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ABSTRACT 

In order to submit expense reports, multiple receipts are often 

scanned on a single page and the scanned images are 

submitted along with the expense report in order to get 

expenses reimbursed. These scanned images are manually 

verified to check the validity of the claimed expenses. In this 

paper, a method is presented to isolate receipt segments in an 

image and use Optical Character Recognition (OCR) to 

identify receipt amounts, reducing validation time and effort. 

Scanned images are processed to find the contours of all high-

contrast objects in receipts, including letters. Minimum 

bounding rectangles (MBRs) are found for each of the 

contours. Spectral clustering is used to group these MBRs in 

order to find receipt clusters which correspond to individual 

receipts. These are then processed with OCR to aid the user 

with validation. 
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Clustering, Pattern Recognition, Receipt Recognition, and 

Spectral Clustering Algorithm. 

Keywords 
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1. INTRODUCTION 
With the advent of cloud computing and SaaS (Software as a 

Service) applications, several enterprises now use expense 

report management cloud applications for processing expense 

reports. Expense reports contain a list of expenses and a set of 

scanned receipts. These receipts are manually validated in 

order to process expenses by reviewers and processors. Some 

of these applications try to use an OCR approach on the 

scanned receipts in order to identify the provider name and the 

total amount. However, these applications assume that each 

receipt is scanned individually. In reality, most of the expense 

reports are filed with multiple receipts scanned on a single 

page, often precluding the use of such applications without 

further processing the image. In this paper, an approach using 

Spectral clustering is presented to identify individual receipts 

in a multi-receipt image, extracting each one out for OCR 

processing. This approach greatly reduces the processing 

overhead of manually trying to locate a receipt in an image 

and matching the corresponding amount to the claimed 

amount of the receipt. 

Several techniques are used to recognize text in an image 

using various Optical Character Recognition techniques [1]. 

These techniques assume that text is located in one area 

(block) of the image. However, if a single image has multiple 

blocks of text, it needs to be pre-processed and the text blocks 

need to be extracted in order to identify text in a meaningful 

way. In the context of current expense report management 

applications, each of the text blocks correspond to a receipt 

that is presented as a proof for that expense report. If the 

background image has high contrast with the receipt, it is 

relatively easy to identify the receipt’s contours. However, 

most scanned images have white backgrounds, complicating 

this problem. With new HD scanners and cameras, high 

resolution images help to recognize the text in each of the 

receipts with great accuracy once they are identified and 

separated from the rest of the image. 

In this paper, an approach is presented to pre-process the 

image and use Spectral clustering to identify receipt blocks in 

scanned images with a white background. Identified receipts 

are further processed by an OCR module in order to identify 

information that aids in faster expense report reviews and 

approvals. 

2. PRE PROCESSING OF SCANNED 

IMAGE 
A scanned image is expected to have one or more receipts in it 

and it is assumed that the number of receipts, which is 

provided in the expense report, is known. If the background 

color provides proper contrast, it is relatively easy to identify 

the receipt contours. In this paper, it is assumed that the 

scanned image background is white, as most scanners produce 

an image with a white background, as shown in the example 

in Figure 1. For clarity, all four receipts are labeled with 

minimum bounding rectangles on a scanned image, I, with 

width, W, and height, H. 

Let us consider that each image has n receipts R1, R2, R3... Rn  

that are included in it. Each receipt, i, occupies a rectangular 

area with width, wi , and height, hi, and has lower left hand 

corner coordinates, (xi , yi). It is expected that receipts occupy 

a rectangular area and are typically aligned with the scanned 

image and also don’t overlap with each other. Each receipt 

has a set of objects that include letters, logos, signatures, etc. 

They all are located in a specific rectangular area. The 

example, shown in Figure 1, contains 4 

receipts R1, R2, R3, R4.  
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One simple approach is to consider all pixels as data points 

and use general clustering algorithm to find clusters of 

receipts. This approach suffers from two problems. The first is 

that the large data set (the number of pixels on the scanned 

image) is difficult to cluster and the second is that clusters that 

are obtained may not be rectangular. For example, if the page 

is scanned at 144 DPI (Dots Per Inch), a letter sized, 8.5 by 11 

inch scanned image contains 1,938,816 pixels. Computing a 

similarity matrix, approximately 2 trillion entries, and 

identifying clusters will take up unusual amount of memory 

and computing power. In order to achieve a more 

computationally efficient and effective method, it is important 

to pre-process the image and generate a meaningful dataset 

before further processing with clustering. The preprocessing 

steps involve the following: 

