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ABSTRACT 
In this paper, the maximum likelihood and Bayesian 

estimation are developed based on Type-II progressive hybrid 

censoring scheme from the Pareto distribution. One and two-

sample Bayesian prediction is also discussed using Type-II 

progressive hybrid censoring scheme. Finally, numerical 

example is presented for illustrating all the inferential 

procedures developed here.   
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1. INTRODUCTION 
In reliability analysis, experiments are often terminated before 

all units on test fail based on cost and time considerations. In 

such cases, failure information is available only on part of the 

sample, and only partial information on all units that had not 

failed. Such data are called censored data. There are several 

forms of censored data. Two commonly used right censoring 

schemes are the Type-I and Type-II censoring. Consider   

identical units on a life-testing experiment, in the Type-I 

censoring scheme, the experiment is terminated when a pre-

fixed censoring time    is reached. In the Type-II censoring 

scheme, the experiment gets terminated when a pre-specified 

number     of failures is observed, a natural extension of 

Type-II censoring scheme will be a censoring scheme in 

which     units are withdrawn from the life-test at 

different time points (rather than all at the final time point 

    ). Such a versatile censoring scheme is referred to as 

progressive Type-II right censoring. Under this scheme,   

units are placed on a life-testing experiment and only m 

complete failures are to be observed. When the first failure is 

observed,    of the     surviving units are randomly 

selected and removed. At the second observed failure,    of 

the        surviving units are randomly selected and 

removed. The experiment finally terminates at the time of the 

    failure when all remaining                
  surviving units are removed. The censoring numbers    are 

fixed prior to the experiment. The   ordered failure times 

thus observed will denote by                 it is clear that 

       
 
   . The resulting m ordered values which are 

obtained from this type of censoring are referred to as Type-II 

progressive right censored order statistics. Several authors 

have studied progressive Type-II censoring and properties of 

order statistics arising from such a progressive censored life 

test. Some key references are [1], [2] and [3]. 

Childs et al. in [4], proposed another hybrid censoring 

scheme, the Type-II progressive hybrid censoring scheme 

(Type-II PHCS), that would terminate the experiment at the 

random time               where         and     
  with progressive censoring scheme             are 

fixed in advance. This new progressive hybrid censoring 

scheme, guarantees that at least m failure times will be 

observed. For the case          will not only follow the 

pre-specified scheme to remove the units after each failure, 

but continue to observe failures (without any further 

withdrawals) up to time  . Let   denote the number of 

failures that occur before time  . Then, the progressive 

censoring scheme in this case will become    
                     

    where      for       
       . Clearly, the termination time under this scheme is 

unknown to the experimenter which is a disadvantage, but 

there is an advantage that more than m failures may be 

observed which will greatly increase the efficiency of the 

statistical analysis (see Fig. 1).  

Fig. 1.  Schematic representation of adaptive progressive 

Type-II censoring scheme 

In this paper, the underlying distribution is assumed to be the 

Pareto distribution which introduced by Pareto in [5], as a 

model for the distribution of income, with the probability 

density function (PDF) and cumulative distribution function 

(CDF) as 
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where        

In recent years, its models in several different forms have 

been studied by many authors including [6], [7] and [8] 

among others. 

The rest of this paper is organized as follows. In Section 2, the 

description of the model of the Type-II PHCS is presented. 

The maximum likelihood ML estimator and the Bayesian 

estimators under the squared error loss function for the 

unknown parameters are derived in Section 3. In Section 4, 

we derive the Bayesian prediction for the failure times of all 

units that are removed in all stages of censoring. Bayesian 

prediction for progressive order statistics from an unobserved 

future sample from the same distribution is derived in Section 

5. Finally, in Section 6, for illustrating all the inferential 

methods developed here, numerical example is presented. 

