
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

25

Comparative Study of Cuckoo Inspired Metaheuristics

Applying to Knapsack Problems

Amira Gherboudj
MISC laboratory,

NTIC faculty,
Abdelhamid Mehri University,

Constantine, Algeria

ABSTRACT

Cuckoo Optimization Algorithm (COA) and Cuckoo Search

Algorithm (CS) are two population-based metaheuristics.

They are based on the cuckoo’s behavior in their lifestyle and

their characteristics in egg laying and breeding. Both

algorithms are proposed for continuous optimization

problems. In this paper, we propose a comparative study of

COA and CS. For this we have proposed a binary version of

COA (called BCOA) algorithm using the Sigmoid function

like we have do in a later work, in which we have proposed a

binary version of CS algorithm that we have called BCS. In

aim to compare the efficiency of the too algorithms, we have

used the proposed BCOA to resolve knapsack problem (KP)

and Multidimensional knapsack problem (MKP) problems

and we have compared the obtained results with those

obtained by BCS.

Keywords

Combinatorial optimization, Cuckoo Optimization Algorithm,

Cuckoo Search, Binary Cuckoo Optimization Algorithm,

Binary Cuckoo Search, knapsack problem, Multidimensional

knapsack problem.

1. INTRODUCTION
Solving optimization problems is a research line that sought

the attention of several research teams. It is intrinsically

linked to operational research and it uses mathematical and

computer tricks. The resolution of an optimization problem is

to find a solution of sufficient quality from a set of solutions

in terms of a constraints givens and objectives to meet. It is to

maximize or minimize one or a set of fitness functions

respecting constraints of the treated problem. To solve any

optimization problem we need an algorithmic process of

spatial and temporal complexity witch can rank optimization

problems in different classes (P, NP, NP-complete and NP-

Hard).

Methods for solving optimization problems are many. They

are often classified into two classes: exact methods and

approximate methods. The prohibitive cost associated with the

use of exact methods, has excited researchers to use

approximate methods. The investigation in the area of

approximate methods gave rise to another class of methods

called "Metaheuristics". Metaheuristics are general and

applicable methods on a wide range of optimization problems.

They are often inspired by natural systems in different fields:

physics, biology, ethology ... Cuckoo Optimization Algorithm

(COA) and Cuckoo Search (CS) algorithm are two examples

of bioinspired metaheuristics. They are based on the cuckoo’s

behavior in their lifestyle and their characteristics in egg

laying and breeding.

The aim of this paper is twofold: The first one is to compare

the two metaheuristics inspired of Cuckoo’s behavior. The

second aim of this paper is to propose a binary version of

Cuckoo Optimization Algorithm that we have called Binary

Cuckoo Optimization Algorithm (BCOA) to cope with binary

optimization problems. The main difference between the

original version of COA algorithm and the proposed discrete

binary version is that, in the original Cuckoo Search, the

solution is composed of a set of real numbers, while in the

proposed binary version; the solution is composed of a set of

bits. The main feature of our approach consists in using a

sigmoid function and probability model in order to generate

binary values.

The remainder of this paper is organized as follows. Section 2

presents an overview of Cuckoo Search algorithm and Cuckoo

Optimization Algorithm. The proposed algorithm (BCOA) is

described in section 3. Section 4 presents the knapsack

problems formulation. Experimental results are discussed in

section 5, and a conclusion is provided in the sixth section of

this paper.

2. CUCKOO SEARCH AND CUCKOO

OPTIMIZATION ALGORITHM
In order to solve complex problems, ideas gleaned from

natural mechanisms have been exploited to develop heuristics

and metaheuristics. Nature inspired optimization algorithms

has been extensively investigated during the last decade

paving the way for new computing paradigms such as neural

networks, evolutionary computing, swarm optimization… .

