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ABSTRACT   
Linear programming problem in an environment that includes 

different types of uncertainties represents real-world 

situations.  In such situations, different forms of uncertain 

data parameters are commonly found in that problem.  Fuzzy 

sets and their extensions are important tools of representing 

vague information. For decades, a lot of approaches are 

developed to solve fuzzy-linear programming problems. The 

existence of hybrid types of uncertainties in the fuzzy-linear 

programming problem imposes a real challenge to solve it. 

There is a need for introducing an efficient methodology to 

transform different types of uncertainties into a unified form.  

This paper introduces a new approach to solve hybrid fuzzy-

linear programming using an improved version of shadowed 

fuzzy numbers (SFNs). SFNs are useful transformation tool 

for different types of uncertainties. They have the advantage 

of preserving the characteristics of uncertainty for different 

types of fuzzy sets used in the problem. 

Keywords  
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1. INTRODUCTION 
Vague information are represented and processed by using 

fuzzy sets and their extensions. The fuzzy membership 

function contains two types of uncertainties, namely: 

fuzziness and nonspecificity [1]. Fuzziness and nonspecificity 

are related to the imprecise boundaries and the cardinality of 

fuzzy sets respectively [1, 2].  Intuitionistic fuzzy sets (IFSs) 

are characterized by two functions (membership and non-

membership). It's more flexible than fuzzy sets. Entropy and 

nonspecificity represent basic types of uncertainty for IFSs [3, 

4]. The shadowed sets are firstly proposed by Pedrycz to 

approximate fuzzy sets by using a three-valued constructs, 

namely (0, [0,1], 1) [5]. Pedrycz’s method was motivated by 

the principle of uncertainty localization in which an 

optimization problem is formulated to redistribute the 

uncertainty content of a fuzzy set into the above three-valued 

construct [6]. The important properties of shadowed sets are 

preserving characteristics of uncertainty of fuzzy set and 

simplifying computations complexity. 

Three areas are formed the shadowed set. Excluded area for 

the elements almost not included in set, core area for the 

elements that almost certainly belonging to it and shadow area 

or uncertain area for the elements approximately belong to it. 

The authors developed an improved shadowed fuzzy numbers 

(SFNs) that induced form fuzzy numbers and intuitionistic 

fuzzy numbers [7, 8]. A new approach is considered to be 

more accurate as it preserves more than one type of 

uncertainty. Also, it is appropriate for inducing shadowed sets 

from higher types of fuzzy sets. Over the past several decades 

linear programming models have been primarily developed in 

a crisp environment [1]. After fuzzy decision making is 

proposed by Bellman and Zadeh [9], many researchers 

developed this concept for solving fuzzy linear programming 

problems.  In the literature [1, 10], the most of the fuzzy linear 

programming models can be classified to three categories. 

First, fuzziness related to the objective function coefficients 

and precise constraints. Second, a precise objective function 

coefficients and fuzzy constraints coefficients and right hand 

side values of the constraints. Third, a fuzzy objective 

function coefficients, fuzzy constraints coefficients and fuzzy 

right hand side of constraints. Intuitionistic fuzzy- linear 

programming is proposed by Angelov[11]. Different 

approaches are developed to solve Intuitionistic fuzzy- linear 

programming [11], [12], [13], [14]. In all previous mentioned 

approaches, some or all parameters of fuzzy-linear 

programming problem is considered from one type of fuzzy 

numbers and no explicit approach is proposed to solve the 

problem in the case of hybrid types of them.   In this paper, 

the authors develop a new approach to solve hybrid fuzzy-

linear programming which includes different uncertain types 

of parameters. The hybrid data include exact numbers, type-1 

fuzzy numbers and intuitionistic fuzzy numbers.  The new 

approach is based on the use of the shadowed fuzzy numbers. 

The reset of this paper is organized as follows: Section 2 

presents an introduction about fuzzy numbers (FNs). It 

reviews intuitionistic fuzzy sets (IFSs) and an intuitionistic 

fuzzy numbers (IFNs). Also, this section introduces shadowed 

sets. Section 3 defines shadowed fuzzy number (SFN) and the 

new approaches to induce it from FN and IFN and define 

basic operations for SFNs. Section 4 introduces to proposed 

steps for solving hybrid fuzzy-linear programming problems. 

Section 5 provides illustrative examples to explain a new 

approach. Finally, conclusions are discussed in section 6. 

2. PRELIMINARIES  
In this section, some basic definitions and properties relevant 

to the present work are mentioned for fuzzy numbers (FN), 

intuitionistic fuzzy numbers (IFNs) and shadowed sets.   

2.1 Fuzzy Numbers (FNs) 
Some types of fuzzy sets 𝑭  are defined on set ℝ of real 

numbers and used to approximate uncertainty concept about 

numbers or intervals. Such types are called fuzzy numbers or 

fuzzy intervals and have the following conditions [1, 15] 

 𝑭   is normal, i.e. at least one element 

𝒙𝒊 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 𝝁 𝒙𝒊 = 𝟏. 



International Journal of Computer Applications (0975 – 8887) 

Volume 155 – No 14, December 2016 

43 

 𝑭  is convex such that 𝑭  𝝀𝒙 +  𝟏 − 𝝀 𝒚 ≥

𝒎𝒊𝒏 𝑭  𝒙 ,𝑭  𝒚  ∀𝒙,𝒚 ∈ 𝐔 𝐚𝐧𝐝 𝝀 ∈ [𝟎,𝟏] where 

𝐔 is a universe of discourse. 

 The support of  𝑭  is bounded. 

The membership function of the real fuzzy number 𝑭  is 

defined by [16] 

𝝁𝑭  𝒙 =

 
 
 

 
 
𝒍𝑭  𝒙      𝒊𝒇𝒂 ≤ 𝒙 ≤ 𝒃,

𝟏               𝒊𝒇𝒃 ≤ 𝒙 ≤ 𝒄,

𝒓𝑭  𝒙      𝒊𝒇𝒄 ≤ 𝒙 ≤ 𝒅,

𝟎                  𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

  

where 𝒍𝑭  and 𝒓𝑭  are two continuous increasing and decreasing 

functions for left and right side of fuzzy number and a, b, c, d 

are real numbers. 

