun, L., Dong, H., Hussain, F., Hussain, O., and Chang,

E. 2014. Cloud service selection: State-of-the-art and

future research directions. Journal of Network and

Computer Applications 45 (2014) 134-150.

[19] Quinton, C., Romero, D., and Duchien, L. 2014.

Automated selection and configuration of cloud

environments using software product lines principles. In

Proceedings of the 7th IEEE International Conference on

Cloud Computing, Alaska, USA, (2014).

[20] Sun, L., Ma, J., Zhang, Y., Dong. H., and Hussain, F.

2016. Cloud-FuSeR: Fuzzy ontology and MCDM based

cloud service selection. Future Generation Computer

Systems 57 (2016) 42–55.

[21] Youseff, L., Butrico, M., and Da Silva, D. 2008. Toward

a unified ontology of cloud computing. In Proceedings of

the Grid Computing Environments Workshop, Austin,

TX, (2008).

[22] Binz, T., Breiter, G., Leymann, F., and Spatzier, T. 2012.

Portable cloud services using TOSCA. IEEE Internet

Computing 16(3) (2012) 80-85.

[23] Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W., and Wu,

Y. 2015. Cloud performance modeling with benchmark

evaluation of elastic scaling strategies. IEEE

Transactions on Parallel and Distributed Systems 27(1)

(2015) 130-143.

[24] Ferdman, M., Adileh, A., Kocberber, O., Volos, S.,

Alisafaee, M., Jevdjic, D., Kaynak, C., Popescu, A.,

Ailamaki, A., and Falsafi, B. 2012. Clearing the clouds:

A study of emerging scale-out workloads on modern

hardware. In Proceedings of the 17th International

Conference on Architectural Support for Programming

Languages and Operating Systems, London, UK, (2012).

[25] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B.

2010. The HiBench benchmark suite: Characterization of

the MapReduce-based data analysis. In Proceedings of

the IEEE 26th International Conference on Data

Engineering, (2010), 41-51.

[26] Smith, W. 2005. TPC-W: Benchmarking an ecommerce

solution. Intel, (2005).

[27] Cooper, B., Silberstein, A., Tam, E., Ramakrishnan, R.,

and Sears, R. 2010. Benchmarking cloud serving systems

with YCSB. In Proceedings of the 1st ACM Symposium

on Cloud computing, IN, USA, (2010).

[28] Antoniou, A. 2012. Performance evaluation of cloud

infrastructure using complex workloads. Master Thesis,

Delft University of Technology (2012).

[29] Elazhary, H. and Gokhale, S. 2004(a). Integrating path

computation and precomputation for quality-of-service

provisioning. In Proceedings of the 9th IEEE

International Symposium on Computers and

Communications, Alexandria, Egypt, (2004).

[30] Elazhary, H. and Gokhale, S. 2004(b). An integrated

approach for QoS provisioning and monitoring. In

Proceedings of IASTED International Conference on

Parallel and Distributed Computing and Networks,

Innsbruck, Austria, (2004).

[31] Rodrigues, G., Calheiros, R., Guimaraes, V., Santos, G.,

Carvalho, M., Granville, L., Tarouco, L., and Buyya, R.

2016. Monitoring of cloud computing environments:

Concepts, solutions, trends, and future directions. In

Proceedings of the 31st ACM Symposium on Applied

Computing, Pisa, Italy, (2016).

[32] Alfalayleh, M. and Brankovic, L. 2005. An overview of

security issues and techniques in mobile agents. IFIP

Advances in Information and Communication

Technology 175 (2005) 59-78.

[33] Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R., Peng, Y.,

Reddivari, P., Doshi, V., and. Sachs, J. 2004. Swoogle: A

search and metadata engine for the Semantic Web. In

Proceedings of the Conference on Information and

Knowledge Management, (2004), 652-659.

[34] Selvadurai, J. 2013. A natural language processing based

Web mining system for social media analysis.

International Journal of Scientific and Research

Publications 3(1) (2013).

[35] Myllymaki, J. 2001. Effective Web data extraction with

standard XML technologies. In Proceedings of the 10th

International World Wide Web Conference, Hong Kong,

(2001), 689-696.

[36] Knoblock, C. and Szekely, P. 2015. A scalable

architecture for extracting, aligning, linking, and

visualizing multi-Int data. In Proceedings of SPIE Next

Generation Analyst 9499 (2015).

[37] Herrmann, M., Aslam, M., and Dalferth, O. 2007.

Applying semantics (WSDL, WSDL-S, OWL) in Service

Oriented Architectures (SOA). In Proceedings of the 10th

International Protégé Conference, Budapest, Hungary,

(2007).

[38] Schad, J., Dittrich, J., and Quiane-Ruiz, J. 2010. Runtime

measurements in the cloud: observing, analyzing, and

reducing variance. In Proceedings of VLDB Endowment

3(1) (2010).

IJCATM : www.ijcaonline.org

