
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

14

Identification of Receipts in a Multi-receipt Image using

Spectral Clustering

Siddharth Garimella
Saint Francis High School

1885 Miramonte Ave
Mountain View,

CA 94040

ABSTRACT

In order to submit expense reports, multiple receipts are often

scanned on a single page and the scanned images are

submitted along with the expense report in order to get

expenses reimbursed. These scanned images are manually

verified to check the validity of the claimed expenses. In this

paper, a method is presented to isolate receipt segments in an

image and use Optical Character Recognition (OCR) to

identify receipt amounts, reducing validation time and effort.

Scanned images are processed to find the contours of all high-

contrast objects in receipts, including letters. Minimum

bounding rectangles (MBRs) are found for each of the

contours. Spectral clustering is used to group these MBRs in

order to find receipt clusters which correspond to individual

receipts. These are then processed with OCR to aid the user

with validation.

General Terms

Clustering, Pattern Recognition, Receipt Recognition, and

Spectral Clustering Algorithm.

Keywords

Clustering, Pattern Recognition, Receipt Recognition, and

Spectral Clustering Algorithm.

1. INTRODUCTION
With the advent of cloud computing and SaaS (Software as a

Service) applications, several enterprises now use expense

report management cloud applications for processing expense

reports. Expense reports contain a list of expenses and a set of

scanned receipts. These receipts are manually validated in

order to process expenses by reviewers and processors. Some

of these applications try to use an OCR approach on the

scanned receipts in order to identify the provider name and the

total amount. However, these applications assume that each

receipt is scanned individually. In reality, most of the expense

reports are filed with multiple receipts scanned on a single

page, often precluding the use of such applications without

further processing the image. In this paper, an approach using

Spectral clustering is presented to identify individual receipts

in a multi-receipt image, extracting each one out for OCR

processing. This approach greatly reduces the processing

overhead of manually trying to locate a receipt in an image

and matching the corresponding amount to the claimed

amount of the receipt.

Several techniques are used to recognize text in an image

using various Optical Character Recognition techniques [1].

These techniques assume that text is located in one area

(block) of the image. However, if a single image has multiple

blocks of text, it needs to be pre-processed and the text blocks

need to be extracted in order to identify text in a meaningful

way. In the context of current expense report management

applications, each of the text blocks correspond to a receipt

that is presented as a proof for that expense report. If the

background image has high contrast with the receipt, it is

relatively easy to identify the receipt’s contours. However,

most scanned images have white backgrounds, complicating

this problem. With new HD scanners and cameras, high

resolution images help to recognize the text in each of the

receipts with great accuracy once they are identified and

separated from the rest of the image.

In this paper, an approach is presented to pre-process the

image and use Spectral clustering to identify receipt blocks in

scanned images with a white background. Identified receipts

are further processed by an OCR module in order to identify

information that aids in faster expense report reviews and

approvals.

2. PRE PROCESSING OF SCANNED

IMAGE
A scanned image is expected to have one or more receipts in it

and it is assumed that the number of receipts, which is

provided in the expense report, is known. If the background

color provides proper contrast, it is relatively easy to identify

the receipt contours. In this paper, it is assumed that the

scanned image background is white, as most scanners produce

an image with a white background, as shown in the example

in Figure 1. For clarity, all four receipts are labeled with

minimum bounding rectangles on a scanned image, I, with

width, W, and height, H.

Let us consider that each image has n receipts R1, R2, R3... Rn

that are included in it. Each receipt, i, occupies a rectangular

area with width, wi , and height, hi, and has lower left hand

corner coordinates, (xi , yi). It is expected that receipts occupy

a rectangular area and are typically aligned with the scanned

image and also don’t overlap with each other. Each receipt

has a set of objects that include letters, logos, signatures, etc.