2.2  Intuitionistic fuzzy numbers (IFNs) 
An intuitionistic fuzzy number is an intuitionistic fuzzy set 

that defines on real numbers scale as in Fig. 1 and is defined 

as  [17, 18] 

𝐀 =  < 𝒙,𝛍𝐀 𝐱 , 𝐯𝐀 𝐱 > 𝐱 ∈ ℝ}, 

where 𝝁𝑨 𝒙 ∶ 𝑿 →  𝟎,𝟏  is membership function, 𝒗𝑨 𝒙 ∶
 𝑿 →  𝟎,𝟏 is non-membership function, such that [3, 4]: 

𝟎 ≤ 𝝁𝑨 𝒙 +  𝒗𝑨 𝒙 ≤ 𝟏. 

Let 

𝝅𝑨 = 𝟏 − 𝝁𝑨 𝒙 −  𝒗𝑨 𝒙 , 

where 𝝅𝑨 is called the intuitionistic index or hesitancy degree 

of 𝒙 in 𝑨 . The IFN A satisfy the following conditions: 

1. A is normal, i.e. at least two points 𝒙𝟎,𝒙𝟏 belong to A such 

that 𝝁𝑨 𝒙𝟎 = 𝟏,𝒗𝑨 𝒙𝟏 = 𝟏. 

2. A is convex, i.e. 𝝁𝑨 is fuzzy convex and 𝒗𝑨 is fuzzy 

concave. 

3. 𝝁𝑨 is upper semicontinuous and 𝒗𝑨 is lower 

semicontinuous. 

4. support(A) =  𝒙 ∈ 𝑿  𝒗𝑨 𝒙 <  1} is bounded. 

Some type like triangular intuitionistic fuzzy set as in Fig.1 

and identified as [17]  

𝑻𝑰𝑭𝑺 =<  𝒂,𝒃, 𝒄 , (𝒂 ,𝒃, 𝒄 ); 𝑴𝑨 ,𝑽𝑨 >, 

where  𝐚,𝐛, 𝐜 , (𝐚 ,𝐛, 𝐜 ) are basic values of TIFS , 𝑴𝑨 is 

largest membership value and  𝑽𝑨 is lowest non-memberaship 

value. 

 

 

 

 

2.3  Shadowed sets  
Shadowed sets are induced from fuzzy sets which preserving 

the essence of fuzzy sets and reducing the computational 

costs. Shadowed set S is defined as [5, 19] 

𝑺 ∶ 𝑿 →  𝟎,𝟏,  𝟎,𝟏   , 

The membership function of fuzzy set is transformed to the 

form is similar to three-valued logic. For preserving the 

uncertainty modeled by fuzzy sets, the process of creating 

shadowed set start by selecting the threshold 𝛂 ∈ (𝟎,𝟎.𝟓). 

Selecting α depend on achieve a balance of uncertainty 

between three regions. The shadow region 𝒓𝟑, the region 𝒓𝟐 

which represent the uncertainty lost due to elevating 

membership values to 1 and the region 𝒓𝟏 where the 

membership values is reduced to 0. This balance is defined as 

the following equation [5].   

𝒖 𝒓𝟏 +  𝒖 𝒓𝟐 =  𝒖(𝒓𝟑), 

where 𝐮 is uncertainty of regions 𝒓𝟏, 𝒓𝟐 𝐚𝐧𝐝  𝒓𝟑. Pedrycz 

proposed  minimization of performance index 𝑽𝜶 for the 

threshold α as  

𝑽𝜶 =   𝒖 𝒓𝟏 +  𝒖 𝒓𝟐 −  𝒖 𝒓𝟑  . 

After getting an optimal α, three regions can be induced from 

fuzzy set to represent the core, shadow and exclusion areas as 

illustrated in Fig. 2. [19].  

 

 

 

 

 

 

 

 

3. SHADOWED FUZZY NUMBERS 
Shadowed fuzzy number (SFN) is defined as a shadowed set 

induced from fuzzy number [20]. The authors proposed a new 

method to induce shadowed fuzzy numbers from fuzzy 

numbers by constructing core interval and fuzziness intervals 

[7]. The core interval induces using Hartley non-specificity 

measure [1] as the following equation 

𝑨𝑹 𝜶 − 𝑨𝑳 𝜶 + 𝟏 = 𝟐𝑯𝑨, 

where 𝐇𝐀 is Hartley non-specificity value of fuzzy set A and 

𝐀𝐋 𝛂 ,𝐀𝐑 𝛂  are left and right α-cut of fuzzy set A. The core 

interval is deduced by using the α-core at level 1. The 

fuzziness intervals are based on the use of cardinality of left 

and right fuzziness sets as.  

𝒘𝑳 =  𝒇𝑨 𝒙𝑳 𝒙𝑳  

𝒘𝑹 =  𝒇𝑨 𝒙𝑹 𝒙𝑹  

where 𝒘𝑳, 𝒘𝑹 are width of left and right of fuzziness 

intervals. 𝒙𝑳 and 𝒙𝑹  are the left support and right support of 

fuzzy numbers from core value.  𝒇𝑨 𝒙𝑳 , 𝒇𝑨 𝒙𝑹  are 

fuzziness sets of fuzzy number which proposed by Tahayori 

[21] that defined as the following. 

 
(9) 

(1) 

Fig. 1. Triangular intuitionistic fuzzy number 

𝑀𝐴 

𝑉𝐴  

                         𝑎    𝑎           𝑏           𝑐   𝑐   
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𝛼 
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Fig. 2. Shadowed sets induced from triangular fuzzy number 
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𝒇𝑨 =  𝒙,𝒇𝒖𝒛𝒛 𝒙  , 

𝒇𝒖𝒛𝒛 𝒙 =  𝟏 −  𝟐𝝁𝑨 𝒙 − 𝟏 . 

Then shadowed fuzzy number (SFN) is constructed by using 

core interval and fuzziness intervals as in Fig. 3. 