The ultimate goal is to develop systems that have ability to

learn incrementally, to be adaptable to their environment and

to be tolerant to noise. Two of the recent developed

bioinspired algorithms are the Cuckoo Search (CS) [1] and the

Cuckoo Optimization Algorithm (COA) [2] which are based

on lifestyle of Cuckoo bird. Cuckoos use an aggressive

strategy of reproduction that involves the female hack nests of

other birds to lay their eggs fertilized. Sometimes, the egg of

cuckoo in the nest is discovered and the hacked birds discard

or abandon the nest and start their own brood elsewhere.

The main steps of Cuckoo Search proposed by Yang and Deb

in 2009 [1] are presented in figure1 and the main steps of

Cuckoo Optimization Algorithm proposed by Rajabioun in

2011 [2] are presented in figure2.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

26

Fig 1: Cuckoo Search [1]

1. Initialize cuckoo habitat with some random points on

the profit function.

2. Dedicate some eggs to each cuckoo.

3. Define ELR for each cuckoo.

4. Let cuckoos to lay eggs inside their corresponding

ELR.

5. Kill those eggs that are recognized by host birds.

6. Let eggs hatch and chicks grow.

7. Evaluate the habitat of each newly grown cuckoo.

8. Limit cuckoos maximum number in environment

and kill those who live in worst habitats.

9. Cluster cuckoos and find best grop and select goal

habitat

10. Let new cuckoo population immigrate toward goal

habitat

11. If stop condition is satisfied stop, if not go to 2.

Fig 2: Cuckoo Optimization Algorithm [2]

2.1 CS VS COA
CS and COA are two metaheuristics based population

solutions. They are inspired from Cuckoo’s behavior. Each

one (CS and COA) begins the search by a population of

solutions. During research and optimization, new solutions

appear and other disappear. In the CS algorithm, the new

solution is created based on the current solution and Levy

flight [1]. In contrast, in the COA algorithm new solution is

created based on the current solution, the Egg Laying Radius

(ERL), and parameters [2].

In order to select new generation solutions, the two methods

(CS and COA) use the elitism strategy (used in genetic

algorithms). They choose the best solutions to represent the

new generation (population) members and eliminate worst

solutions.

Table 1. CS vs COA

 CS COA

Autors
Xin-She Yang

and Suash Deb
Ramin Rajabioun

Publication

year
2009 2011

Metaheuristic

type
Based population of solutions

Inspiration

source
Cuckoo’s behaviour and lifestyle

Similarity to

naturel

Cuckoo’s

behavior

Some notions Big similarity

Research space continuous

Parameters

 Population

size

 Pa

 Population size

 Number of eggs

for each cuckoo

(Min and Max)

 Number of

cuckoos by group

 Maximum

number of

cuckoos that can

live at the same

time

 , and

Population size unchangeable
Changeable

(increases)

Creation of new

solution

Using:

 The current

solution

 Lévy Flights

Using:

 The current

solution

 ELR

 , and

parameters

Selection of

cuckoos of the

new generation

According to their qualities (fitness):

elitism selection

Destruction

cuckoos

According to

their qualities

 According to their

qualities

 According to their

representations

Furthermore, in CS the solutions can be eliminated in one

case. It is the case where the new solution quality (the chick

cuckoo) is better than that of its derivative (the cuckoo

parent). In contrast, elimination of solutions in COA is

performed in two cases. The first one is when a solution exists

in the population more than once. In this case, the copy of

solution will be eliminated to avoid redundancy solutions of

the population. The second case is after classification

solutions according to their quality. The bad solutions will be

eliminated to avoid exceeding the maximum size of the

population and fall in explosion population problem.

