Abstract

In this paper, we propose a concurrency control protocol, called the Prudent-Precedence Concurrency Control (PPCC) protocol, for high data contention main memory databases. PPCC is prudently more aggressive in permitting more serializable schedules than two-phase locking. It maintains a restricted precedence among conflicting transactions and commits the transactions according to the serialization order established in the executions. A detailed simulation model has been constructed and extensive experiments have been conducted to evaluate the performance of the proposed approach. The results demonstrate that the proposed algorithm outperforms the two-phase locking in all ranges of system workload.

References

1987.
 Recovery in Database Systems. Addison-Wesley, Reading, MA.
3. P. Bernstein, N. Goodman, “Timestamp-based Algorithm for Concurrency Control in
 SDD-1: a System of Distributed Databases”, IEEE Transaction on Software Engineering SE-4:3,
5. M. Carey, M. Livny, “Distributed Concurrency Control Performance: A Study of
 and Predicate Locks in a Database System, Communications of the ACM, Vol. 19, No. 11,
 p.624-633.
 Information Syst., 9, 111-120.
 December, pp. 94-103.
 Control Protocol. In Proceedings of International Workshop on Parallel and Distributed
12. S. Mullender and A. S. Tanenbaum. "A Distributed File Service Based on Optimistic
 51-62.
13. D. Reed, “Implementing Atomic Actions on Decentralized Data”, ACM Transactions on
 Computer Systems, 1,1, pp. 3-23, 1983.
15. Özgür, U and Alejandro, B. "Exploiting main memory DBMS features to improve
 In Proceedings of the VLDB Endowment 2012; 6(2): 145-156. VLDB
 Endowment.https://doi.org/10.14778/2535568.2448947
 concurrency control mechanisms for main-memory databases". Proceedings of the VLDB
18. Neumann T, Mühlbauer T, Kemper A. Fast serializable multi-version concurrency control
 for main-memory database systems. In Proceedings of the 2015 ACM SIGMOD International
 ACM.https://doi.org/10.1145/2723372.2749436
 evaluation of concurrency control with one thousand cores. Proceedings of the VLDB

Index Terms

Computer Science Information Sciences

Keywords

Concurrency Control, Main Memory Database, Serializability, Serialization Graph, 2PL