 

3.1 Shadowed intuitionistic fuzzy numbers 

(SIFN)   
Shadowed intuitionistic fuzzy numbers (SIFN) is extended 

version of SFNs in the case of  normal intuitionistic fuzzy 

numbers IFNs [8]. The proposed approach is developed to 

induce the core interval of IFN as the following steps. The 

IFN is transformed to interval fuzzy number as [8] 

𝐀 𝒙 = [𝝁 𝒙  ,𝟏 − 𝝂 𝒙 ] 

where 𝝁 𝒙  is a lower membership function and 𝟏 − 𝝂 𝒙  is 

an upper membership function. Hartley non-specificity value 

of IFN is obtained as the following equation  

𝑯𝒂𝒗𝒈 𝑨 =
𝑯 𝝁 𝒙  + 𝑯 𝟏−𝝂 𝒙  

𝟐
 

where 𝑯𝒂𝒗𝒈 is the average of non-specificity measure, 

𝑯 𝝁 𝒙   and 𝑯 𝟏 − 𝝂 𝒙   are the Hartley non-specificity 

measure of membership function and the complement of non-

membership functions. Then 𝑯𝒂𝒗𝒈 is used to induce the α-

cores for lower and upper membership functions of 

intuitionistic fuzzy number (IFN) as the following equations.  

𝑨𝒓
𝑳 𝜶 − 𝑨𝒍

𝑳 𝜶 + 𝟏 = 𝟐𝑯𝒂𝒗𝒈
𝑳

 

𝑨𝒓
𝑼 𝜶 − 𝑨𝒍

𝑼 𝜶 + 𝟏 = 𝟐𝑯𝒂𝒗𝒈
𝑼

 

where 𝑨𝒍
𝑳 𝜶 ,𝑨𝒓

𝑳 𝜶  , 𝑨𝒍
𝑼 𝜶  𝐚𝐧𝐝 𝑨𝒓

𝑼 𝜶  are left and right α-

cut equations for lower  and upper membership functions 

respectively for IFN A. Then 𝜶𝑳 𝒂𝒏𝒅 𝜶𝑼 are induced and 

using them in previous left and right α-cut equations to get the 

core intervals  𝒄𝒍
𝑳, 𝒄𝒓

𝑳  𝐚𝐧𝐝 [𝒄𝒍
𝑼, 𝒄𝒓

𝑼].    

In the case of symmetric membership and non-membership 

functions, two core intervals are equal. In the case of non-

symmetric, the average of two intervals is defined as the 

following. 

 𝒄𝒍, 𝒄𝒓 = [
 𝒄𝒍

𝑳+𝒄𝒍
𝑼 

𝟐
 ,
 𝒄𝒓

𝑳+𝒄𝒓
𝑼 

𝟐
 ] 

The shadow areas are induced by using entropy intervals. The 

entropy is used to estimate the fuzziness of IFNs. The entropy 

sets is proposed to measures the fuzziness of IFNs based on 

Xia Liang method [22]. It is defined as the following. 

𝑬 𝑨 = (𝒙,𝒆𝒏𝒕 𝒙 ) 

𝒆𝒏𝒕 𝒙 =  
𝟏− 𝝁𝑨 𝒙 −𝒗𝑨(𝒙) +𝝅𝑨(𝒙)

𝟏+𝝅𝑨(𝒙)
 

where 𝒆𝒏𝒕 𝒙  is entropy measure based on Xia Liang method 

[22] and  𝝁𝑨 , 𝒗𝑨 and 𝝅𝑨 are membership, non-membership 

and hesitancy degree functions for every element belong to 

IFN.  The cardinality of left and right entropy sets to get the 

wide of entropy intervals as the following 

𝒘𝑳 =   𝑬 𝑨 𝒙𝑳  

𝒘𝑹 =   𝑬 𝑨 𝒙𝑹  

where  𝒘𝑳 𝐚𝐧𝐝 𝒘𝑹 are the wide of left and right entropy 

intervals and 𝑬 𝑨  is entropy set for IFN. These intervals 

represent shadow areas of shadowed intuitionistic fuzzy 

numbers (SIFN) and start from left and right end points of 

core interval. The core interval and entropy intervals are used 

to composition the shadowed intuitionistic fuzzy numbers 

(SIFN).  

3.2 Shadowed fuzzy numbers operations 
For applying shadowed numbers in decision making 

applications,  the authors defined the basic arithmetic 

operations between SFNs  as the following [23] 

Let 𝐒𝐇𝟏 =  𝐒𝟏
𝟏, 𝐒𝟐

𝟏, 𝐒𝟑
𝟏 , 𝐒𝟒

𝟏 , 𝐒𝐇𝟐 =  𝐒𝟏
𝟐, 𝐒𝟐

𝟐, 𝐒𝟑
𝟐 , 𝐒𝟒

𝟐  are 

two shadowed fuzzy numbers (SFNs). 

