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ABSTRACT 

Reliability analysis is often based on stochastic discrete event 

models like Markov models or stochastic Petri nets. For 

complex dynamical systems with numerous components, 

analytical expressions of the steady state are tedious to work 

out because of the combinatory explosion with discrete 

models. The contribution of this paper is to approximate the 

steady state of mono T-semiflow stochastic nets by mean of 

continuous Petri nets according to a modification of the 

maximal firing speed vector definition. This result is then 

used to accelerate convergence of stochastic simulations. 
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1. INTRODUCTION 
Reliability analysis is a major challenge to improve the safety 

of industrial processes. For complex dynamical systems with 

numerous interdependent components, such studies are mainly 

based on stochastic discrete event models like Markov models 

or Stochastic Petri Nets (SPN) [1], [2]. Such models are 

mathematically well founded and can be investigated in order 

to work out either analytical or numerical simulations. In case 

of large systems both studies become tedious particularly 

when rare events (i.e. with weak occurrence probability) are 

considered. The aim of this paper is to approximate the steady 

state of SPN or Markov models by mean of Continuous Petri 

Nets (CPN). The fluidification of discrete Petri nets has been 

recently investigated mainly for performance evaluation and 

control applications [3], [4], [5]. It is well known that 

fluidification leads to some unexpected results and numerous 

structural and behavioural properties are not preserved with 

fluidification. In general case, the steady state of a SPN 

cannot be approximated by the asymptotic behaviour of the 

corresponding continuous Petri net. The contribution of this 

paper is to show that, for a specific class of Petri nets (mono 

T-semiflow nets), and according to a modification of the 

maximal firing speeds, a proportionality relationship exists 

between both behaviours. This property is then used to 

accelerate convergence of stochastic simulations. SPN and 

CPN are combined for that purpose: stochastic simulation is 

worked out during a short time window of duration T. Then, 

the estimated values of stochastic average throughputs and 

mean markings are used to define the maximal firing speed 

vector of CPN. The asymptotic behaviour of CPN is shown to 

give an improved approximation of the stochastic steady state. 

The paper has five sections. Section two introduces SPN and 

CPN. Section three is about the analytic solution of steady 

state for SPN. Section four introduces the fluidification of PN 

and the problem is also stated. The fluidification of mono T-

semiflow SPN is discussed. Convergence acceleration and 

firing speed adaptation are investigated. 

 

2. STOCHASTIC AND CONTINUOUS 

PETRI NETS 

2.1.Petri nets 
A Petri net (PN) is defined as <P, T, WPR, WPO > where P={p1, 

p2, …., pi} is a finite set of n places and T = {Tj} is a not 

empty finite set of q transitions and  P∩T=Ø [6]. WPR = (wPR
ij) 

 (Z+)nq is the pre-incidence matrix (wPR
ij is the weight of arc 

from place Pi to transition Tj) and WPO = (wPO
ij)  (Z+)nq is 

the post-incidence one (wPO
ij is the weight of arc from 

transition Tj to place Pi) [3]. The PN incidence matrix W is 

defined as W = WPO – WPR  (Z)nq. The PN marking M is an 

application from the set of places P to the set of non negative 

integer numbers Z+ such that, for each place Pi  P, mi = M(Pi) 

is the number of tokens in place Pi. MI is the PN initial 

marking. 

Right and left natural annullers of the token flow matrix W are 

called T- and P-semi flows, respectively. When YT .W = 0. 

the net is said to be conservative and When W.x = 0. The net 

is said to be consistent.Ina consistent net, a vector x such that 

W. x = 0 represents a repetitive sequence, or in other words, a 

potential steady-state behaviour of the system in which all 

transitions are fired [7]. 

2.2. Stochastic Petri Nets(SPN) 
A Stochastic PN (SPN) is defined by a timed PN whose 

transitions firing periods are characterized by random 

distributions according to an exponential distribution of 

varying parameter round(nj(M)).j. This model has been 

introduced by Molloy [8], and several extensions have been 

developed [1]; [9] for the reliability analysis of reparable 

systems. A SPN, <PN, µ>, is a PN associated with a firing 

rate vector µ = (µj)  (R+)q. SPN Each transitions Tj is 

characterized by the firing rate µj so that µj.dt is the 

probability that the transition Tj will fire between t and t+dt 

when the transition Tj has been enabled, with degree 1 at t. 

The marking process of a SPN will be characterized according 

to the PN incidence matrices, the initial marking, the firing 

rates, the firing policy, the server policy and the execution 

policy [10], [9]. SPN that are considered in this paper satisfy 

the following assumptions: 

(H1) the firing policy is a race policy: the transition whose 

firing time elapses first is assumed to be the one that will fire 

next. 