1. Convert the colored image into its grayscale equivalent 

2. Blur the image using a median filtering algorithm 

3. Run Canny Edge algorithm to highlight all contours in 

the image 

4. Find MBRs (Minimum Bounding Rectangles) for all the 

contours found in the image 

5. Remove any rectangles with insignificant areas 

6. Remove any rectangle that is contained in another 

rectangle 

The above steps help to create a small data set that is easy to 

process and cluster. In the first step, any colored image is 

converted into grayscale. Most of the images are corrupted by 

noises due to faded receipts, scanner resolution, and 

background noise. There are linear or nonlinear filter methods 

to reduce noise. The median filter, a nonlinear filter, has been 

widely used in digital image processing because of its good 

edge retaining characteristics while reducing impulse noise 

ability [2]. The median filter is a rank-order filter. A pixel 

value of the digital image is replaced by the median value of  

the neighborhood pixels. The medium value of the ranked 

neighborhood pixels is used to replace the noisy value. The 

median filtering output calculated using I1 x, y =

Figure 1: A Scanned Multi-receipt Image 

 
Figure 2: Image output at the end of Step 2 and Step 3 
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Medium{I x − i, y − j ,  i, j  ∈ M }, where I x, y , I1 x, y  are 

the pixel values at  x, y  of the original image and the output 

image respectively, M is a two-dimensional mask and the 

mask size is m × m. Typically, the value of m is odd such as 

3 or 5.  In the second step, a median filter is applied on the 

image to reduce noise in the image. Figure 2 shows the result 

after applying medium filter for  m = 3 in this Step 2. 

In the third step, all edges or contours are detected. The 

purpose of edge detection is to help reduce the amount of data 

in an image by using the detected contours to process the 

image instead of whole image. There are several algorithms to 

detect edges that have been proposed in the literature Canny 

Edge detection algorithm developed by Jon F. Canny[3] is the 

standard for edge detection methods still used in research. In 

this paper, Canny method is used to identify all edges or 

contours in the image. By processing image I1with Canny 

edge detection algorithm, it will obtain a set of contours or 

edges, E = {e1, e2, e3, e4, … . , eP} where P is the number of 

contours identified in the image and each edge has a set of 

points, ei = {c1, c2, c3, c4, … . , ciq }.  Figure 2 shows the output 

of identified contours using the Canny Edge detection 

algorithm. 

In the fourth step, a minimum bounding rectangle, Ri , is 

identified for each of the detected contours, ei . This is done by 

finding minimum and maximum x and y values for all points 

in the contour. At the end of this step, it will have a set of 

rectangles representing the data. For properly scanned 

receipts, ideally, each of the characters in the receipt should 

have a rectangle. Sometimes, receipt edges will show as long, 

thin rectangles with insignificant areas. These rectangles often 

mislead clustering algorithms. In fifth step, all long, more than 

144 pixels, and thin, less than 10 pixels, rectangles are 

removed from the data. Note that these threshold values 

depend on the resolution of the scan, DPI (Dots per Inch). In 

the last step, all rectangles that are fully contained in other 

rectangle(s) are also removed. This step reduces data further. 

At the end of this step, it will have a minimal set of rectangles 

in the two dimensional space. In Figure 3, the results after 

Steps 4, 5 and 6 on the original scanned image shown in 

Figure 1 are presented. 

In the next section, a Spectral clustering algorithm is used on 

this set of rectangles to identify receipt rectangle areas in the 

scanned image. 

3. CLUSTERING DATA 
After preprocessing the scanned image, the data comprises of 

a set of P rectangles that need to be clustered. As mentioned 

before, the number of clusters to be identified based on the 

data is known in the expense report.   

Clustering helps to find pattern associations by forming 

groups of patterns such that a pattern in a group is more 

similar to other patterns in the same group when compared to 

patterns in other groups. Many clustering approaches have 

been proposed in the literature [4]. Many of the conventional 

clustering approaches are numerical clustering approaches 

which assume that patterns are points in a ddimensional space 

and perform clustering by defining a (dis)similarity measure 

[5]. In the current context, clustering helps to group rectangles 

that belong to a receipt into a single cluster. Once the clusters 

are identified, the corresponding receipts can be extracted 

from the image for OCR (Optical Character Recognition) 

processing. In order to employ a clustering algorithm, a 

distance measure needs to be defined between two data items. 

In case of point data in d dimensional, distance measure can 

be a simple Euclidean distance. However, rectangles are two 

dimensional objects with width and height. The distance 

between two rectangles cannot be a simple Euclidean distance 

 
Figure 3: Image output at the end of Step 4, Step 5 and Step 

6 
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as sometimes they overlap and sometimes they may be 

touching on one of the axis. The following approach is used to 

find the distance between two rectangles r1 x1, y1, x2, y2  
and r2 x1, y1, x2, y2 . Each rectangle has (x1, y1) as upper 

left hand corner and (x2, y2) as lower right hand corner. Here 

r1. x1refers to x1 coordinate of r1. The distance, 

 Distance(r1,r2), between r1 and r2 is computed using the 

following distance function presented in Figure 4. 