 Addition 

The addition operation of the two SFNs is defined as 

𝐒𝐇𝟏 + 𝐒𝐇𝟐 =   𝐒𝟏
𝟏 + 𝐒𝟏

𝟐, 𝐒𝟐
𝟏 + 𝐒𝟐

𝟐, 𝐒𝟑
𝟏 + 𝐒𝟑

𝟐 , 𝐒𝟒
𝟏 + 𝐒𝟒

𝟐  

 Subtraction 

The subtraction operation of the two SFNs where 𝐒𝐇𝟏 ≥  𝐒𝐇𝟐 

is defined as 

𝐒𝐇𝟏 − 𝐒𝐇𝟐 =   𝐒𝟏
𝟏 − 𝐒𝟒

𝟐, 𝐒𝟐
𝟏 − 𝐒𝟑

𝟐, 𝐒𝟑
𝟏 − 𝐒𝟐

𝟐 , 𝐒𝟒
𝟏 − 𝐒𝟏

𝟐  

 Multiplication 

The multiplication operation of the two SFNs where 

𝐒𝐇𝟏 𝐚𝐧𝐝  𝐒𝐇𝟐 are induced from two positive fuzzy numbers 

is defined as 

𝐒𝐇𝟏 × 𝐒𝐇𝟐 =   𝐒𝟏
𝟏 × 𝐒𝟏

𝟐, 𝐒𝟐
𝟏 × 𝐒𝟐

𝟐, 𝐒𝟑
𝟏 × 𝐒𝟑

𝟐 , 𝐒𝟒
𝟏 × 𝐒𝟒

𝟐  

 Division 

The division operation between the two SFNs (𝐒𝐇𝟏, 𝐒𝐇𝟐),  

where 𝐒𝟏
𝟐 ≠ 𝟎 , 𝐒𝟐

𝟐 ≠ 𝟎, 𝐒𝟑
𝟐  ≠ 𝟎 𝐚𝐧𝐝 𝐒𝟒

𝟐 ≠ 𝟎 and they 

induced from two positive fuzzy numbers is defined as 

𝐒𝐇𝟏/𝐒𝐇𝟐 =   𝐒𝟏
𝟏/𝐒𝟒

𝟐,  𝐒𝟐
𝟏/𝐒𝟑

𝟐,  𝐒𝟑
𝟏/𝐒𝟐

𝟐 ,  𝐒𝟒
𝟏/𝐒𝟏

𝟐  

 

 

(18) 

(21) 

(22) 

(14) 

(15) 

(16) 

(23) 

(19) 

Fig. 3. SFN for triangular fuzzy number 
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4. HYBRID FUZZY-LINEAR 

PROGRAMMING PROBLEM 
The general fuzzy-linear programming is formulated as [1] 

max 

 𝒄 𝒋𝒙𝒋

𝒏

𝒋=𝟏

 

(27) 

 

subject to 

 𝑨 𝒊𝒋𝒙𝒋 ≤ 𝑩 𝒊

𝒏

𝒋=𝟏

 

 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎, 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏, 

 

where 𝑨 𝒊𝒋,𝑩 𝒊 𝐚𝐧𝐝 𝒄 𝒋 are fuzzy numbers and 𝒙𝒋 is a fuzzy 

variable. The ≤ is an inequality relation between fuzzy 

numbers. The arithmetic operations used in FLP model is 

fuzzy arithmetic operations. Three important cases are 

distinguished in the literature for modeling FLP. The first case 

is a precise objective function coefficients and fuzzy 

constraints coefficients and right hand side values of the 

constraints. The second case is a fuzzy objective function 

coefficients, fuzzy constraints coefficients and fuzzy right 

hand side of constraints.  The Third case is a fuzzy objective 

function coefficients and precise constraints. Many 

approaches are developed to solve FLPPs [10].  

In some situations, the FLP in the form of a hybrid fuzzy-

linear programming problem (HFLPP) that has hybrid 

uncertain types about parameters. In such a situation the 

parameters of linear programming problems may be 

represented as different types of fuzzy numbers.  

In all of the works in [1, 10 - 14], the FLP problems have 

been studied in which some or all parts of the problem were 

assumed to be one type of fuzzy numbers (not hybrid types).     

In the following subsections, the authors will solve HFLPP in 

three different cases as mentioned in this section. 

4.1 Precise objective function coefficients 

and fuzzy constraints 
Let us consider the following fuzzy linear programming 

problem with m constraints and n variables may be 

formulated as follows: 

   max 

 𝒄𝒋𝒙𝒋

𝒏

𝒋=𝟏

 

 

(28)  

subject to 

 𝒌 𝒊𝒋𝒙𝒋 ≤ 𝒕 𝒊

𝒏

𝒋=𝟏

 

 

 

 𝒂 𝒊𝒋𝒙𝒋 ≤ 𝒃 𝒊

𝒏

𝒋=𝟏

 

 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

 

such that 𝒌 𝒊𝒋 =  𝒌𝒊𝒋
𝟏 ,𝒌𝒊𝒋

𝟐 ,𝒌𝒊𝒋
𝟑  ,𝝁𝒌;  𝒌 𝒊𝒋

𝟏 ,𝒌 𝒊𝒋
𝟐 ,𝒌 𝒊𝒋

𝟑  ,𝒗𝒌 and 

𝒕 𝒊 =  𝒕𝒊
𝟏, 𝒕𝒊

𝟐, 𝒕𝒊
𝟑 ,𝝁𝒕;  𝒕 𝒊

𝟏, 𝒕 𝒊
𝟐, 𝒕 𝒊

𝟑 ,𝒗𝒕  are triangular  

intuitionistic fuzzy numbers TIFNs and 𝝁,𝒗 are membership 

and and non-membership functions respectively.   𝒂 𝒊𝒋 =

 𝒂𝒊𝒋
𝟏 ,𝒂𝒊𝒋

𝟐 ,𝒂𝒊𝒋
𝟑  ,𝒃 𝒊 =  𝒃𝒊

𝟏,𝒃𝒊
𝟐 ,𝒃𝒊

𝟑  are  triangular fuzzy numbers 

TFNs. We use the following steps to solve this HFLPP 

problem.  

Step 1 : The TIFNs 𝒌 𝒊𝒋 and 𝒕 𝒊 transform to SFNs using 

equations (15 – 23) where  

𝒔𝒉 𝒌 𝒊𝒋 = (𝒔𝒌𝒊𝒋

𝟏 , 𝒔𝒌𝒊𝒋

𝟐 , 𝒔𝒌𝒊𝒋

𝟑 , 𝒔𝒌𝒊𝒋

𝟒 ), 𝒔𝒉 𝒕 𝒊 = (𝒔𝒕𝒊
𝟏 , 𝒔𝒕𝒊

𝟐 , 𝒔𝒕𝒊
𝟑 , 𝒔𝒕𝒊

𝟒 ). 

Step 2 : The TFNs 𝒂 𝒊𝒋 and 𝒃 𝒊 transform to SFNs using 

equations (10 - 14) where  

𝒔𝒉 𝒂 𝒊𝒋 = (𝒔𝒂𝒊𝒋

𝟏 , 𝒔𝒂𝒊𝒋

𝟐 , 𝒔𝒂𝒊𝒋

𝟑 , 𝒔𝒂𝒊𝒋

𝟒 ),s𝒉 𝒃 𝒊 = (𝒔𝒃𝒊

𝟏 , 𝒔𝒃𝒊

𝟐 , 𝒔𝒃𝒊

𝟑 , 𝒔𝒃𝒊

𝟒 ). 