(H2) the server policy is of type infinite server: the minimal 

period of each transition Tj is defined with a stochastic 

duration which is characterized according to an exponential 

distribution of varying parameter round(nj(M)).j. The 

function nj(M) is the enabling degree of transition Tj for 

marking M: 
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nj(M) = min (mi / w
PR

ij) for all Pi  °Tj  (1) 

where °Tj stands for the set of Tj upstream places and “round 

(.)” is the integer part of (.). 

(H3) the execution policy is of type « resampling memory »: 

at the entrance in a marking, the remaining firing time of all 

transitions that were enabled is reset. 

2.3. Continuous Petri Nets(CPN) 
Continuous Petri Nets (CPN) have been developed in order to 

provide a continuous approximation of the discrete behaviours 

of discrete PN [3]; [5]. A CPN is defined as < PN, Xmax > 

where PN is a Petri nets and Xmax = (xmax j)  (R+)q is the 

vector of maximal firing speeds. The marking mi(t)  R+ of 

each place Pi is a non-negative real valued function of time 

and each transition firing is a flow of marks in continuous PN. 

X(t) = (xj(t))  (R+)q is the firing speeds vector at time t. The 

marking evolution is given by (2): 

dM(t) / dt = W.X(t)                                                           (2) 

Finite server (i.e. constant speeds) and infinite server (i.e. 

variable speeds) semantics exist for CPN. In this paper only 

the infinite server semantic is considered: X(t) depends 

continuously on the marking of the places according to (3): 

xj(t) = xmax j.nj(M)                                                      (3) 

3. STEADY STATES OF SPN 
For live SPN that satisfy hypotheses (H1) to (H3) and with a 

finite number of states in the reachability graph, the marking 

process is mapped into a Markov model with state space 

isomorphic to the reachability graph of the SPN model [10]; 

[8]; [11] In that case the steady state of SPN can be worked 

out according to the steady state probabilities of the Markov 

model. 

Let define Xats = (xats j)  (R+)q as the average throughputs 

vector and Mmms = (mmms i)  (R+)n as the mean markings 

vector of SPN and ss = (ss k)  [0, 1]1 x N as the steady state 

probabilities vector of the associated Markov model with N 

states. Let us also define A(µ)  (R)N x N as the transition 

matrix of the Markov model (obtained according to the 

reachability graph R(PN, MI) of SPN and to the firing rate 

vector µ) and 1N = (1,…,1)T  (R+)N as the column vector of 

size N with all entries equal to 1. It is well known that ss is 

the single solution of equations (4) [12], [13]: 

ss . A(µ) = 0 

ss . 1N = 1                                                         (4) 

As a consequence, Xats and Mmms are obtained according to 

equations (5) and (6): 

1...

. ( ).ats j j j k ss k

k N

x n M 


 
  

 
                            (5) 

1...

.mms i k i ss k

k N

m m 


                                              (6) 

where Mk = (mk i)  (R+)n stands for the marking vector 

corresponding to the state k of the Markov model. 

This method gives an analytical solution of the SPN steady 

state in case of ergodic Markov models, but requires the 

computation of the transition matrix A(µ) and as a 

consequence the reachability graph R(PN, MI) of the SPN. For 

large systems, the computational time and memory 

requirements necessary to work out R(PN, MI) become 

important as long as the number N of states increases 

exponentially. In that sense, SPN can be considered as a 

stochastic estimator for the Markov model. The advantage of 

this estimator is that the determination of R(PN, MI) is no 

longer required, the drawback is the slow convergence of the 

stochastic estimator, particularly in case of rare events. 

The example of a simple manufacturing system (Fig. 1) with 5 

machines (i.e. T1 to T5), 3 tools with limited resources (i.e. P1 

to P3) and 2 buffers with limited capacities (i.e. {P4 ,P5} and 

{P6 ,P7}) illustrates this difficulty. The PN model of this 

system has 1 T-semiflow x = (2 2 2 2 1)T and 5 P-semiflows 

y1 = (0 0 0 1 1 0 0 0 0), y2 = (0 0 0 0 0 1 1 0 0), y3 = (0 0 1 0 0 

0 0 1 1), y4 = (1 0 0 1 0 0 0 1 1) and y5 = (0 1 0 0 0 1 0 1 1). 

As a consequence only the flow of transition T5 and the 

marking of places P1, P2, P8 and P9 will be considered. Other 

flows and markings are given by (7): 

 

Fig. 1. A simple manufacturing system with firing rate 

vector µ = (1 1 1 1 1)
T
 and initial marking MI = k.(6 6 4 0 3 

0 3 0 0)
T
 [5]. 

x1 = x2 = x3 = x4 =2.x5 

m4 = y4.MI – m1-m8-m9 

m6 = y5.MI – m2-m8-m9 

m3 = y3.MI – m8-m9    (7) 

m5 = y1.MI – y4.MI + m1+m8+m9 

m7 = y2.MI – y5.MI + m2+m8+m9 

Equations (7) hold for SPN and CPN. Steady state markings 

and flows are reported in Table I with respect to initial 

marking. 