In the CS algorithm, the population solutions number is fixed

and stable. In fact, the algorithm starts searching with in N

solutions and converges with N solutions. However, in the

Objective function f(x), x =(x1,.., xd)
T ;

Initial a population of n host nests xi (i = 1, 2, ..., n);

while (t < MaxGeneration) or (stop criterion);

 Get a cuckoo (say i) randomly by Lévy flights;

 Evaluate its quality/fitness Fi;

 Choose a nest among n (say j) randomly;

 if (Fi > Fj),

Replace j by the new solution;

end

 Abandon a fraction (pa) of worse nests

 build new ones at new locations via Lévy flights;

 Keep the best solutions (or nests with quality solutions);

 Rank the solutions and find the current best;

end while

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

27

COA the population size is not stable. The algorithm (COA)

starts searching with N cuckoos (solution) and converges with

M cuckoos, where M > N. Because in the COA each cuckoo

lays several eggs at once (iterative) and they can all survive.

While in the CS, a cuckoo lays one egg at a time. According

to the egg quality, this one can survive replacing its parent or

it will be destroyed because of its poor quality compared to

that of its parent. In addition, following the steps of the two

algorithms, we conclude that COA has a lot of simulations of

the natural cuckoo behavior (eggs number of each cuckoo,

habitat, migration…).

Essentially, in addition to the population size, we distinguish

in the CS algorithm only one parameter (Pa). This provides

more flexibility for users and allows him to save time by

dispensing with the study phase and the appropriate choice of

the algorithm parameters. In addition, the pioneers of the CS

algorithm showed that the convergence rate of their algorithm

is insensitive to the parameters used (population size and Pa).

This means that the fine adjustment of algorithm-dependent

parameters is not needed for any given problems [1].

However, observing ACO parameters, we distinguish

essentially six parameters involved in addition to the

population size.

Table 1 presents a comparison of COA and CS algorithms.

3. THE PROPOSED ALGORITHM

(BCOA)
Optimization problems can be classed into two main classes:

continuous optimization problems and discrete optimization

problems. In continuous optimization problems, the solution

is represented by a set of real numbers. However, in discrete

optimization problems, the solution is represented by a set of

integer numbers. Discrete binary optimization problems are a

sub-class of the discrete optimization problems class in which

a solution is represented by a set of bits. Many optimization

problems can be modeled as a discrete binary search space

such as, flowshop scheduling problem [5], job-shop

scheduling problem [6], routing problems [7], knapsack

problem [3] and its variants such as the multidimensional

knapsack problem [10], the quadratic knapsack problem [8],

the quadratic multiple knapsack problem [9] and so one.

Cuckoo Search and Cuckoo Optimization Algorithm operate

in continuous search space. Consequently, they give a set of

real numbers as a solution of the handled problem. However,

a binary optimization problem needs a binary solution and the

real solutions are not acceptable, because they are considered

as illegal solutions. Therefore, the solutions must be converted

from real values to binary values [4]. In the aim to extend the

tow algorithms (CS and COA) to discrete binary areas, we

proposed in [4] a discrete binary version of CS that we called

BCS (Binary Cuckoo Search). In this paper we propose a

discrete binary version of COA algorithm that we called

BCOA (Binary Cuckoo Optimization Algorithm). Like with

the BCS algorithm, in the BCOA algorithm the problem

solution must be represented by a set of bits.

The BCS architecture contains two essential modules. The

first module contains the main binary cuckoo dynamics. This

module is composed of two main operations: Lévy flights and

binary solution representation operations. These two

operations combine the Cuckoo Search algorithm steps and

the Sigmoid function to obtain a Binary Cuckoo Search. In the

first operation, Lévy flight is used to get a new cuckoo. In the

second operation, the Sigmoid function is used to calculate the

flipping chances of each cuckoo. Then, the binary value of

each cuckoo is computed using their flipping chances.

The BCOA architecture is not very different of the BCS one.

In fact, The BCOA architecture contains also two essential

modules. The first one contains the main binary cuckoo

dynamics. It is composed of two main operations: COA

operations and binary solution representation operations.

These two operations combine the Cuckoo Optimization

Algorithm steps and the Sigmoid function to obtain a Binary

version of Cuckoo Optimization Algorithm. In the first

operation, COA steps are used to generate a new cuckoo. In

the second operation, the Sigmoid function is used to calculate

the flipping chances of each cuckoo. Then, the binary value of

each cuckoo is computed using their flipping chances.