Step 3 : The problem is reformulated as 

max 

 𝒄𝒋𝒙𝒋

𝒏

𝒋=𝟏

 
(29) 

 

subject to 

 𝒔𝒌𝒊𝒋

𝟏 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟏

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒌𝒊𝒋

𝟐 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟐

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒌𝒊𝒋

𝟑 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟑

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒌𝒊𝒋

𝟒 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟒

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒂𝒊𝒋

𝟏 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟏

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒂𝒊𝒋

𝟐 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟐

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒂𝒊𝒋

𝟑 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟑

𝒏

𝒋=𝟏

 
 

 

 𝒔𝒂𝒊𝒋

𝟒 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟒

𝒏

𝒋=𝟏

 
 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

 

Step 4 : The problem can be solved as a classical linear 

programming problem. 
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4.2 Fuzzy objective function coefficients 

and fuzzy constraints 
Let us consider the following fuzzy linear programming 

problem with m constraints and n variables may formulate as 

follows: 

   max 
 𝒄 𝒋𝒙𝒋

𝒏

𝒋=𝟏

 
(30) 

 

subject to 
 𝒌 𝒊𝒋𝒙𝒋 ≤ 𝒕 𝒊

𝒏

𝒋=𝟏

 
 

 
 𝒂 𝒊𝒋𝒙𝒋 ≤ 𝒃 𝒊

𝒏

𝒋=𝟏

 
 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

 

such that 𝒄 𝒊𝒋 =  𝒄𝒊𝒋
𝟏 , 𝒄𝒊𝒋

𝟐 , 𝒄𝒊𝒋
𝟑  ,𝝁𝒄;  𝒄 𝒊𝒋

𝟏 , 𝒄 𝒊𝒋
𝟐 , 𝒄 𝒊𝒋

𝟑  ,𝒗𝒄,𝒌 𝒊𝒋 =

 𝒌𝒊𝒋
𝟏 ,𝒌𝒊𝒋

𝟐 ,𝒌𝒊𝒋
𝟑  ,𝝁𝒌;  𝒌 𝒊𝒋

𝟏 ,𝒌 𝒊𝒋
𝟐 ,𝒌 𝒊𝒋

𝟑  ,𝒗𝒌 and 

𝒕 𝒊 =  𝒕𝒊
𝟏, 𝒕𝒊

𝟐, 𝒕𝒊
𝟑 ,𝝁𝒕;  𝒕 𝒊

𝟏, 𝒕 𝒊
𝟐, 𝒕 𝒊

𝟑 ,𝒗𝒕 are triangular intuitionistic 

fuzzy numbers TIFNs and 𝝁,𝒗 are membership and and non-

membership functions respectively.   

𝒂 𝒊𝒋 =  𝒂𝒊𝒋
𝟏 ,𝒂𝒊𝒋

𝟐 ,𝒂𝒊𝒋
𝟑  ,𝒃 𝒊 =  𝒃𝒊

𝟏,𝒃𝒊
𝟐 ,𝒃𝒊

𝟑  are  triangular fuzzy 

numbers TFNs. We use the following steps to solve this 

HFLPP.  

Step 1 : The TIFNs 𝒄 𝒊𝒋, 𝒌 𝒊𝒋 and 𝒕 𝒊 transform to SFNs using 

equations  (14 – 22)  where  𝒔𝒉 𝒄 𝒊𝒋 =  𝒔𝒄𝒊𝒋
𝟏 , 𝒔𝒄𝒊𝒋

𝟐 , 𝒔𝒄𝒊𝒋
𝟑 , 𝒔𝒄𝒊𝒋

𝟒  ,

𝒔𝒉 𝒌 𝒊𝒋 = (𝒔𝒌𝒊𝒋

𝟏 , 𝒔𝒌𝒊𝒋

𝟐 , 𝒔𝒌𝒊𝒋

𝟑 , 𝒔𝒌𝒊𝒋

𝟒 ), and  𝒔𝒉 𝒕 𝒊 =

(𝒔𝒕𝒊
𝟏 , 𝒔𝒕𝒊

𝟐 , 𝒔𝒕𝒊
𝟑 , 𝒔𝒕𝒊

𝟒 ). 

Step 2 : The TFNs 𝒂 𝒊𝒋 and 𝒃 𝒊 transform to SFNs using 

equations (10  - 14) where 𝒔𝒉 𝒂 𝒊𝒋 = (𝒔𝒂𝒊𝒋

𝟏 , 𝒔𝒂𝒊𝒋

𝟐 , 𝒔𝒂𝒊𝒋

𝟑 , 𝒔𝒂𝒊𝒋

𝟒 ) and  

𝒔𝒉 𝒃 𝒊 = (𝒔𝒃𝒊

𝟏 , 𝒔𝒃𝒊

𝟐 , 𝒔𝒃𝒊

𝟑 , 𝒔𝒃𝒊

𝟒 ). 

Step 3 : The problem is reformulated as  

Max 

 𝒔𝒄𝒊𝒋
𝒕 𝒙𝒋

𝒏

𝒋=𝟏

 

(31) 

  

subject to 

 𝒔𝒌𝒊𝒋

𝟏 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟏

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒌𝒊𝒋

𝟐 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟐

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒌𝒊𝒋

𝟑 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟑

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒌𝒊𝒋

𝟒 𝒙𝒋 ≤ 𝒔𝒕𝒊
𝟒

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒂𝒊𝒋

𝟏 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟏

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒂𝒊𝒋

𝟐 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟐

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒂𝒊𝒋

𝟑 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟑

𝒏

𝒋=𝟏

 

 

 

 𝒔𝒂𝒊𝒋

𝟒 𝒙𝒋 ≤ 𝒔𝒃𝒊

𝟒

𝒏

𝒋=𝟏

 

 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

𝒕 ∈ ℕ, 𝒕 = 𝟏,𝟐,𝟑,𝟒 

 

Step 4 : The problem can be solved four times with four 

parameters of a SFN for the objective function coefficients 

using a classical linear programming problem. 

