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jugate soft uni-groups, soft normalizer and commutator of a
group, which are analogs of significant results in group theory.
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1. INTRODUCTION
There have been a great amount of research and applications in
the literature concerning some special tools like probability theory,
fuzzy set theory [1, 2], rough set theory [3, 4], vague set theory
[5], interval mathematics [6, 7] and intuitionistic fuzzy set theory
[8, 9], which were established by researches for modeling uncer-
tainties. But these theories has its advantages as well as limitations
in dealing with uncertainties as mentioned by Molodtsov [10].
Soft set theory was introduced by Molodtsov [10] for modeling
vagueness and uncertainty and it has received much attention
since Maji et al. [11] and Ali et al. [12] introduced and studied
several operations of soft sets. Soft set theory has many potential
applications in [13, 14, 15, 16, 17].
Firstly, Rosenfeld [18] studied fuzzy sets in the structure of groups
and obtained some analog results in group theory. Since then, many
followers [19, 20, 21, 22, 23, 24] studied the fuzzy substructures
of different algebraic structures.

Çag̃man et al. [25] introduced a new kind of soft group, called soft
int-group, which is based on the inclusion relation and intersection

of sets and studied its basic properties. Some more studies are avail-
able especially for normal soft int-groups [26]. Muştuoğlu et al.
[27] defined one more new kind of soft group, called soft uni-group,
which is in fact based on the inclusion relation and union of sets and
more functional for obtaining results in the mean of soft group the-
ory. In the study, they introduced the concepts soft uni-subgroups,
soft normal uni-subgroups, e-left coset set of a soft set and anti im-
age of a soft set and investigated these notions with respect to soft
uni-groups and they obtained some relations and significant char-
acterizations between soft int-groups and soft uni-groups.
In this paper, first we give the definition of soft uni-product for
soft uni-groups and characterize soft uni-groups by using this new
notions. Moreover, we extend the study of soft uni-groups by in-
troducing the concepts of characteristic soft uni-groups, soft conju-
gate, conjugate soft uni-groups and soft normalizer. And we prove
a number of results about soft uni-groups by using these concepts
which correspond to significant results in group theory. We also
give some alternative formulation for uni-soft group in terms of
commutators.

2. PRELIMINARIES
In this section, we present the basic definition of soft set theory and
operations defined on soft sets. Throughout this paper, U refers to
an initial universe, E is a set of parameters, P (U) is the power set
of U and A,B,C ⊆ E.

DEFINITION 1. ([13]) A soft set fA over U is a set defined by

fA : E → P (U) such that fA(x) = ∅ if x /∈ A.

Here fA is also called approximate function. A soft set over U can
be represented by the set of ordered pairs

fA = {(x, fA(x)) : x ∈ E, fA(x) ∈ P (U)}.

DEFINITION 2. ([13]) Let fA and fB be soft sets overU . Then,
fA is a soft subset of fB , denoted by fA⊆̃fB , if fA(x) ⊆ fB(x)
for all x ∈ E.

DEFINITION 3. ([13]) Let fA and fB be soft sets overU . Then,
fA is a soft equal to fB , denoted by fA = fB , if fA(x) = fB(x)
for all x ∈ E.
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DEFINITION 4. ([13]) Let fA and fB be soft sets overU . Then,
union of fA and fB , denoted by fA∪̃fB , is defined as fA∪̃fB =
fA∪̃B , where fA∪̃B(x) = fA(x) ∪ fB(x) for all x ∈ E.
Intersection of fA and fB , denoted by fA∩̃fB , is defined as
fA∩̃fB = fA∩̃B , where fA∩̃B(x) = fA(x)∩ fB(x) for all x ∈ E.

From now on, G refers to a group structure.

DEFINITION 5. ([27]) LetG be a group and fG ∈ S(U). Then
fG is called an soft union-group over U if

i) fG(xy) ⊆ fG(x) ∪ fG(y) for all x, y ∈ G,
ii) fG(x−1) = fG(x) for all x ∈ G.

For the sake of ease in mathematical manipulation we denote a soft
union-group by soft uni-group in what follows.

EXAMPLE 1. ([27]) Assume that U = S3, symmetric group,
is the universal set and G = D2 = {< x, y >: x2 = y2 =
e, xy = yx} = {e, x, y, yx}, dihedral group, is the subset of set of
parameters. The group table of D2 is known as

. e x y yx
e e x y yx
x x e yx y
y y yx e x
yx yx y x e

Now, we can construct a soft set fG by

fG(e) = {(13)}
fG(x) = {e, (12), (13)}
fG(y) = {e, (13), (23)}
fG(yx) = {e, (12), (13), (23)}.