The second modules of the tow algorithms (BCS and BCOA)

contain the objective function and the selection operator. The

selection operator is similar to the elitism strategy used in

genetic algorithms. Figure 3 and 4 show the flowchart of the

proposed architectures.

3.1 Binary solution representation
The main objective of the BCS and BCOA algorithms is to

deal with the binary optimization problems. Therefore, the

main feature of the two algorithms (BCS and BCOA) is to

transform a solution xi from real area to binary area, and

consequently obtain a binary solution representation x'i. To

meet this need, we propose to constrain the solution xi in the

interval [0, 1] using the Sigmoid function as follows:

)1(

1)(
ixi

e
xS

 (1)

Where S (xi) is the flipping chance of bit x'i. It represents the

probability of bit x'i takes the value 1.

To obtain the binary solution x'i, we have to generate a

random number from the interval [0, 1] for each dimension i

of the solution x and compare it with the flipping chance S(xi)

as mentioned below in (equation.2). If the random number is

lower than the flipping chance of bit x'i, than x'i takes the

value 1. Otherwise, x'i takes the value 0.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

28

Problem

Stop criterion

is met

Binary Cuckoo

dynamics

 Lévy flights

 Binary solution

representation

Best solution

Evaluation & Selection

No
Yes

Problem

Stop criterion

is met

Binary Cuckoo

dynamics

 COA Steps

 Binary solution

representation

Best solution

Evaluation & Selection

No
Yes

Fig 3: Flowchart of the BCS Architecture [4]

 1 if)(ixSr with r [0, 1]

 x'i = 0 Otherwise (2)

Consequently, having a solution xi encoded as a set of real

numbers, the sigmoid function is used to transform the

solution xi into a set of probabilities that represents the chance

for bit i to be flipping. The flipping chance is then used to

compute the binary solution x'i.

For example: assuming that we have a problem with N= 6

objects i.e. problem size is 6. xi = [2.314, -3.4510, 1.9412,

0.3498, -1.5634, 3.8461] is the obtained solution with original

COA algorithm ; S (xi) = [0.9100, 0.0307, 0.8745, 0.5866,

0.1732, 0.9791] is the set of flipping chances (probabilities) of

each bit x'i calculated by the Sigmoid function; Then the

chance for each bit to be flipping is: chancei = [91.00%,

3.07%, 87.45%, 58.66%, 17.32%, 97.91%]; In order to obtain

a binary solution, we must generate 6 random numbers r from

the interval [0, 1], for example r = [0.8147, 0.1270, 0.9134,

0.6324, 0.0975, 0.5469].

Fig 4: Flowchart of the BCOA Architecture.

Following the defined instructions in (equation 2), the first,

fifth and sixth bits of the binary solution take the value 1

because there flipping chances (0.9100, 0.1732, 0.9791,

respectively) are higher than the generated random numbers

(0.8147, 0.0975, 0.5469, respectively). However, the second,

third and fourth bits take the value 0, because there flipping

chances (0.0307, 0.8745, 0.5866, respectively) are lower than

the generated random numbers (0.1270, 0.9134, 0.6324,

respectively). Thus, x'i = [1, 0, 0, 0, 1, 1] is the binary solution

representation. Which mean that the selected objects are 1, 5

and 6. A pseudo code of the Binary Solution Representation

(BSR) algorithm is shown in Figure 5.

Input: Real solution representation xi

Output: Binary solution representation x'i

For (i=1 to (problem size)) {

)1(
1)(

ixi
e

xS

 ;

 If (random number)(ixSr)

 x'i = 1;

 Otherwise

 x'i = 0;
}

Fig 5: Binary Solution Representation (BSR) algorithm [4]

3.2 Outlines of the proposed algorithm
Now, we describe how Cuckoo Optimization Algorithm

scheme including the Sigmoid function has been embedded

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

29

within a new population-based metaheuristics, and how it can

find a binary solution to a binary optimization problem.