Step 5 : The resulting maximum optimal solution of HFLPP is 

a SFN and we need to transform it to one crisp number. We 

proposed the following steps to obtain the maximum optimal 

solution: 

Let maximum optimal solution  𝑯𝒐𝒑 = (𝑺𝟏
𝑯,𝑺𝟐

𝑯, 𝑺𝟑
𝑯, 𝑺𝟒

𝑯)  is a 

SFN that consists of three intervals 𝑳𝑯𝒐𝒑
,𝑪𝑯𝒐𝒑

,𝑹𝑯𝒐𝒑
  where  

𝑳𝑯𝒐𝒑
=  𝑺𝟏

𝑯,𝑺𝟐
𝑯 ,𝑪𝑯𝒐𝒑

=  𝑺𝟐
𝑯,𝑺𝟑

𝑯 ,  𝑹𝑯𝒐𝒑
= [𝑺𝟑

𝑯,𝑺𝟒
𝑯] as in Fig. 

4  

 

 

 

 

 

 

 

We obtain the weights of the three intervals as follows: 

𝑤𝐿 =
𝑆2
𝐻 − 𝑆1

𝐻

𝑆4
𝐻 − 𝑆1

𝐻  

 

 

(32)  

𝑤𝐶 =
 𝑆3

𝐻 − 𝑆2
𝐻

𝑆4
𝐻 − 𝑆1

𝐻  

 

 

(33) 

 

𝑤𝑅 =
𝑆4
𝐻 − 𝑆3

𝐻

𝑆4
𝐻 − 𝑆1

𝐻  

 

 

(34) 

 

 The center values for the three intervals calculate as 

follows: 

𝐶𝐿 =
𝑆1
𝐻 + 𝑆2

𝐻

2
 

 

(35) 

 

 

Fig. 4: Shadowed fuzzy number 

𝑆1
𝐻     𝑆2

𝐻          𝑆3
𝐻       𝑆4

𝐻  

 

 

 

𝐿𝐻𝑜𝑝
    𝐶𝐻𝑜𝑝

    𝑅𝐻𝑜𝑝
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𝐶𝐶 =
𝑆2
𝐻 + 𝑆3

𝐻

2
 

 

(36) 

 

𝐶𝑅 =
𝑆3
𝐻 + 𝑆4

𝐻

2
 

(37) 

 

 

 The value of the optimal solution 𝑴𝒐𝒑 obtains as 

follows: 

𝑀𝑜𝑝 = 𝐶𝐿 × 𝑤𝐿 + 𝐶𝐶 × 𝑤𝐶 + 𝐶𝑅 × 𝑤𝑅 (38) 

4.3 Fuzzy objective function coefficients 

and Precise constraints 
Let us consider the following fuzzy linear programming 

problem with m constraints and n variables may formulate as 

follows: 

   max 
 𝒄 𝒋𝒙𝒋

𝒏

𝒋=𝟏

 
(39) 

subject to 
 𝒂𝒊𝒋𝒙𝒋 ≤ 𝒃𝒊

𝒏

𝒋=𝟏

 
 

   

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

 

such that 𝒄 𝒊𝒋 =  𝒄𝒊𝒋
𝟏 , 𝒄𝒊𝒋

𝟐 , 𝒄𝒊𝒋
𝟑  ,𝝁𝒄;  𝒄 𝒊𝒋

𝟏 , 𝒄 𝒊𝒋
𝟐 , 𝒄 𝒊𝒋

𝟑  ,𝒗𝒄,  is a 

triangular intuitionistic fuzzy numbers TIFNs and 𝝁,𝒗 are 

membership and non-membership functions respectively. We 

can also use type-1 fuzzy number but the TIFN is used to 

describe steps of solving problem.  𝒂𝒊𝒋 𝐚𝐧𝐝 𝒃𝒊 are  crisp 

numbers. The authors use the following steps to solve this 

HFLPP : 

Step 1 : The TIFNs 𝒄 𝒊𝒋 transform to a SFNs using equations 

(14 – 22)  where 𝒔𝒉 𝒄 𝒊𝒋 =  𝒔𝒄𝒊𝒋
𝟏 , 𝒔𝒄𝒊𝒋

𝟐 , 𝒔𝒄𝒊𝒋
𝟑 , 𝒔𝒄𝒊𝒋

𝟒  . 

Step 2 : The problem is reformulated as:  

max 

 𝒔𝒄𝒊𝒋
𝒕 𝒙𝒋

𝒏

𝒋=𝟏

 

(40) 

subject to 

 𝒂𝒊𝒋𝒙𝒋 ≤ 𝒃𝒊

𝒏

𝒋=𝟏

 

 

 𝒙𝒋 ≥ 𝟎  

where 𝒊 ∈ ℕ, 𝒊 = 𝟏,…… ,𝒎 

𝒋 ∈ ℕ, 𝒋 = 𝟏,…… ,𝒏 

 

Step 3 : The problem can be solved four times with four 

parameters of a SFN of for the objective function coefficients 

using a classical linear programming problem. 

Step 4 : The resulting maximum optimal solution of HFLPP is 

a SFN and transforms to one crisp number using equations 

(32 – 38).  

5. ILLUSTRATIVE EXAMPLES 
Example 1 

We use the adaptive example as mentioned in [1] where the 

parameters of the constraints are only type-1 fuzzy numbers.  

In these examples, TIFNs and TFNs are used to represent the 

constraints coefficients and right hand side values of the 

constraints.  The problem is solved using steps in section 4.1. 

Consider the following HFLPP: 

max  𝒛 = 𝟓𝒙𝟏 +  𝟒𝒙𝟐 (41) 

subject to 𝒌 𝟏𝟏𝒙𝟏 + 𝒌 𝟏𝟐𝒙𝟐 ≤ 𝒕 𝟏  

 𝒂 𝟏𝟏𝒙𝟏 + 𝒂 𝟏𝟐𝒙𝟐 ≤ 𝒃 𝟏  

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

where   𝒌 𝟏𝟏= (3, 4, 5), (2, 4, 6); 1, 0 , 𝒌 𝟏𝟐= (4, 5, 6), (2, 5, 7); 

1, 0 and  𝒕 𝟏= (20, 24, 30), (18, 24, 32); 1, 0. Also, 𝒂 𝟏𝟏= (3, 4, 

6) , 𝒂 𝟏𝟐 = (0.5, 1, 2) and  𝒃 𝟏= (6, 12, 15) are three TFNs. We 

transform the TIFNs to SFNs and the results are as the 

following:  

𝒔𝒉(𝒌 𝟏𝟏) = (2.76, 3.35, 4.65, 5.24),  

𝒔𝒉(𝒌 𝟏𝟐) = (4.12, 4.2, 5.66, 6.25),  

𝒔𝒉(𝒕 𝟏𝟐) = (19.43, 21.98, 26.85, 30.54). 