2. THE MODEL DESCRIPTION 
Under Type-II PHCS described above, we have one of the 

following two cases of observations: 

1. Suppose that the     failure occurs after 

                , then the experiment terminates 

at        and we will observe           
         

2. Suppose that the     failure occurs before 

                  , then the experiment 

terminates at   and we will observe           
                       

Thus, the joint density function based on the above cases can 

be written as: 

     

      
 

 

   

  

   

                        
  

 

  

   

          
 
             

where  

    
                                                   

                                                     
  

    
        

                                                           
                   

                                     
  

with   
  is the number of surviving units that are removed at 

 , given by 

  
   

                                                   

       

   

   

                      
                  

with 

   
                                                           
                                          

        

Upon using (1.1) and (1.2) in (2.1), the likelihood function of 

    based on Type-II PHCS can be obtained as 

              
 

 

   

  

   

    
  

 

  

  

   

               

                                                          

where  

         
              

     

  

   

  

3. THE ML AND BAYESIAN 

ESTIMATIONS 
It is clear that the likelihood function is monotone increasing 

function in  , so its maximum value      will be attained at 

the maximum value    of  .  

From (2.6), The log-likelihood function of       is given by 

                                                 

to maximize relative to α , differentiate (3.1) with respect to α 

and solve the equation 

               

  
    

so, the ML estimator of   is obtained as 

     
  

           
                                 

For the Bayesian Estimations, under the assumption that both 

parameters   and   are unknown, we may consider the joint 

prior density function of α and β which was suggested by 

Lwin in [9] and generalized by Arnold and Press in [10]. The 

generalized Lwin prior or the power-gamma prior is given by 

                                                 

where          ,       and   are positive constants 

and       

Upon combining (2.6) and (3.3), given Type-II PHCS , the 

posterior density function of α, β is obtained as 

          
               

                     
 

 

  

 

 

                        

                                                            

 here 

                                 
 

 

  

 

        

 
       

   
                      

       
  

with                   

By using (3.4), the Bayesian estimator of α under the squared 

error loss function is the mean of the posterior density 

function, given by 

                    
 

 

  

 

                          

Hence, the Bayesian estimator of α under the squared error 

loss function is obtained as 

    
    

                    
                    

and the Bayesian estimator of   under the squared error loss 

function is obtained as 
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where 

         
     

   
    

 

 

 

A partial tabulation of         
 

    
          has been 

provided by Arnold and Press in [10]. 

4. ONE-SAMPLE BAYESIAN 

PREDICTION 
For            

   let      
  denote the     order statistic out 

of   
  removed units at stage  , and             . Then, the 

conditional density function of      
 , given the observed 

progressive Type-II censoring scheme                  , is 

given by Basak et al. in [11] as follows: 

      
              

 
  

  

         
     

 
            

   
         

       

        
  

            

where 

   
                                      
                             

  

with       
By using (1.1) and (1.2) in (4.1), the conditional density 

function of  , given progressive Type-II censoring scheme, is 

given as follows: 

           

   

   

 

 
     α                            

where    
         

    
  

         
       

 and        
      for 

             

Upon combining (3.4) and (4.2), the Bayesian predictive 

density function of      
 , given progressive Type-II censoring 

scheme, is obtained as 

              

   

   

  
       

  

 

  

  

  

 

                            

      α                    

 
            

     
 

  

 

   

   

                  

                     
                               

The Bayesian predictive survival function of      
 , given 

Type-II PHCS , is given as 

                   
 

  

 

 
          

     
 

  

  

   

   

                   

                     
                                  

The Bayesian point predictor of   under the squared error loss 

function is the mean of the predictive density, given by 

      
          

 

  

                                       

where         is given as in (4.3). The Bayesian predictive 

bounds of           two-sided equi-tailed (ET) interval 

for      
  can be obtained by solving the following two 

equations: 

           
 

 
                  

 

 
                

where          is given as in (4.4), and     and     denote 

the lower and upper bounds, respectively. On the other hand, 

for the highest posterior density (HPD) method, the following 

two equations need to be solved: 

                             

and 

                         

where         is as in (4.3), and      and     denote the 

HPD lower and upper bounds, respectively. 