Distance(r1,r2) 

Begin 

     If r1 and  r2 are overlapping then return 0.0 

     Else 

     Begin 

  // Find the mostLeft and mostRight rectangles 

   Rectangle mostLeft, mostRight, upper, lower; 

   Double xDiff, yDiff; 

 

   If (r1 . x1 <  r2. x1) then mostLeft =  r1 else mostLeft =  r2; 

   If (r1 . x1 >  r2. x1) then mostRight =  r1 else mostRight =  r2;

  

   If  mostLeft. x1 ==  mostRight. x1  xDiff =  0.0  

   Else xDiff = max 0.0, mostRight. x1 –  mostLeft. x2 ; 

  // Find the upper and lower rectangles 

   If (r1 . y1 <  r2 . y1) then upper =  r1; 

   Else upper =  r2; 

   If (r1 . y1 >  r2. y1) then lower =  r1; 

   Else lower =  r2; 

   If  upper. y1 ==  lower. y1  yDiff =  0.0  

   Else yDiff = max 0.0, lower. y1 –  upper. y2 ; 

   // Find the distance 

  Return sqrt(xDiff * xDiff + yDiff *yDiff); 

     End 

End 

Figure 4: Distance measure between two rectangles. 

A similarity matrix, SP×P , can be calculated by subtracting the 

distance between two rectangles from the maximum of the 

distances’ between any two rectangles in the data set. Note 

that P represents the total number of rectangles in the data set. 

Several clustering algorithms were evaluated including K-

means and found that Spectral clustering is suitable for 

finding proper clusters in this type of data set. The Spectral 

clustering method is easy to implement and is performant for 

sparse data sets that contains thousands of data items. In 

addition, it considers data clustering as a graph partitioning 

problem without any assumption on cluster structure. For 

more information theory behind Spectral clustering, please 

refer to [6]. Spectral clustering has two stages. In the first 

stage, it forms an associated Laplacian matrix [7], computes 

eigenvalues and eigenvectors, and maps points to lower 

dimensional representation based on eigenvectors. In the 

second stage, it assigns data items to one or more classes 

based on new data representation. In this paper, the SMILE[8] 

(Statistical Machine Intelligence and Learning Engine) library 

(Smile) is used to perform Spectral clustering using the 

distance measure presented in Figure 4. Once clusters are 

obtained, Minimum Bounding Rectangles for each of the 

clusters are computed using the data items in the 

corresponding cluster. Each of these rectangles identifies a 

receipt in the scanned image.  

Figure 5 presents all the identified clusters found and their 

minimum bounding rectangles using Spectral clustering 

algorithm. All four receipt image 

sections, RI1, RI2, RI3, and RI4 are extracted from the image.  

4. POST PROCESSING IMAGES WITH 

OCR 
There has been a lot of research done in the area of Optical 

Character Recognition (OCR) [1]. There are several 

approaches and software available to identify text from 

scanned images. One of the popular libraries is Google Vision 

API. Each of the receipt image sections are post processed 

using Google Cloud Vision APIs [9] to identify the total 

amounts paid by the expense report submitter. The proposed 

approach was accurately able to identify the amounts and 

match them to the amounts specified in the main expense 

report by the user.  

The proposed approach was executed on a number of (105) 

scanned expense report images. In 93% of the cases, Spectral 

clustering was able find proper clusters. In addition, the 

approach was tested on different image resolutions including 

72 DPI, 144 DPI, 200 DPI and 300 DPI. Image resolution 

didn’t change the results. However, when the receipts are 

overlapping or very close to each other, it fails to find 

accurate clusters. Additional heuristics such as default 

minimum and maximum widths of receipts can be used to aid 

this clustering algorithm to identify proper clusters.  

5. CONCLUSIONS 
In this paper, an approach is presented and has been used in 

order to develop receipt processing software for identifying 

different receipts in a scanned multi-receipt image for 

automated recognition of amounts in the receipts. This greatly 

Figure 5: Clusters found by Spectral clustering algorithm 
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aids in the faster processing of expense reports that have 

scanned copies of the receipts. A scanned multi-receipt image 

is preprocessed to create a manageable data set that contains a 

set of rectangles representing objects and text in a receipt. 

Using Spectral clustering, all the identified minimum 

bounding rectangles are clustered and the associated receipt 

image sections are obtained. Once the receipt sections are 

identified, OCR library is executed on each of the sections to 

identify the expensed amounts in the receipts that aid in the 

faster approval of expense report.  Future research can be 

done in this area to address the problem with overlapping 

and/or closely placed receipts in the scanned image. 

Additional heuristics such typical receipt width can be used to 

separate clusters containing multiple receipts if they are 

closer. 
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