Also, we transform the TFNs to SFNs as the following 

𝒔𝒉(𝒂 𝟏𝟏) = (3.06,  3.56,   4.89,   5.89),  

𝒔𝒉 𝒂 𝟏𝟐 =(0.52, 0.77, 1.46, 1.96), 

𝒔𝒉 𝒃 𝟏 =(6.5, 9.5, 13.25, 14.75). 

The problem can be reformulated to be as the following: 

max  𝒛 = 𝟓𝒙𝟏 +  𝟒𝒙𝟐 (42) 

subject to 𝟐.𝟕𝟔 𝒙𝟏 + 𝟒.𝟏𝟐 𝒙𝟐 ≤ 𝟏𝟗.𝟒𝟑  

   𝟑.𝟑𝟓 𝒙𝟏 + 𝟒.𝟐 𝒙𝟐 ≤  𝟐𝟏.𝟗𝟖  

 𝟒.𝟔𝟓 𝒙𝟏 + 𝟓.𝟔𝟔 𝒙𝟐 ≤  𝟐𝟔.𝟖𝟓   

 𝟓.𝟐𝟒 𝒙𝟏 + 𝟔.𝟐𝟓 𝒙𝟐 ≤  𝟑𝟎.𝟓𝟒  

 𝟑.𝟎𝟔 𝒙𝟏 + 𝟎.𝟓𝟐 𝒙𝟐 ≤  𝟔.𝟓  

 𝟑.𝟓𝟔 𝒙𝟏 + 𝟎.𝟕𝟕 𝒙𝟐 ≤  𝟗.𝟓  

  𝟒.𝟖𝟗 𝒙𝟏 + 𝟏.𝟒𝟔 𝒙𝟐 ≤ 13.25  

 𝟓.𝟖𝟗 𝒙𝟏 + 𝟏.𝟗𝟔 𝒙𝟐 ≤  𝟏𝟒.𝟕𝟓  

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

Then we apply the classical linear programming steps using 

Matlab tool to obtain 𝒙𝟏 = 𝟏.𝟐𝟕, 𝒙𝟐 = 𝟑.𝟕 and 𝒛 = 𝟐𝟏.𝟏𝟔. 

While the original problem used triangular fuzzy numbers 

only and its results were 𝒙𝟏 = 𝟏.𝟓, 𝒙𝟐 = 𝟑 and 𝒛 = 𝟏𝟗.𝟓  
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[1]. We find that, the results of the new approach are 

approximately equivalent the results of the original problem.  

Example 2 

This example is a modified version from [13] where TIFNs 

only are used to represent objective function coefficients, 

constraints coefficients and right hand side values. We use 

TIFNs, TFNs and Gaussian fuzzy numbers GFNs to represent 

objective function parameters and constraints parameters. The 

problem is solved using the steps in section 4.2. Consider the 

following HFLPP: 

max  𝒛 = 𝟓 𝒙𝟏 +  𝟑 𝒙𝟐 (43) 

subject to 𝟒 𝒙𝟏 + 𝟑 𝒙𝟐 ≤ 𝟏𝟐   

 𝟏 𝒙𝟏 + 𝟑 𝒙𝟐 ≤ 𝟔   

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

where   𝟓  = (4, 5, 6), (4, 5, 6.1); 1, 0  and 𝟑  = (2.5,3, 3.2), (2, 

3, 3.5); 1, 0 are two TIFNs.   𝟒  = (3, 4, 5), 𝟑  = (2.3, 3, 4), are 

two TFNs. 𝟏 = (𝒎 = 𝟏;  𝝈 = 𝟎.𝟒) and 𝟑 = (𝒎 = 𝟑;  𝝈 =
𝟎.𝟐) are two GFNs.  Also, 𝟏𝟐  = (11, 12, 13) , (11, 12, 14) ; 1, 

0 and  𝟔  = (5.5, 6, 7.5), (5, 6, 8.1) ; 1, 0 are two TIFNs. We 

transform the TIFNs to SFNs and the results are the 

following:  

𝒔𝒉(𝟓 ) = (4.06, 4.55, 5.48, 5.98),  

𝒔𝒉(𝟑 ) = (2.18,  2.65, 3.16,  3.6),  

𝒔𝒉(𝟏𝟐 ) = (11.05,  11.54, 12.65, 13.12), 

𝒔𝒉( 𝟔 ) = (5.21, 5.68, 6.81, 7.3). 

Also, we transform TFNs to SFNs as the following: 

𝒔𝒉(𝟒 ) = (3.04, 3.54,  4.46, 4.96),  

𝒔𝒉 𝟑  =(2.33, 2.68, 3.46, 3.96), 

𝒔𝒉 𝟏  =(0.36, 0.66, 1.34, 1.64), 

𝒔𝒉 𝟑  =(2.68,  2.83, 3.17, 3.32). 

The problem can be reformulated as the following: 

max  𝒛 = 𝒔𝒉(𝟓 )𝒙𝟏 +  𝒔𝒉(𝟑 )𝒙𝟐 (44) 

subject to 𝟑.𝟎𝟒 𝒙𝟏 + 𝟐.𝟑𝟑 𝒙𝟐 ≤ 𝟏𝟏.𝟎𝟓  

  𝟑.𝟓𝟒 𝒙𝟏 + 𝟐.𝟔𝟖 𝒙𝟐 ≤  𝟏𝟏.𝟓𝟒  

  𝟒.𝟒𝟔 𝒙𝟏 + 𝟑.𝟒𝟔 𝒙𝟐 ≤  𝟏𝟐.𝟔𝟓   

 𝟒.𝟗𝟔 𝒙𝟏 + 𝟑.𝟗𝟔 𝒙𝟐 ≤  𝟏𝟑.𝟏𝟐  

 𝟎.𝟑𝟔 𝒙𝟏 + 𝟐.𝟔𝟖 𝒙𝟐 ≤  𝟓.𝟐𝟏    

 𝟎.𝟔𝟔 𝒙𝟏 + 𝟐.𝟖𝟑 𝒙𝟐 ≤  𝟓.𝟔𝟖  

  𝟏.𝟑𝟒 𝒙𝟏 + 𝟑.𝟏𝟕 𝒙𝟐 ≤ 6.81  

 𝟏.𝟔𝟒𝒙𝟏 + 𝟑.𝟑𝟐𝒙𝟐 ≤  𝟕.𝟑  

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

The resulting optimal value is SFN = (10.74, 12.04 , 14.5 , 

15.82) , 𝒙𝟏= 2.65  and 𝒙𝟐 = 0 . We calculate the crisp optimal 

value where 𝑴𝒐𝒑 = 13.28.  