The BCOA algorithm starts by initializing cuckoo habitats.

For that, the initial population is created. This one contains

both good and bad solutions. During each iteration, some eggs

are dedicated to each cuckoo and the algorithm progresses

through a number of generations according to the COA

dynamics as explained in [2]. In order to evaluate the different

cuckoos, we apply the BSR algorithm (Figure 5) to get a

binary solution which represents a potential solution for the

binary optimization problems. After this step, the algorithm

limits cuckoos maximum number, it eliminates the worst ones

and finds the best group to select the goal habitat. The new

population immigrates toward goal habitat and the algorithm

restart if the stop condition is not satisfied. A pseudo code of

BCOA algorithm is shown in Figure 6.

1. Initialize cuckoo habitat with some random points

on the profit function.

2. Dedicate some eggs to each cuckoo.

3. Define ELR for each cuckoo.

4. Let cuckoos to lay eggs inside their corresponding

ELR.

5. Kill those eggs that are recognized by host birds.

6. Let eggs hatch and chicks grow.

7. Get the binary representation of cuckoos by the

BSR algorithm.

8. Evaluate the habitat of each newly grown cuckoo.

9. Limit cuckoos maximum number in environment

and kill those who live in worst habitats.

10. Cluster cuckoos and find best grop and select goal

habitat.

11. Let new cuckoo population immigrate toward goal

habitat.

12. If stop condition is satisfied stop, if not go to 2.

Fig 6: Binary Cuckoo Optimization Algorithm.

4. KNAPSACK PROBLEMS
The knapsack problem (KP) is a NP-hard problem [11].

Numerous practical application of the KP can be found in

many areas involving resource distribution, investment

decision making, budget controlling, project selection and so

on. The knapsack problem can be defined as follows:

Assuming that we have a knapsack with maximum capacity C

and a set of N objects. Each object i has a profit pi and a

weight wi. The problem consists to select a subset of objects

that maximize the knapsack profit without exceeding the

maximum capacity of the knapsack. The problem can be

formulated as:

N

i

ii xp
1

 Maximize

(3)

Cxw ii

N

1i

Subject

 With
 1,0ix

(4)

Many variants of the knapsack problem were proposed in the

literature including the Multidimensional Knapsack Problem

(MKP). MKP is an important issue in the class of knapsack

problem. It is a NP-hard problem [12]. In the MKP, each item

xi has a profit pi like in the simple knapsack problem.

However, instead of having a single knapsack to fill, we have

a number M of knapsack of capacity Cj (j = 1 ... M). Each xi

has a weight wij that depends of the knapsack j (example: an

object can have a weight 3 in knapsack 1, 5 in knapsack 2,

etc.). A selected object must be in all knapsacks. The

objective in MKP is to find a subset of objects that maximize

the total profit without exceeding the capacity of all

dimensions of the knapsack. MKP can be stated as follows:

N

i

ii xp
1

 Maximize

(5)

MjCxw jiji ...1 Subject
N

1i

With
 1,0ix

(6)

The MKP can be used to formulate many industrial problems

such as the capital budgeting problem, allocating processors

and databases in a distributed computer system, cutting stock,

project selection and cargo loading problems [13].

Clearly, there are 2N potential solutions for these problems. It

is obviously that knapsack problem and its variants are

combinatorial optimization problems. Several techniques have

been proposed to deal with knapsack problems [11]. However,

it appears to be impossible to obtain exact solutions in

polynomial time. The main reason is that the required

computation grows exponentially with the size of the

problem. Therefore, it is often desirable to find near optimal

solutions to these problems.