Then, one can easily show that the soft set fG is a soft uni-group
over S3.

PROPOSITION 1. ([27]) If fG is a soft uni-group over U , then
fG(e) ⊆ fG(x) for all x ∈ G.

THEOREM 6. ([27]) A soft set fG over U is a soft uni-group
over U if and only if fG(xy−1) ⊆ fG(x)∪ fG(y) for all x, y ∈ G.

DEFINITION 7. ([27]) Let G be a group, H be a subgroup of
G and fG be a soft uni-group over U . If fH , the soft subset of fG,
itself is a soft uni-group over U , then fH is said to be a soft uni-
subgroup of fG over U and denoted by fH≤̃ufG.

DEFINITION 8. ([27]) Let fG be a soft uni-group over U .
Then, fG is called an abelian soft uni-group over U , if fG(xy) =
fG(yx) for all x, y ∈ G.

DEFINITION 9. ([27]) Let fG be a soft uni-group over U and
fN ≤̃ufG. fN is said to be a normal soft uni-subgroup of fG over
U if fN is an abelian soft uni-group over U . This is denoted by
fN /̃ufG.

3. SOFT UNION PRODUCT AND SOFT
UNI-GROUPS

In this section, we define soft union product and study its properties
as regards soft uni-groups.

DEFINITION 10. Let (G, ·) be a group and fG and hG be soft
sets over the common universe U . Then, soft union product fG∗hG
is defined by

(fG ∗ hG)(x) =
⋂
{fG(u) ∪ hG(v) | u · v = x, u, v ∈ G},

and the inverse f−1 of f is defined by

f−1(x) = f(x−1)

for all x ∈ G

Note that soft union product is abbreviated by soft uni-product in
what follows. Soft uni-product was defined for semigroups in [28]
and for rings in [29] before. However, since the algebraic struc-
ture of semigroup and ring differ from group, the definition and
the properties of soft uni-product change, too. Especially, since ev-
ery group has a unit element and every element in the group has
its inverse, the definition of soft uni-product for soft groups has its
characteristic properties.

EXAMPLE 2. Consider the additive group G = Z3. Let U =
D2 = {< x, y >: x2 = y2 = e, xy = yx} = {e, x, y, yx}
be the universal set. Let fG and hG be soft sets over U such
that fG(0) = {e, y, yx}, fG(1) = {e, x}, fG(2) = {y, yx}
and hG(0) = {x, y}, hG(1) = {e, yx}, hG(2) = {yx}. Since
1 = 1 + 0 = 0 + 1 = 2 + 2, then

(fG ∗ hG)(1) =
{fG(1) ∪ hG(0)} ∩ {fG(0) ∪ hG(1)} ∩ {fG(2) ∪ hG(2)} = {y}

Similarly, since 0 = 0 + 0 = 1 + 2 = 2 + 1 and 2 = 1 + 1 =
0+2 = 2+0, then (fG∗hG)(0) = {e, yx}, (fG∗hG)(2) = {yx}.

THEOREM 11. Let fG, gG, hG be soft sets over U . Then,

i) (fG ∗ gG) ∗ hG = fG ∗ (gG ∗ hG).
ii) fG ∗ gG 6= gG ∗ fG, generally. However, if G is abelian, then

fG ∗ gG = gG ∗ fG.
iii) fG ∗ (gG∪̃hG) = (fG ∗gG)∪̃(fG ∗hG) and (fG∪̃gG)∗hG =

(fG ∗ hG)∪̃(gG ∗ hG).
iv) fG ∗ (gG∩̃hG) = (fG ∗gG)∩̃(fG ∗hG) and (fG∩̃gG)∗hG =

(fG ∗ hG)∩̃(gG ∗ hG).

v) If fG⊆̃gG, then fG ∗ hG⊆̃gG ∗ hG and hG ∗ fG⊆̃hG ∗ gG.
vi) If tG, lG ∈ S(U) such that tG⊆̃fG and lG⊆̃gG, then tG ∗

lG⊆̃fG ∗ gG.