5. TWO-SAMPLE BAYESIAN 

PREDICTION 
Let                        be a future independent 

progressively Type-II censored sample from the same 

population with censoring scheme               . We 

develop here a general procedure for deriving the point and 

interval predictions for        , based on the observed 

generalized PHCS. It is well known that the marginal density 

function of the      order statistic from a sample of size   

from a continuous distribution with           and 
           is given, see [12], by 
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where      ,                          
       ,                           and 

           
         

       
     

 
    

         
     
   

     
    

   

Upon substituting (1.1) and (1.2) in (5.1), the marginal density 

function of        is then obtained as 

       

              

 

  
     α          

  
 
   

   

   

                       

Upon combining (3.4) and (5.2), given Type-II PHCS , the 

Bayesian predictive density function of        is obtained as 

          
  

                  

  
                         

                          

where 

  
                 

 

  

  

  

              

                    
    

          

   

   

 

                                          

  
                 

 

  

  

  

              

                    
    

          
     

   

   

 

                                                   

From (5.3), we simply obtain the predictive survival function 

of        , given generalized PHCS Type-II, as 

                     

 

  

  
   

                

   
                       

           

where 
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The Bayesian point predictor of       ,      , under the 

squared error loss function is the mean of the predictive 

density, given by 

                  
       

 

  

                            

where        
        is given as in (5.3).  

The Bayesian predictive bounds of          ET interval 

for             , can be obtained by solving the 

following two equations: 

       
         

 

 
            

           
 

 
             

where        
       is given as in (5.6),and     and     denote 

the lower and upper bounds, respectively. For the HPD 

method, the following two equations need to be solved: 

       
                 

               

and 

      
                

             

where          is as in (5.3), and      and     denote the 

HPD lower and upper bounds, respectively. 

6. NUMERICAL RESULTS 
By using the algorithms which suggested in [13], we 

generated Type-II progressive hybrid censoring data from a 

sample of size     . The generated data from Pareto 

distribution (with     and    ), using different types of 

Type-II PHCS are as follows: 

1. Scheme 1: Suppose         and   
                   Since          , then the 

experiment would have terminated at         
      with                       ,   

  0, and 

we would have the following data: 6.000, 6.094, 

6.118, 6.243, 6.278, 7.227, 7.739, and 8.088. 

2. Scheme 2:  Suppose     and     with the 

same censoring scheme in Scheme 1. Since 

         , then the experiment would have 

terminated at     with                       , 
  

   ,    , and we have the following data: 

6.000, 6.094, 6.118, 6.243, 6.278, 7.227, 7.739, 

8.088, and 8.398. 

3. Scheme 3: Suppose         and   
                   . Since          , then the 

experiment would have terminated at         
      with                         ,   

   , 

and we would have the following data: 6.096, 6.096, 

6.210, 6.234, 6.382, 6.426, 7.293, 7.887, and 8.304. 

4. Scheme 4: Suppose     and      with the 

same censoring scheme in Scheme 3. Since 

         , then the experiment would have 

terminated at      with 

                          ,   
   ,     , 

and we have the following data: 6.096, 6.096, 6.210, 

6.234, 6.382, 6.426, 7.293, 7.887, 8.304, 8.621, and 

9.825. 

We assume these data to have come from Pareto distribution 

with   and   are unknown. Based on the above generated 

Type-II HPCS, Table 1 presents the ML and Bayesian 

estimates of    and  . Table 2 presents the point predictor and 
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    Bayesian prediction bounds of      
  based on the above 

generated Type-II HPCS and Table 3 presents the point 

predictor and     Bayesian prediction bounds of        from 

the future progressive censored sample of size       from a 

sample of size      with progressive censoring scheme 

                        based on the above generated Type-

II PHCS. All these results in Tables 1-3 are computed based 

on two different choices of the hyperparameters          , 
namely, 

1.                  and        : 

informative prior (IP) . 

2.              and    : noninformative 

prior (NIP). 