5. EXPERIMENTAL RESULTS
Several experiments were performed to compare the

efficiency and performance of BCS and BCOA algorithms,

which has a common point. In fact, the two algorithms (BCS

and the BCOA) used the Sigmoid function to generate the

binary solution and they present a binary versions of the tow

metaheuristics inspired of cuckoo’s behavior. The algorithms

were used to resolve KP and MKP problems. They were

implemented in Matlab 7.3. In the first experiment, we have

tested and compared the proposed BCOA algorithm with the

BCS algorithm that we have proposed in [4] on some

Knapsack Problem instances taken from [3]. The used

instances are 7 different instances with different problem

sizes, in which the weights and profits are selected randomly.

The different problem sizes N are 120, 200, 500, 700, 900 and

1000. In these instances, the knapsack capacity is calculated

by using the following formula:

N

i

iwC
04

3
 (7)

In the second experiment, we have compared the performance

of BCOA and BCS algorithm on some Multidimensional

Knapsack Problem benchmarks taken from OR-Library. The

obtained results are compared with the exact solution (best

known). Finally, statistical tests of Freidman were carried out

to test the significance of the difference in the accuracy of

each algorithm in the experiments.

Table 2 shows the experimental results of BCS and BCOA

algorithms on KP random instances. The first column

represents the problem size (i.e. Instance). The second and

third columns represent the obtained results by the BCS and

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

30

the BCOA algorithms respectively. The presented results

show that the performance of the BCS algorithm outperforms

the BCOA algorithm performance. Indeed, the statistical

Freidman test (Figure 7) indicates that the BCS algorithm is

better than the BCOA algorithm in this experiment. However,

this different is not very significant.

Table 2. Experimental results of BCS and BCOA with

random KP instances

Instance BCS BCOA

120 4210 4091

200 6989 6721

500 16364 15772

700 22734 21779

900 29322 28218

1000 31679 30667

Fig 7: Friedman test compares BCS and BPSO on

Knapsack tests.

Table 3 show experimental results of BCS and BCOA on

some MKP instances (mknap1 instances). The first column

indicates the instance index. The second and third column

indicates the number of object and knapsack dimension

respectively and the fourth, fifth and sixth columns indicate

the best known, the BCS solution and the BCOA solution

respectively. As we can see, the BCS algorithm is able to find

the best solution of all the mknap1 instances. However,

BCOA algorithm is able to find the best knowns of the first

four instances only.

The statistical Friedman test in Figure 8 represents a

comparison of the best known, the BCS and the BCOA

results. This statistical test confirms that the difference

between BCS and the BCOA results is not very statistically

significant.

Table 3. Experimental Results of MKP with mknap1

instances

N° n m Best

known

BCS BCOA

1 6 10 3800 3800 3800

2 10 10 8706,1 8706,1 8706,1

3 15 10 4015 4015 4015

4 20 10 6120 6120 6120

5 28 10 12400 12400 11990

6 39 5 10618 10618 10275

7 50 5 16537 16537 15631

Fig 8: Friedman test compares BCS, BCOA and best

known solutions.

The main purpose of this paper is to compare the two

metaheuristics inspired of cuckoo’s behavior (CS and COA)

and their binary versions. For that we have proposed the

binary version of COA algorithm (BCOA) using the Sigmoid

function which is used in BCS algorithm to generate a binary

solutions. In the second step, we have used the proposed

version (BCOA) for solving two NP-hard combinatorial

optimization problems: KP and MKP. These problems are

very important for modeling many industrial problems.

Moreover, KP and MKP have received the attention of many

researchers due to their importance and their NP-Hardness.

6. CONCLUSION
In this work, we have proposed a discrete binary version of

Cuckoo Optimization Algorithm that we have called Binary

Cuckoo Optimization Algorithm (BCOA). Our contribution

has twofold aim: the first aim is to compare the two

metaheuristics based on cuckoo’s behavior (CS and COA).