Proof: i) follows from Definition 10 and Example 2. Let G be an
abelian group and x ∈ G such that x = uv. Then,

(fG ∗ gG)(x) =
⋂

(fS(u) ∪ gS(v) | uv = x)

=
⋂

(gS(v) ∪ fS(u) | vu = x)

= (gG ∗ fG)(x)

Hence fG ∗ gG = gG ∗ fG.
iii) Let a ∈ G such that a = xy. Then,

(fG ∗ (gG∪̃hG))(a) =
⋂
{fG(x) ∪ (gG∪̃hG)(y)}

=
⋂
{fG(x) ∪ (gG(y) ∪ hG(y)}

=
⋂

[(fG(x) ∪ gG(y)) ∪ (fG(x) ∪ hG(y))]

= [
⋂

(fG(x) ∪ gG(y))] ∪ [
⋂

(fG(x) ∪ hG(y))]

= (fG ∗ gG)(a) ∪ (fG ∗ hG)(a)

= [(fG ∗ gG)∪̃(fG ∗ hG)](a)

Thus, (fG∪̃gG) ∗ hG = (fG ∗ hG)∪̃(gG ∗ hG) and (iv) can be
proved similarly.
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v) Let x ∈ G such that x = yz, then

(fG ∗ hG)(x) =
⋂

(fG(y) ∪ hG(z))

⊆
⋂

(gS(y) ∪ hG(z)) (since fG(y) ⊆ gG(y))

= (gG ∗ hG)(x)

Similarly, one can show that hG ∗ fG⊆̃hG ∗ gG.

(vi) can be proved similar to (v).
In Definition 5, the soft uni-group is defined as regards the elements
of G. Now, we give an equivalent definition for soft uni-groups in
terms of soft uni-product.

THEOREM 12. Let fG be a soft set over U . Then, fG is a soft
uni-group over U if and only if fG ∗ fG⊇̃fG and f−1

G = fG.

Proof: Assume that fG is a soft uni-group over U and a ∈ G such
that a = xy. Then,

(fG ∗ fG)(a) =
⋂
a=xy

(fG(x) ∪ fG(y))

⊇
⋂
a=xy

fG(xy)

=
⋂
a=xy

fG(a)

= fG(a)

Thus, fG ∗ fG⊇̃fG. Moreover, by the definition of soft uni-group
f−1
G (x) = fG(x−1) = fG(x). Hence, f−1

G = fG.
Conversely, assume that fG ∗ fG⊇̃fG and f−1

G = fG. Let x, y ∈ G
and a = xy−1 (since G is a group, every element has an inverse).
Then, we have:

fG(xy−1) = fG(a)

⊆ (fG ∗ fG)(a)

=
⋂

a=xy−1

(fG(x) ∪ fG(y−1)

⊆ fG(x) ∪ fG(y−1)

= fG(x) ∪ fG(y)

Hence, fG is a soft uni-group over U . This completes the proof.

THEOREM 13. Let A,B ⊂ G and fA, fB be soft uni-groups.
Then

(fA ∗ fB)−1 = f−1
B ∗ f−1

A .

Proof: Let x ∈ G. Since G is a group,

(fA ∗ fB)−1(x) = (fA ∗ fB)(x−1)

=
⋂
{(fA(u) ∪ fB(v) | uv = x−1, u, v ∈ G}

=
⋂
{(fB(v) ∪ fA(u) | uv = x−1, u, v ∈ G}

=
⋂
{fB(v−1)−1 ∪ fA(u−1)−1 | v−1u−1 = x}

=
⋂
{f−1
B (v−1) ∪ f−1

A (u−1) | v−1u−1 = x}

= (f−1
B ∗ f−1

A )(x)

In group theory, we know that ifH andK are subgroubs ofG, then
HK is a subgroup of G if and only if HK = KH . Now , we have
an analog theorem for soft uni-groups.

THEOREM 14. Let A,B ⊂ G and fA, fB be soft uni-groups.
Then, fA ∗ fB is a soft uni-group if and only if fA ∗ fB = fB ∗ fA.

Proof: Let fA and fB be soft uni-groups. First, assume that fA∗fB
is a soft uni-group. Then;

fB ∗ fA = f−1
B ∗ f−1

A = (fA ∗ fB)−1 = fA ∗ fB .