Table 1: The ML and Bayesian estimates of            

Scheme      

    

     

    

IP NIP IP NIP 

1 2.823 2.574 2.470 6.000 5.875 5.862 

2 2.987 2.748 2.608 6.137 5.903 5.932 

3 3.175 2.866 2.823 6.096 5.983 5.975 

4 3.014 2.985 3.154 6.074 6.098 6.154 

Table 2: Bayesian point predictor and     ET and HPD prediction intervals for     
  for         

 ,          or    

Scheme   
    GP JP 

     
  ET interval HPD interval      

  ET interval HPD interval 

1 2 1 7.170 (6.114,10.999) (6.094,9.657) 7.339 (6.115,11.735) (6.094,10.092) 

  
2 9.520 (6.324,19.891) (30.906,83.317) 11.455 (6.331,22.996) (6.101,17.567) 

  
3 36.538 (6.909,68.931) (6.021,43.964) 40.197 (6.930,93.766) (6.032,54.743) 

 
5 1 7.386 (6.299,11.331) (6.278,9.948) 7.560 (6.300,12.090) (6.278,10.397) 

  
2 9.807 (6.515,20.492) (6.287,16.342) 11.783 (6.522,23.690) (6.285,18.097) 

  
3 37.442 (7.118,71.012) (6.203,45.292) 41.199 (7.140,96.598) (6.214,56.396) 

 
8 1 8.732 (8.101,10.866) (8.088,10.181) 8.794 (8.102,11.224) (8.088,10.408) 

  
2 9.594 (8.223,13.541) (8.097,12.288) 9.765 (8.227,14.431) (8.096,12.851) 

  
3 10.840 (8.465,17.601) (8.014,15.334) 11.270 (8.474,19.500) (8.021,16.504) 

  
4 12.912 (8.843,24.984) (8.329,20.737) 14.354 (8.857,29.158) (8.305,23.165) 

  
5 17.891 (9.440,43.067) (8.539,32.769) 26.746 (9.461,54.375) (8.491,38.766) 

  
6 56.669 (10.575,143.208) (8.756,87.896) 64.721 (10.611,212.151) (8.674,116.779) 

2 2 1 7.208 (6.115,11.160) (6.094,9.786) 7.344 (6.116,11.849) (6.094,10.205) 

  
2 9.592 (6.336,20.377) (6.103,16.253) 10.734 (6.345,23.249) (6.102,17.874) 

  
3 23.316 (6.956,72.188) (6.017,46.103) 26.498 (6.986,95.345) (6.026,56.487) 

 
5 1 7.426 (6.300,11.497) (6.278,10.082) 7.565 (6.301,12.207) (6.278,10.513) 

  
2 9.881 (6.527,20.992) (6.287,16.743) 11.051 (6.536,23.951) (6.286,18.414) 

  
3 34.182 (7.166,74.368) (6.198,47.495) 42.168 (7.197,98.224) (6.208,58.192) 

 
9 1 9.245 (8.415,12.073) (8.398,11.159) 9.324 (8.416,12.516) (8.398,11.443) 

  
2 10.466 (8.579,16.023) (8.409,14.219) 10.697 (8.585,17.202) (8.408,14.967) 

  
3 12.468 (8.922,23.048) (8.511,19.415) 13.148 (8.939,25.916) (8.501,21.150) 

  
4 16.948 (9.514,40.300) (8.705,31.141) 20.757 (9.546,48.609) (8.678,35.744) 

  
5 49.791 (10.679,138.006) (8.032,85.785) 55.274 (10.742,192.265) (8.061,109.630) 

3 1 1 7.634 (6.123,13.275) (6.096,11.211) 7.817 (6.123,13.983) (6.096,11.604) 

  
2 16.555 (6.460,40.972) (6.103,28.401) 27.276 (6.462,47.278) (6.102,31.330) 

 
4 1 7.807 (6.262,13.575) (6.234,11.465) 7.994 (6.262,14.300) (6.234,11.866) 

  
2 16.909 (6.606,41.900) (6.241,29.044) 27.776 (6.609,48.348) (6.240,32.039) 