They all are located in a specific rectangular area. The

example, shown in Figure 1, contains 4

receipts R1, R2, R3, R4.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

15

One simple approach is to consider all pixels as data points

and use general clustering algorithm to find clusters of

receipts. This approach suffers from two problems. The first is

that the large data set (the number of pixels on the scanned

image) is difficult to cluster and the second is that clusters that

are obtained may not be rectangular. For example, if the page

is scanned at 144 DPI (Dots Per Inch), a letter sized, 8.5 by 11

inch scanned image contains 1,938,816 pixels. Computing a

similarity matrix, approximately 2 trillion entries, and

identifying clusters will take up unusual amount of memory

and computing power. In order to achieve a more

computationally efficient and effective method, it is important

to pre-process the image and generate a meaningful dataset

before further processing with clustering. The preprocessing

steps involve the following:

1. Convert the colored image into its grayscale equivalent

2. Blur the image using a median filtering algorithm

3. Run Canny Edge algorithm to highlight all contours in

the image

4. Find MBRs (Minimum Bounding Rectangles) for all the

contours found in the image

5. Remove any rectangles with insignificant areas

6. Remove any rectangle that is contained in another

rectangle

The above steps help to create a small data set that is easy to

process and cluster. In the first step, any colored image is

converted into grayscale. Most of the images are corrupted by

noises due to faded receipts, scanner resolution, and

background noise. There are linear or nonlinear filter methods

to reduce noise. The median filter, a nonlinear filter, has been

widely used in digital image processing because of its good

edge retaining characteristics while reducing impulse noise

ability [2]. The median filter is a rank-order filter. A pixel

value of the digital image is replaced by the median value of

the neighborhood pixels. The medium value of the ranked

neighborhood pixels is used to replace the noisy value. The

median filtering output calculated using I1 x, y =

Figure 1: A Scanned Multi-receipt Image

Figure 2: Image output at the end of Step 2 and Step 3

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

16

Medium{I x − i, y − j , i, j ∈ M }, where I x, y , I1 x, y are

the pixel values at x, y of the original image and the output

image respectively, M is a two-dimensional mask and the

mask size is m × m. Typically, the value of m is odd such as

3 or 5. In the second step, a median filter is applied on the

image to reduce noise in the image. Figure 2 shows the result

after applying medium filter for m = 3 in this Step 2.

In the third step, all edges or contours are detected. The

purpose of edge detection is to help reduce the amount of data

in an image by using the detected contours to process the

image instead of whole image. There are several algorithms to

detect edges that have been proposed in the literature Canny

Edge detection algorithm developed by Jon F. Canny[3] is the

standard for edge detection methods still used in research. In

this paper, Canny method is used to identify all edges or

contours in the image. By processing image I1with Canny

edge detection algorithm, it will obtain a set of contours or

edges, E = {e1, e2, e3, e4, … . , eP} where P is the number of

contours identified in the image and each edge has a set of

points, ei = {c1, c2, c3, c4, … . , ciq }. Figure 2 shows the output

of identified contours using the Canny Edge detection

algorithm.

In the fourth step, a minimum bounding rectangle, Ri , is

identified for each of the detected contours, ei . This is done by

finding minimum and maximum x and y values for all points

in the contour. At the end of this step, it will have a set of

rectangles representing the data. For properly scanned

receipts, ideally, each of the characters in the receipt should

have a rectangle. Sometimes, receipt edges will show as long,

thin rectangles with insignificant areas. These rectangles often

mislead clustering algorithms. In fifth step, all long, more than

144 pixels, and thin, less than 10 pixels, rectangles are

removed from the data. Note that these threshold values

depend on the resolution of the scan, DPI (Dots per Inch). In

the last step, all rectangles that are fully contained in other

rectangle(s) are also removed. This step reduces data further.

At the end of this step, it will have a minimal set of rectangles

in the two dimensional space. In Figure 3, the results after

Steps 4, 5 and 6 on the original scanned image shown in

Figure 1 are presented.

In the next section, a Spectral clustering algorithm is used on

this set of rectangles to identify receipt rectangle areas in the

scanned image.