Conversely, suppose that fA ∗ fB = fB ∗ fA. Then;

(fA ∗ fB) ∗ (fA ∗ fB) = fA ∗ (fB ∗ fA) ∗ fB
= fA ∗ (fA ∗ fB) ∗ fB
= (fA ∗ fA) ∗ (fB ∗ fB)

⊇ fA ∗ fB

and (fA ∗ fB)−1 = (fB ∗ fA)−1 = f−1
A ∗ f−1

B = fA ∗ fB . Hence,
fA ∗ fB is a soft uni-group.
In group theory, we know that if N is a normal subgroup of G and
H is any subset of G, then NH = HN . Now , we have an analog
theorem for normal soft uni-groups.

THEOREM 15. Let A,B ⊂ G and fA be a normal soft uni-
group and fB be any soft set in G. Then, fA ∗ fB = fB ∗ fA.

Proof: Let x ∈ G. Then,

(fA ∗ fB)(x) =
⋂

(fA(u) ∪ fB(v) | uv = x u, v ∈ G)

Since fA is a normal soft uni-group (that is, abelian) and uv = x
implies u = xv−1, then

(fA ∗ fB)(x) =
⋂
{fA(xv−1) ∪ fB(v) | (xv−1)v = x v ∈ G}

=
⋂
{fB(v) ∪ fA(v−1x) | v(v−1x) = x, v ∈ G}

= (fB ∗ fA)(x)

In group theory, we know that if N is a normal subgroup of G and
H is a subgroup ofG, thenNH is a subgroup ofG. Now , we have
an analog theorem for normal soft uni-groups.

THEOREM 16. Let fA be a normal soft uni-group and fB be a
soft uni-group. Then fA ∗ fB is a soft uni-group.

Proof:

(fA ∗ fB) ∗ (fA ∗ fB) = fA ∗ (fB ∗ fA) ∗ fB
= fA ∗ (fA ∗ fB) ∗ fB
= (fA ∗ fA) ∗ (fB ∗ fB)

⊇ fA ∗ fB

Now, let x ∈ G.Then,

(fA ∗ fB)(x−1) =
⋂
{fA(u) ∪ fB(v) | uv = x−1, u, v ∈ G}

=
⋂
{fA(u−1)−1 ∪ fB(v−1)−1 | v−1u−1 = x}

=
⋂
{fB(v−1)−1 ∪ fA(u−1)−1 | v−1u−1 = x}

=
⋂
{f−1
B (v−1) ∪ f−1

A (u−1) | v−1u−1 = x}

=
⋂
{fB(v−1) ∪ fA(u−1) | v−1u−1 = x}

= (fB ∗ fA)(x)

= (fA ∗ fB)(x)

(1)
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Thus, fA ∗ fB is a soft uni-group.

4. SOFT CHARACTERISTIC FUNCTION AND
SOFT UNI-GROUP

Soft characteristic function was defined for semigroups in [28] and
for rings in [29] before. Now, we give the definition for group struc-
ture and we obtain the subgroups of o group by using this definition.

DEFINITION 17. Let X be a subset of G. We denote by SXc

the soft characteristic function of the complement X and define as

SXc(x) =

{
∅, if x ∈ X,
U, if x ∈ G \X

THEOREM 18. Let X and Y be nonempty subsets of a group
G. Then, the following properties hold:

i) If Y ⊆ X , then SXc⊆̃SY c .
ii) SXc ∩̃SY c = SXc∩Y c , SXc ∪̃SY c = SXc∪Y c .

Proof: i) is straightforward by Definition 17.

ii) Let g be any element ofG. Suppose g ∈ Xc∩Y c. Then, g ∈ Xc

and g ∈ Y c. Thus, we have

(SXc ∩̃SY c)(g) = SXc(g)∩SY c(g) = U∩U = U = SXc∩Y c(g)

Suppose g /∈ Xc ∩ Y c. Then, g /∈ Xc or g /∈ Y c. Hence, we have

(SXc ∩̃SY c)(g) = SXc(g) ∩ SY c(g) = ∅ = SXc∩Y c(s)

Let g be any element of G. Suppose g ∈ Xc ∪ Y c. Then, g ∈ Xc

or g ∈ Y c. Thus, we have

(SXc ∪̃SY c)(g) = SXc(g) ∪ SY c(g) = U = SXc∪Y c(g)

Suppose g /∈ Xc ∪ Y c. Then, g ∈ X and g ∈ Y . Hence, we have

(SXc ∪̃SY c)(g) = SXc(g) ∪ SY c(g) = ∅ = SXc∪Y c(g)

It is easy to see that if fG(x) = ∅ for all x ∈ G, then fG is a soft
uni-group over U . We denote such a kind of soft uni-group by θ̃. It
is obvious that θ̃ = SGc , i.e. θ̃(x) = ∅ for all x ∈ G.