 
7 1 9.133 (7.325,15.881) (7.293,13.413) 9.347 (7.326,16.729) (7.293,13.882) 

  
2 19.612 (7.728,49.018) (7.302,33.978) 31.566 (7.731,56.561) (7.300,37.482) 

 
9 1 9.010 (8.319,11.336) (8.304,10.596) 9.347 (7.326,16.729) (7.293,13.882) 

  
2 10.006 (8.457,14.451) (8.314,13.045) 10.114 (8.458,15.083) (8.313,13.433) 

  
3 11.579 (8.747,19.736) (8.219,16.980) 11.869 (8.747,21.214) (8.226,17.863) 

  
4 14.775 (7.769,31.869) (8.583,25.565) 16.121 (9.239,35.807) (8.556,27.743) 

  
5 36.075 (10.204,91.576) (8.797,61.068) 47.259 (10.192,112.466) (8.747,70.597) 

4 1 1 7.608 (6.123,13.102) (6.096,11.139) 7.700 (6.124,13.600) (6.096,11.426) 
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2 14.399 (6.468,39.296) (6.104,27.748) 17.782 (6.471,43.479) (6.103,29.797) 

 
4 1 7.780 (6.262,13.399) (6.234,11.392) 7.874 (6.262,13.908) (6.234,11.685) 

  
2 14.719 (6.614,40.186) (6.242,28.376) 18.157 (6.618,44.463) (6.241,30.471) 

 
7 1 9.102 (7.326,15.675) (7.293,13.327) 9.211 (7.326,16.271) (7.293,13.670) 

  
2 17.170 (7.738,47.012) (7.303,33.197) 21.026 (7.742,52.017) (7.301,35.647) 

 
11 1 11.305 (9.854,16.363) (9.825,14.685) 11.373 (9.855,16.775) (9.825,14.936) 

  
2 14.175 (10.165,27.014) (9.841,22.487) 14.479 (10.169,28.568) (9.840,23.392) 

  
3 27.433 (11.038,77.634) (9.691,54.000) 34.490 (11.045,87.422) (9.702,58.795) 

 

Table 3: Bayesian point predictor and     ET and HPD prediction intervals         for          . 

Scheme s GP JP 

        ET interval HPD interval         ET interval HPD interval 

1 1 6.007 (5.612,6.431) (5.601,6.419) 6.004 (5.563,6.472) (5.551,6.459) 

 2 6.149 (5.717,6.776) (5.673,6.715) 6.158 (5.682,6.865) (5.628,6.791) 

 3 6.303 (5.819,7.136) (5.748,7.020) 6.326 (5.796,7.286) (5.709,7.137) 

 4 6.525 (5.937,7.704) (5.833,7.485) 6.569 (5.925,7.954) (5.799,7.669) 

 5 6.776 (6.051,8.344) (5.921,8.006) 6.847 (6.045,8.722) (5.891,8.274) 

 6 7.064 (5.822,9.090) (6.011,8.607) 7.167 (6.162,9.633) (5.983,8.981) 

 7 7.488 (6.303,10.289) (6.107,9.549) 7.645 (6.303,11.114) (6.081,10.100) 

 8 8.012 (6.462,11.828) (6.203,10.741) 8.251 (6.464,13.061) (6.177,11.543) 

 9 8.684 (6.651,13.908) (6.299,12.320) 9.056 (6.653,15.758) (6.270,13.491) 

 10 23.635 (7.241,59.313) (6.357,38.681) 44.040 (7.252,79.238) (6.320,47.588) 

2 1 6.007 (5.601,6.444) (5.589,6.431) 6.004 (5.553,6.482) (5.541,6.469) 

 2 6.154 (5.708,6.795) (5.663,6.735) 6.163 (5.673,6.878) (5.621,6.806) 

 3 6.314 (5.812,7.161) (5.742,7.047) 6.336 (5.789,7.298) (5.704,7.156) 

 4 6.544 (5.935,7.738) (5.830,7.524) 6.586 (5.921,7.964) (5.797,7.694) 