Example 3 

This example is a modified version from [13] and [24] where 

TIFNs in [13]  and interval-valued fuzzy numbers in [24] are 

used to represent the objective function coefficients. The 

TIFNs are used to represent parameters of the objective 

function.  The problem is solved using steps in section 4.3. 

Let a factory produces automobiles and truck where each 

product need three processes. The production conditions are 

given in Table 1. 

Table 1: Production conditions 

Product 
type 

Process 
1 

hours 

Process 
2 

hours 

Process 
3 

hours 

Profit 

hundred 
$ 

Automobile 15 24 21 25 

Truck 30 6 14 48 

Total hours 45000 24000 28000  

 

Consider the following HFLPP: 

max  𝒛 = 𝟐𝟓 𝒙𝟏 +  𝟒𝟖 𝒙𝟐 (45) 

subject to 𝟏𝟓𝒙𝟏 + 𝟑𝟎𝒙𝟐 ≤ 𝟒𝟓𝟎𝟎𝟎  

 𝟐𝟒𝒙𝟏 + 𝟔𝒙𝟐 ≤ 𝟐𝟒𝟎𝟎𝟎  

 𝟐𝟏𝒙𝟏 + 𝟏𝟒𝒙𝟐 ≤ 𝟐𝟖𝟎𝟎𝟎  

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

where   𝟐𝟓  = (19, 25, 33), (18, 25, 34); 1, 0  and  𝟒𝟖  = (44, 48, 

54), (43, 48, 56); 1, 0 are two TIFNs. The constraints 

parameters are crisp numbers. We transform the TIFNs to 

SFNs and the results are as the following:  

𝒔𝒉(𝟐𝟓 ) = (21.87,  22.37, 28.44, 28.94), 

𝒔𝒉(𝟒𝟖 ) = (45.66,  46.16, 50.86, 51.36). 

The problem can be reformulated as the following: 

max  𝒛 = 𝒔𝒉 𝟐𝟓  𝒙𝟏 + 𝒔𝒉 𝟒𝟖  𝒙𝟐 (46) 

subject to 𝟏𝟓𝒙𝟏 + 𝟑𝟎𝒙𝟐 ≤ 𝟒𝟓𝟎𝟎𝟎  

 𝟐𝟒𝒙𝟏 + 𝟔𝒙𝟐 ≤ 𝟐𝟒𝟎𝟎𝟎  

 𝟐𝟏𝒙𝟏 + 𝟏𝟒𝒙𝟐 ≤ 𝟐𝟖𝟎𝟎𝟎  

 𝒙𝟏,𝒙𝟐 ≥ 𝟎  

The resulting optimal value is the SFN = (68490, 69240, 

77795, 78670) , 𝒙𝟏= 500 ,  𝒙𝟐 = 1250 . We calculated the 

crisp optimal value where 𝑴𝒐𝒑 = 73587. In the original 

problem [24], 𝐱𝟏= 500 , 𝐱𝟐 = 1250 and the optimal solution = 

73104.7. 
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Remark 1  

When solving the problem in example 3 using a new 

approach, the values of objective function variables are (𝒙𝟏= 

0,  𝒙𝟐 = 1500) with SFN parameters (68490, 69240) and (𝒙𝟏= 

500 ,  𝒙𝟐 = 1250 ) with SFN parameters (77795, 78670). We 

select solution that more near to optimal crisp solution where 

𝑴𝒐𝒑 = 73587.  

In [13], the optimal solution for example 3 is (𝑥1= 0,  𝑥2 = 

1500) with optimal objective value 70500 and (𝑥1= 0,  𝑥2 = 

1500) with optimal objective value 62000. 

5.1 Discussions 
Based on the previous results, the following remarks are 

found:   

1. The new approach can handle type-1 fuzzy numbers 

and higher type of fuzzy numbers i.e. intuitionistic 

fuzzy numbers. This feature provides more 

flexibility for representing linear programming 

problems.   

2. The  new approach can use different types of 

membership functions in one problem as in example 

2 which TFNs and GFNs are used.  

3. The new approach satisfies all the constraints 

including non-negative constraint. 

4. Solving the same illustrative examples as in [1] and 

[24], using the newly proposed approach results in 

approximately the same optimal solution. This 

proves the validity of the proposed approach. 

5.2  Advantage of the proposed method  
The basic improvement in the new approach against previous 

approaches, it can handle different types of fuzzy numbers 

and also higher type like IFNs in the same problem with 

different cases of FLPP. This advantage provides more 

flexibility for solving FLPPs.  

6. CONCLUSION 
The hybrid fuzzy-linear programming problem is 

characterized by addressing different types of uncertain 

numbers that represent parameters values of problem. In this 

paper, we propose a new approach to solve this kind of 

problems using an improved form of shadowed fuzzy 

numbers. The proposed approach includes getting SFN from 

type-1 fuzzy numbers and intuitionistic fuzzy numbers which 

preserving the characteristics of uncertainty for them. The 

SFNs used in hybrid fuzzy-linear programming example to 

unify the form of parameters and in the same time simplify 

calculation operations. The newly proposed approach results 

are the same as the optimization results of the original 

example which prove the validity of the new approach. This 

new technique provides the ability to treat with more hybrid 

uncertain numbers for the future works in solving FLPPs.  
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