LEMMA 19. Let fG be any soft uni-group over U . Then, we
have the followings:

i) θ̃ ∗ θ̃⊇̃θ̃.

ii) fG ∗ θ̃⊇̃θ̃ and θ̃ ∗ fG⊇̃θ̃.

iii) fG∩̃θ̃ = θ̃ and fG∪̃θ̃ = fG.

THEOREM 20. A non-empty subsetH of a group ofG is a sub-
group of G if and only if the soft subset fG defined by

fG(x) =

{
α, if x ∈ G \H,
β, if x ∈ H

is a soft uni-group, where α, β ⊆ U such that α ⊇ β.

Proof: Suppose H is a subgroup of G and x, y ∈ G. If x, y ∈
H , then xy−1 ∈ H . Hence, fG(xy−1) = fG(x) = fG(y−1) =
fG(y) = β and so, fG(xy−1) ⊆ fG(x) ∪ fG(y). If x, y /∈ H ,
then xy−1 ∈ H or xy−1 /∈ H . In any case, fG(xy−1) ⊆ fG(x) ∪
fG(y) = α. Thus, fG is a soft uni-group.
Conversely assume that fG is a soft uni-group of G. Let x, y ∈
H . Then, fG(xy−1) ⊆ fG(x) ∪ fG(y) = β. This implies that
fG(xy−1) = β. Hence, xy−1 ∈ H and so H is a subgroup of G.

THEOREM 21. Let X be a nonempty subset of a group G.
Then, X is a subgroup of G if and only if SXc is a soft uni-group
of G.

Proof: Since

SXc(x) =

{
U, if x ∈ G \X,
∅, if x ∈ X

and U ⊇ ∅, the rest of the proof follows from Theorem 20.

5. CHARACTERISTIC SOFT UNI-GROUPS,
CONJUGATE SOFT UNI-GROUPS AND SOFT
NORMALIZER

In this section, we define characteristic soft uni-groups, conjugate
soft uni-groups and soft normalizer and study their basic properties.

DEFINITION 22. Let fG be a soft uni-group over U and Θ be
a map from G into itself. We define a map

fΘ
G : G→ P (U)

by

fΘ
G (x) = fG(Θ(x)), ∀x ∈ G.

Then, fG is called a characteristic soft uni-group over U if fΘ
G =

fG for every automorphism Θ of G.

THEOREM 23. Let fG be a soft uni-group over U and Θ be a
homomorphism of G. Then, fΘ

G is a soft uni-group over U .

Proof: We need to show that fΘ
G (xy) ⊆ fΘ

G (x) ∪ fΘ
G (y) for all

x, y ∈ G. Let x, y ∈ G. Then,

fΘ
G (xy) = fG(Θ(xy))

= fG(Θ(x)Θ(y)), since Θ is a homomorphism.

⊆ fG(Θ(x)) ∪ fG(Θ(y))

= fΘ
G (x) ∪ fΘ

G (y)

Again,

fΘ
G (x−1) = fG(Θ(x−1))

= fG(Θ(x))−1

= fG(Θ(x))

= fΘ
G (x)

THEOREM 24. Let fG be a soft uni-group over U , where fG is
a bijective mapping and Θ be an epimorphism ofG. Then, fΘ

G is an
abelian soft uni-group over U if and only if G is an abelian group.

Proof: Let fG be a soft uni-group over U , Θ be an epimorphism
of G and G be an abelian group. In above theorem, we show that
if fG is a soft uni-group over U and Θ is a homomorphism of G,
then fΘ

G is a soft uni-group over U . Thus, we only show that fΘ
G is

an abelian soft uni-group over U . Let x, y ∈ G, then

fΘ
G (xy) = fG(Θ(xy))

= fG(Θ(yx))

= fΘ
G (yx),

which shows that fΘ
G is an abelian soft uni-group over U .

Conversely, let fΘ
G be an abelian soft uni-group over U where Θ is

an epimorphism of G. Let x, y ∈ G, then

fΘ
G (xy) = fΘ

G (yx) ⇒ fG(Θ(x)Θ(y)) = fG(Θ(y)Θ(x))

⇒ Θ(x)Θ(y) = Θ(y)Θ(x).
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It follows that G is an abelian group, since Θ is an epimorphism of
G.