 5 6.804 (6.054,8.387) (5.922,8.056) 6.872 (6.048,8.726) (5.894,8.304) 

 6 7.103 (6.173,9.143) (6.016,8.671) 7.201 (6.172,9.628) (5.991,9.015) 

 7 7.542 (6.320,10.361) (6.118,9.637) 7.691 (6.323,11.097) (6.096,10.144) 

 8 8.087 (6.490,11.925) (6.222,10.859) 8.307 (6.497,13.022) (6.200,11.595) 

 9 8.785 (6.693,14.041) (6.326,12.482) 9.116 (6.702,15.684) (6.303,13.556) 

 10 23.220 (7.322,61.976) (6.385,40.435) 38.452 (7.348,5.520) (6.355,48.960) 

3 1 6.102 (5.747,6.481) (5.738,6.471) 6.099 (5.716,6.501) (5.707,6.492) 

 2 6.229 (5.841,6.783) (5.803,6.733) 6.232 (5.818,6.830) (5.776,6.773) 

 3 6.367 (5.932,7.095) (5.872,7.000) 6.377 (5.917,7.175) (5.848,7.062) 

 4 6.565 (6.039,7.582) (5.950,7.404) 6.585 (6.029,7.716) (5.928,7.502) 

 5 6.787 (6.143,8.124) (6.032,7.852) 6.819 (5.070,8.326) (6.011,7.994) 

 6 7.040 (6.246,8.748) (6.115,8.363) 7.087 (6.241,9.036) (6.095,8.561) 

 7 7.408 (6.374,9.738) (6.204,9.156) 7.480 (6.368,10.170) (6.184,9.444) 

 8 7.859 (6.521,10.986) (6.295,10.144) 7.965 (6.513,11.618) (6.273,10.556) 

 9 8.428 (6.695,12.638) (6.386,11.431) 8.586 (6.684,13.564) (6.360,12.022) 

 10 16.889 (7.231,45.147) (6.448,31.318) 22.536 (7.216,52.912) (6.417,35.003) 

4 1 6.102 (5.750,6.477) (5.741,6.467) 6.099 (5.725,6.491) (5.717,6.483) 

 2 6.229 (5.841,6.769) (5.807,6.724) 6.230 (5.822,6.802) (5.784,6.753) 

 3 6.366 (5.932,7.070) (5.876,6.984) 6.373 (5.917,7.125) (5.856,7.029) 

 4 6.563 (6.038,7.537) (5.955,7.378) 6.577 (6.029,7.629) (5.937,7.448) 

 5 6.784 (6.144,8.054) (6.038,7.812) 6.807 (6.137,8.192) (6.021,7.912) 

 6 7.034 (6.250,8.646) (6.124,8.304) 7.069 (6.245,8.8415) (6.108,8.444) 

 7 7.399 (6.382,9.585) (6.217,9.068) 7.451 (6.3781,9.8752) (6.202,9.270) 
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 8 7.844 (6.535,10.760) (6.314,10.016) 7.920 (6.5304,11.1822) (6.297,10.302) 

 9 8.405 (6.716,12.306) (6.411,11.244) 8.514 (6.7104,12.9191) (6.393,11.651) 

 10 15.539 (7.273,42.984) (6.477,30.416) 17.871 (7.2660,48.0193) (6.455,32.935) 

 

7. CONCLUSIONS AND DISCUSSION 
In this paper, based on Type-II hybrid progressive censored 

scheme the ML and Bayesian estimators of the unknown 

parameters for Pareto distribution has been developed. Also, 

the problem for deriving one- and two-sample Bayesian 

prediction have been discussed. 

From the results in Tables 2 and 3, we notice that the point 

predictor of the unknown parameters is between the lower and 

upper bounds of the prediction intervals. Moreover, a 

comparison of the results for the informative priors with the 

corresponding ones for non-informative priors reveals that the 

former produce more precise results, as we would expect. 

Finally, the HPD prediction intervals seem to be more precise 

than the ET prediction intervals. 
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