3. CLUSTERING DATA
After preprocessing the scanned image, the data comprises of

a set of P rectangles that need to be clustered. As mentioned

before, the number of clusters to be identified based on the

data is known in the expense report.

Clustering helps to find pattern associations by forming

groups of patterns such that a pattern in a group is more

similar to other patterns in the same group when compared to

patterns in other groups. Many clustering approaches have

been proposed in the literature [4]. Many of the conventional

clustering approaches are numerical clustering approaches

which assume that patterns are points in a ddimensional space

and perform clustering by defining a (dis)similarity measure

[5]. In the current context, clustering helps to group rectangles

that belong to a receipt into a single cluster. Once the clusters

are identified, the corresponding receipts can be extracted

from the image for OCR (Optical Character Recognition)

processing. In order to employ a clustering algorithm, a

distance measure needs to be defined between two data items.

In case of point data in d dimensional, distance measure can

be a simple Euclidean distance. However, rectangles are two

dimensional objects with width and height. The distance

between two rectangles cannot be a simple Euclidean distance

Figure 3: Image output at the end of Step 4, Step 5 and Step

6

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

17

as sometimes they overlap and sometimes they may be

touching on one of the axis. The following approach is used to

find the distance between two rectangles r1 x1, y1, x2, y2
and r2 x1, y1, x2, y2 . Each rectangle has (x1, y1) as upper

left hand corner and (x2, y2) as lower right hand corner. Here

r1. x1refers to x1 coordinate of r1. The distance,

 Distance(r1,r2), between r1 and r2 is computed using the

following distance function presented in Figure 4.

Distance(r1,r2)

Begin

 If r1 and r2 are overlapping then return 0.0

 Else

 Begin

 // Find the mostLeft and mostRight rectangles

 Rectangle mostLeft, mostRight, upper, lower;

 Double xDiff, yDiff;

 If (r1 . x1 < r2. x1) then mostLeft = r1 else mostLeft = r2;

 If (r1 . x1 > r2. x1) then mostRight = r1 else mostRight = r2;

 If mostLeft. x1 == mostRight. x1 xDiff = 0.0

 Else xDiff = max 0.0, mostRight. x1 – mostLeft. x2 ;

 // Find the upper and lower rectangles

 If (r1 . y1 < r2 . y1) then upper = r1;

 Else upper = r2;

 If (r1 . y1 > r2. y1) then lower = r1;

 Else lower = r2;

 If upper. y1 == lower. y1 yDiff = 0.0

 Else yDiff = max 0.0, lower. y1 – upper. y2 ;

 // Find the distance

 Return sqrt(xDiff * xDiff + yDiff *yDiff);

 End

End

Figure 4: Distance measure between two rectangles.

A similarity matrix, SP×P , can be calculated by subtracting the

distance between two rectangles from the maximum of the

distances’ between any two rectangles in the data set. Note

that P represents the total number of rectangles in the data set.

Several clustering algorithms were evaluated including K-

means and found that Spectral clustering is suitable for

finding proper clusters in this type of data set. The Spectral

clustering method is easy to implement and is performant for

sparse data sets that contains thousands of data items. In

addition, it considers data clustering as a graph partitioning

problem without any assumption on cluster structure. For

more information theory behind Spectral clustering, please

refer to [6]. Spectral clustering has two stages. In the first

stage, it forms an associated Laplacian matrix [7], computes

eigenvalues and eigenvectors, and maps points to lower

dimensional representation based on eigenvectors. In the

second stage, it assigns data items to one or more classes

based on new data representation. In this paper, the SMILE[8]

(Statistical Machine Intelligence and Learning Engine) library

(Smile) is used to perform Spectral clustering using the

distance measure presented in Figure 4. Once clusters are

obtained, Minimum Bounding Rectangles for each of the

clusters are computed using the data items in the

corresponding cluster. Each of these rectangles identifies a

receipt in the scanned image.