THEOREM 25. If fG be a characteristic soft uni-group over U ,
then fG is an abelian soft uni-group.

Proof: Let x, y ∈ G. We need to show that fG(xy) = fG(yx) for
all x, y ∈ G. Let Θ be an automorphism of G defined by,

Θ(x) = x−1gx, ∀g ∈ G.

It is well-known that Θ is an automorphism ofG, called inner auto-
morphism. Since fG is a characteristic soft uni-group over U , then
fΘ
G = fG. Thus, we have

fG(xy) = fΘ
G (xy)

= fG(Θ(xy))

= fG(x−1(xy)x)

= fG((x−1x)(yx))

= fG(yx)

Hence, fG is an abelian soft uni-group.

DEFINITION 26. Let fG be a soft uni-group over U , fH and
fK be soft uni-subgroups of fG. We say that fH is soft conjugate
to fK if for some x ∈ G, we have

fH(g) = fK(x−1gx), ∀g ∈ G.

THEOREM 27. Conjugacy is an equivalence relation in the
family of soft uni-subgroups of a soft uni-group.

The family of soft uni-subgroups of a soft uni-group is a union of
pairwise disjoint classes of soft uni-subgroups each consisting of
soft uni-subgroups which are equivalent to one another. We shall
now obtain an expression giving the number of distinct conjugates
of a soft uni-group. First we give some preliminaries.
Let fG be a soft uni-group over U and g ∈ G. We denote by fgG
the map

fgG : G→ P (U)

by

fgG(x) = fG(g−1xg), ∀x ∈ G.

THEOREM 28. Let fG be a soft uni-group over U . Then, fgG is
a soft uni-group over U for all g ∈ G.

Proof: We need to show that fgG(xy) ⊆ fgG(x) ∪ fgG(y) for all
x, y ∈ G. Let x, y ∈ G, then

fgG(xy) = fG(g−1(xy)g)

= fG(g−1x(gg−1)yg)

= fG((g−1xg)(g−1yg))

⊆ fG(g−1xg) ∪ fG(g−1yg))

= fgG(x) ∪ fgG(y)

Again,

fgG(x−1) = fG(g−1x−1g)

= fG((g−1xg)−1)

= fG(g−1xg),

= fgG(x)

DEFINITION 29. The soft uni-group fgG in the above theorem
is called conjugate soft uni-group over U determined by fG and
x ∈ G.

DEFINITION 30. Let fG be a soft uni-group over U . Then,

N(fG) = {g ∈ G : fgG = fG}
is called the soft normalizer of fG.

THEOREM 31. Let fG be a soft uni-group over U . Then
N(fG) is a subgroup of G.

Proof: Let a, b ∈ N(fG). Then,

fabG (x) = fG((ab)−1xab)

= fG(b−1a−1xab)

= fG(b−1(a−1xa)b)

= fbG(a−1xa)

= fG(a−1xa), since b ∈ N(fG)

= faG(x)

= fG(x), since a ∈ N(fG)

Thus, fabG = fG, implying that ab ∈ N(fG).
Again, let x ∈ N(fG) and let y = x−1. We show that y ∈ N(fG).
For any w ∈ G, we have

fyG(w) = fG(y−1wy)

= fG(xwx−1)

= fG((x−1w−1x)−1)

= fG(x−1w−1x)

= fxG(w−1)

= fG(w−1), since fxG = fG.

= fG(w)

Thus, fyG = fG, so y ∈ N(fG). It follows that N(fG) is a sub-
group of G.

THEOREM 32. Let fG be a soft uni-group over U . Then, fG is
an abelian soft uni-group over U if and only is N(fG) = G.

Proof: Let fG be an abelian soft uni-group over U , g ∈ G. Then
for any w ∈ G, we have

fgG(w) = fG(g−1wg)

= fG((g−1g)w), since fG is abelian.

= fG(w)

Thus, fgG = fG implying that g ∈ N(fG). It follows thatN(fG) =
G.
Conversely, let N(fG) = G and x, y ∈ G. To prove that fG is an
abelian soft uni-group, we need to show that

fG(xy) = fG(yx)

for all x, y ∈ G. We have

fG(xy) = fG(xy(xx−1))

= fG(x(yx)x−1)

= fx
−1

G (yx), by definition of fx
−1

G .