The second aim is to propose a binary version of Cuckoo

Optimization Algorithm to deal with binary NP-hard

optimization problems. The main feature of our approaches

consists in using of sigmoid function and probability model in

order to generate binary solutions. To evaluate the

performance and the effectiveness of the proposed algorithm

(BCOA algorithm), we have applied and tested it on some KP

and MKP instances. And we have compared BCOA with the

binary version of Cuckoo Search algorithm (BCS). The

experimental studies prove the feasibility and the

effectiveness of the binary versions of the too metaheuristics

inspired from Cuckoo’s behavior (BCS and BCOA

algorithms). Indeed, in the most cases BCS is able to give

better results than BCOA. However, there are several issues to

improve BCOA algorithm. In fact, a local search method or

other operations inspired from other popular algorithms can

be integrated in the core of the BCOA algorithm in order to

improve its performance.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 12, December 2016

31

7. REFERENCES
[1] Yang, X.-S., and Deb, S., Engineering Optimisation by

Cuckoo Search, Int. J. Mathematical Modelling and

Numerical Optimisation, Vol. 1, No. 4, pp. 330–343,

2010.

[2] R. Rajabioun. Cuckoo Optimization Algorithm. Applied

Soft Computing. Vol 11, N° 8, pp 5508-5518, 2011.

[3] Gherboudj. A, Chikhi. S. BPSO Algorithms for Knapsack

Problem. A. Özcan, J. Zizka, and D. Nagamalai (Eds.):

WiMo/CoNeCo 2011, CCIS 162, pp. 217–227, 2011.

Springer (2011).

[4] A. Gherboudj, A. Layeb, S. Chikhi. Solving 0-1 knapsack

problems by a discrete binary version of cuckoo search

algorithm. International Journal of Bio-Inspired

Computation. Vol. 4, N°.4, pp 229-236. Inderscience

Publishers ISSN (Print): 1758-0366, ISSN (online):

1758-0374. DOI: 10.1504/IJBIC.2012.048063. 2012.

[5] Liao, C-J., Tseng, C-T. and Luarn, P. (2007) ‘A discrete

version of particle swarm optimization for flowshop

scheduling problems’, Computers & Operations

Research, Vol. 34, No. 10, pp.3099–3111, Elsevier.

[6] Pongchairerks, P. (2009) ‘Particle swarm optimization

algorithm applied to scheduling problems’, ScienceAsia,

Vol. 35, No. 1, pp.89–94.

[7] Zhan, Z-h. and Zhang, J. (2009) ‘Discrete particle swarm

optimization for multiple destination routing problems’,

in Giacobini, M. et al. (Eds.): Proc. EvoWorkshops 2009,

LNCS, Vol. 5484, pp.117–122, Springer.

[8] Julstrom. B-A. Greedy, Genetic, and Greedy Genetic

Algorithms for the Quadratic Knapsack Problem. In

proc. GECCO '05 Proceedings of the 2005 conference on

Genetic and evolutionary computation, Publisher: ACM,

pp. 607-614. ISBN: 1595930108.

[9] Singh. A and Baghel. A-S. A New Grouping Genetic

Algorithm for the Quadratic Multiple Knapsack Problem.

In proc. C. Cotta and J. van Hemert (Eds.): EvoCOP

2007, LNCS 4446, pp. 210 – 218, Springer (2007).

[10] Kong. M and Tian. P. Apply the Particle Swarm

Optimization to the Multidimensional Knapsack

Problem. In proc. L. Rutkowski et al. (Eds.): ICAISC

2006, LNAI 4029, pp. 1140–1149, Springer (2006).

[11] Pisinger, D.: Where are the hard knapsack problems?

Computers and Operations Research, Vol.32, N°. 9, pp.

2271-2284, 2005.

[12] Chu .P.C, Beasley. J.E. A Genetic Algorithm for the

Multidimensional Knapsack Problem. Journal of

Heuristics, 4: 63–86 (1998).

[13] Vasquez. M and Vimont. Y., Improved results on the 0–1

multidimensional knapsack problem, European Journal

of Operational Research 165 (1), pp. 70–81, 2005.

IJCATM : www.ijcaonline.org

http://www.google.com/search?tbs=bks:1&q=isbn:1595930108