Figure 5 presents all the identified clusters found and their

minimum bounding rectangles using Spectral clustering

algorithm. All four receipt image

sections, RI1, RI2, RI3, and RI4 are extracted from the image.

4. POST PROCESSING IMAGES WITH

OCR
There has been a lot of research done in the area of Optical

Character Recognition (OCR) [1]. There are several

approaches and software available to identify text from

scanned images. One of the popular libraries is Google Vision

API. Each of the receipt image sections are post processed

using Google Cloud Vision APIs [9] to identify the total

amounts paid by the expense report submitter. The proposed

approach was accurately able to identify the amounts and

match them to the amounts specified in the main expense

report by the user.

The proposed approach was executed on a number of (105)

scanned expense report images. In 93% of the cases, Spectral

clustering was able find proper clusters. In addition, the

approach was tested on different image resolutions including

72 DPI, 144 DPI, 200 DPI and 300 DPI. Image resolution

didn’t change the results. However, when the receipts are

overlapping or very close to each other, it fails to find

accurate clusters. Additional heuristics such as default

minimum and maximum widths of receipts can be used to aid

this clustering algorithm to identify proper clusters.

5. CONCLUSIONS
In this paper, an approach is presented and has been used in

order to develop receipt processing software for identifying

different receipts in a scanned multi-receipt image for

automated recognition of amounts in the receipts. This greatly

Figure 5: Clusters found by Spectral clustering algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 2, December 2016

18

aids in the faster processing of expense reports that have

scanned copies of the receipts. A scanned multi-receipt image

is preprocessed to create a manageable data set that contains a

set of rectangles representing objects and text in a receipt.

Using Spectral clustering, all the identified minimum

bounding rectangles are clustered and the associated receipt

image sections are obtained. Once the receipt sections are

identified, OCR library is executed on each of the sections to

identify the expensed amounts in the receipts that aid in the

faster approval of expense report. Future research can be

done in this area to address the problem with overlapping

and/or closely placed receipts in the scanned image.

Additional heuristics such typical receipt width can be used to

separate clusters containing multiple receipts if they are

closer.

6. ACKNOWLEDGMENTS
I would like to thank my managers at Infinira Software for

providing research opportunity, guidance and support for my

research work on developing a library for receipt recognition

software.

7. REFERENCES
[1] Mori, S., Suen, C. Y., and Yamamoto, K. 1992.

Historical Review of OCR Research and Development,

IEEE Proceedings, vol. 80, no. 7, 1029-1058.

[2] Huang, T. S. and Tang, G. T. 1979. A fast two-

dimensional median filtering algorithm, IEEE Trans

Acoustics, Speech, and Signal Processing, vol.27, no. 1,

13- 18.

[3] John Canny. 1986. A computational approach to edge

detection. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, PAMI-8(6):679–698.

[4] Jain, A. K. and Dubes, R. C. 1988. Algorithms for

Clustering Data. Englewood Cliffs, NJ: Prentice-Hall.

[5] Jain, A. K., Murty, M. N., and Flynn, P. J. 1999. Data

clustering: A review. ACM Computing Surveys, vol.

31(3), 264-323.

[6] Ng, A. Y., Jordan, M. I., and Weiss, Y. 2002. On spectral

clustering: Analysis and an algorithm. Advances in

Neural Information Processing Systems 14, volume 14,

849-856.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian

Eigenmaps for Dimensionality Reduction and Data

Representation. Neural Computation, vol. 15, 1373-1396

[8] Smile – Statistical Machine Intelligence and Learning

Engine (http://haifengl.github.io/smile/).

[9] Ray Smith. 2007. Tesseract OCR Engine,

https://tesseract-

ocr.googlecode.com/files/TesseractOSCON.pdf, Google,

Inc.

IJCATM : www.ijcaonline.org

http://haifengl.github.io/smile/
https://tesseract-ocr.googlecode.com/files/TesseractOSCON.pdf
https://tesseract-ocr.googlecode.com/files/TesseractOSCON.pdf