= fG(yx)

sinceN(fG) = G and so x−1 ∈ N(fG), implying that fx
−1

G = fG.
Thus, fG is an abelian soft uni-group.
The above theorem illustrates the motivation behind the term nor-
malizer, and also it shows the analogy with the fact that a subgroup
H of a group G is normal in G if and only if the normalizer of H
in G is equal to G itself. Again, the following theorem is an analog
of a basic result in group theory.
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THEOREM 33. Let fG be a soft uni-group over U . Then, the
number of distinct conjugates of fG is equal to [G : N(fG)], that
is, the index of N(fG) in G, provided that G is a finite group.

Proof: The proof of this result is based on the same technique used
to prove the corresponding analogous result for groups. Consider
the decomposition of G as a union of cosets of N(fG):

G = x1N(fG) ∪ x2N(fG) ∪ ... ∪ xkN(fG),

where k is the number of distinct cosets, that is [G : N(fG)]. Let
x ∈ N(fG) and choose i such that 1 ≤ i ≤ k. Then for g ∈ G,

fxixG (g) = fG((xix)−1g(xix))

= fG(x−1(x−1
i gxi)x)

= fxG(x−1
i gxi)

= fG(x−1
i gxi) since x ∈ N(fG)

= fxiG (g)

Thus, we have

fxixG (g) = fxiG (g), for all x ∈ N(fG), 1 ≤ i ≤ k.

So any two elements of G which lie in the same coset xiN(fG)
give rise to the same conjugate of fxiG of fG. Now we show that two
distinct cosets give two distinct conjugates of fG. For this, suppose
that

fxiG = f
xj
G ,

where i 6= j and 1 ≤ i ≤ k, 1 ≤ j ≤ k. Thus,

fxiG = f
xj
G ⇔ fxiG (g) = f

xj
G (g), ∀g ∈ G.

⇔ fG(x−1
i gxi) = fG(x−1

j gxj), ∀g ∈ G.

If we choose g = xjtx
−1
j , it follows that,

fG(x−1
i xjtx

−1
j xi) = fG(x−1

j xjtx
−1
j xj)

⇒ fG((x−1
j xi)

−1t(x−1
j xi)) = fG(t), ∀t ∈ G.

⇒ f
x−1j xi

G (t) = fG(t), ∀t ∈ G.
⇒ x−1

j xi ∈ N(fG)

⇒ xiN(fG) = xjN(fG)

However, if i 6= j, this is not possible when we consider the decom-
position of G as a union of cosets of N(fG). Hence the number of
distinct conjugates of fG is equal [G : N(fG)].

THEOREM 34. Let fG be a soft uni-group over U and fN be a
soft uni-subgroup of fG. Then, fN is a normal soft uni-subgroup of
fG if and only if fN is constant on each conjugate classes of N .

Proof: Suppose that fN /̃ufG. Then,

fN (y−1xy) = fN (y−1yx) = fN (x)

for all x, y ∈ N . Conversely, suppose that fN is constant on each
conjugate classes of N . Since fN ≤̃ufG, then it is itself a soft uni-
group, therefore it is enough to show that fN is abelian. Let x, y ∈
N , then

fN (xy) = fN (xy(xx−1))

= fN (x(yx)x−1)

= fN (yx),

which shows that fN is a normal soft uni-subgroup of fG.

THEOREM 35. Let fG be a soft uni-group over U and fN be a
soft uni-subgroup of fG. Then,

f⊆βN = {x ∈ N | fN (x) ⊆ β}

is a normal subgroup of N , where β ⊆ U and β ⊇ fN (e).

Proof: Since β ⊇ fN (e), thus e ∈ f⊆βN and ∅ 6= f⊆βN ⊆ N . Now,
let x, y ∈ f⊆βN . Then, fN (x) ⊆ β and fN (y) ⊆ β. It follows that

fN (xy−1) ⊆ fN (x) ∪ fN (y)

⊆ β ∪ β = β,

implying that xy−1 ∈ f⊆βN . Now assume that x ∈ f⊆βN and n ∈ N .
Since fN ≤̃ufG, fN is constant on each conjugate classes of N by
the above theorem. It follows that

fN (nxn−1) = fN (x) ⊆ β

for all n ∈ N and x ∈ f⊆βN , which shows that nxn−1 ∈ f⊆βN . So,
this completes the proof.
We now give an alternative formulation of soft uni-group in terms
of “commutators” of a group. First we recall that if G is any group
and x, y ∈ G, then the element x−1y−1xy is usually denoted by
[x, y] and called the commutator of x and y. If G is abelian, then
[x, y] = e for all x, y ∈ G. This motivates the following proposi-
tion:

PROPOSITION 2. Let fG be a soft uni-group over U . Then we
have the following:

i) If fG is an abelian soft uni-group overU , then fG[x, y] = fG(e)
for all x, y ∈ G.

ii) If fG[x, y] = fG(e) for all x, y ∈ G, where fG is a bijective
function, then fG is an abelian soft uni-group over U .

Proof: i) Let fG be an abelian soft uni-group over U . Then,

fG[x, y] = fG(x−1y−1xy)

= fG(x−1(y−1y)x)

= fG(e)

ii) Let x, y ∈ G. Then,

fG[x, y] = fG(x−1y−1xy) = fG(e) ⇔ x−1y−1xy = e

⇔ yx = xy,

⇔ fG(yx) = fG(xy)

implying that fG is an abelian soft uni-group over U .

THEOREM 36. Let fG be a soft uni-group over U . Then, for all
x, y ∈ N , fN is a normal soft uni-normal subgroup of fG if and
only is fN [x, y] ⊆ fN (x).

Proof: Suppose that fN is a normal soft uni-subgroup of fG and
x, y ∈ N . Then,

fN [x, y] = fN (x−1y−1xy) ⊆ fN (x−1) ∪ fN (y−1xy)

= fN (x) ∪ fN ((y−1y)x)

= fN (x) ∪ fN (x)

= fN (x)

Conversely, suppose that fN [x, y] ⊆ fN (x) for all x, y ∈ N . In
order to show that fN /̃ufG, it is enough to show fN is constant on

6



International Journal of Computer Applications (0975 - 8887)
Volume 155 - No.10, December 2016

each conjugate classes of N . Let x, z ∈ N , then we have

fN (x−1zx) = fN ((zz−1)x−1zx)

⊆ fN (z(z−1x−1zx))

⊆ fN (z) ∪ fN [z, x]

= fN (z)

Thus,

fN (x−1zx) ⊆ fN (z)

Again, we get

fN (z) = fN ((xx−1)z(xx−1))

= fN (x(x−1zx)x−1)

⊆ fN (x) ∪ fN (x−1zx) ∪ fN (x−1)

= fN (x) ∪ fN (x−1zx) ∪ fN (x)

= fN (x) ∪ fN (x−1zx)

If fN (x) ∪ fN (x−1zx) = fN (x), then we obtain that fN (z) ⊆
fN (x) for all x, z ∈ N , implying that fN is a constant function
and in this case, obviously fN (x−1zx) ⊆ fN (z) is satisfied as
well, thus the result holds immediately. So we consider the case
when fN (x) ∪ fN (x−1zx) = fN (x−1zx). Then,

fN (z) ⊆ fN (x−1zx), and so fN (x−1zx) = fN (z).

Hence, fN is a normal soft uni-subgroup of fG.
Let fN ≤̃ufG and fN be an abelian soft uni-group over U . Then it
is obvious that fN /̃ufG. In fact, since fN is an abelian soft uni-
group, then by Proposition 2 (i),

fN [x, y] = fN (e) ⊆ fN (x) for all x, y ∈ N .

Since

fN [x, y] ⊆ fN (x), it follows that fN /̃ufG by the above theorem.

fG(e) = {(13)}
fG(x) = {e, (12), (13)}
fG(y) = {e, (13), (23)}
fG(yx) = {e, (12), (13), (23)}.

6. CONCLUSION
Soft int-groups and its related properties was first introduced and
studied in [25] and soft uni-groups and its related properties in [27].
In this paper, first by defining soft uni-product, we have investigated
this concept as regards sof uni-groups and we have obtained some
significant relations between subgroups of a group and and soft uni-
groups. Moreover, we have extended the study of soft uni-groups.
We introduced the concepts of characteristic soft uni-group, soft
normalizer, soft conjugate and conjugate soft uni-groups. We have
proved several results and made some characterizations about soft
uni-groups by using these concepts which correspond to significant
results in group theory. We also gave some formulations for uni-
soft groups in terms of commutators. To extend this study, one can
further study the soft cosets and normal soft uni-subgroups in the
mean of quotient groups.
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