Table 1. Number of states, average throughputs and mean 

markings of SPN from fig. 1 in function of k 

K N  x ats 5 mats1 mats2 mats8 mats9 

1 205 0.50 1.75 1.75 1.00 1.48 

2 1885 1.13 3.51 3.51 2.25 2.75 

3 7796 1.77 5.20 5.21 3.54 4.07 

4 22187 2.42 6.97 6.91 4.84 5.36 

       

       

4. FLUIDIFICATION OF SPN 

4.1. Fluidification of PN 
The steady state of a SPN = <PN, µ> and the one resulting of 

a CPN = < PN, Xmax > with same structure, initial marking and 

Xmax = µ are in general case not identical. For example, the 

steady state of the PN in Fig. 1 considered as continuous is 

given in Table II. It can also be noticed that the difference 

between SPN and CPN steady state decreases with respect to 
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the marking. More generally, a PN can be live as discrete and 

non-live as continuous. In a similar way, a discrete bounded 

system may be unbounded as continuous [17]; [5]. Moreover, 

like in discrete nets, the throughput of a CPN does not fulfil in 

general any monotonicity property, neither with respect to the 

initial marking, nor with respect to the structure of the net, nor 

with respect to the transitions rates. [4]. The throughput of a 

CPN is not in general an upper bound of the throughput of the 

discrete PN [4]. 

Table 2. Average throughputs and mean markings of CPN 

from fig. 1 in function of k 

K x atc 5  matc 1 matc 2 matc 8 matc 9 

1 0.67 1.67 1.67 1.33 1.33 

2 1.33 3.33 3.33 2.67 2.67 

3 2 5 5 4 4 

4 2.67 6.67 6.67 5.33 5.33 

      

      

Some results exist to find upper bounds of the steady state for 

CPN and also for discrete PN according to the resolution of 

linear programming problems [2];[5]. But no comparison 

exists between both upper bounds (discrete and continuous 

ones). Another promising solution is to consider subclasses of 

PN structures. Mono T-Semiflows nets (MTS) are of 

particular interest as long as MTS are conservative and have a 

single minimal T-semiflows x  (Z+)q (i.e. W.x = 0; the set of 

non zero entries of x is not a proper superset of the support of 

any other semiflow and the g.c.d of x entries is 1) whose 

support contains all the transition (x >0). As a consequence, 

for MTS, the flow in the steady state is proportional to x and 

an analytical expression of the asymptotic flow Xatc can be 

stated according to the CPN structure and maximal firing 

speed vector [4]. For neutral strongly connected state graphs 

CPN, average throughputs and mean marking are also 

obtained according to the study of elementary circuits and T – 

coverture of the net [13], [15], [18]. At last, let us notice the 

discussion according to a local approximation of the SPN [16], 

[12], [11]; [17] for join – free SPN and CPN. 

4.2.Problem statement 
The aim of this section is to provide some theoretical and 

numerical tools to approximate the steady state of a given 

SPN using the asymptotic behaviour of a CPN. When the 

structure, initial marking and transition rate are fixed, the 

steady states of SPN and CPN are generally not identical. The 

problem will be relaxed regarding the definition of the 

maximal firing speed of CPN and we study if the mean 

markings and average throughputs of a given SPN = <P, T, 

WPR, WPO, MI, µ> that satisfies assumptions H1 to H3 can be 

by the asymptotic behaviour of a CPN = <P, T, WPR, WPO, MI, 

Xmax> with infinite server semantic. Fluidification of MTS PN 

is considered in section VI.C. Convergence accelerator for 

stochastic estimator are explored in section VI.D (Xmax is 

assumed to be constant) and firing speed adaptation is 

investigated in section VI.E (Xmax is assumed to be function of 

time). 

4.3.Fluidification of MTS SPN 
Let define the average throughput vector (i.e. asymptotic 

firing speeds vector) Xatc = (xatc j)  (R+)q and the mean 

marking (i.e. asymptotic marking vector) Mmmc= (mmmc i)  

(R+)n of CPN. Similarly, Xats = (xats j)  (R+)q refers to the 

average throughput and Mmms= (mmms i)  (R+)n refers to the 

mean marking of SPN. In the following we suppose that the 

considered CPN and SPN have steady states (i.e. a stationary 

average throughput and a stationary mean marking). 

Lemma 1: If a SPN (resp. CPN) has a steady state, then W. 

Xats = 0 (resp. W. Xatc = 0) 

Proof: If SPN has a steady state, then for each place Pi, the 

mean marking mmms i is stationary and leads to: 

1...

. 0ij ats j

j q

w x



 (8) 

As a conclusion W. Xats = 0. The proof is similar for CPN. A 

proof can also be found in [19];[20]; [17]. 

Let consider a SPN = <P, T, WPR, WPO, MI, µ>, define the 

CPN(Xats, Mmms) = <P, T, WPR, WPO, MI, Xmax> with infinite 

server semantic and: 

xmax j = wPR
ij.(xats j) / (mmms i) where Pi = °Tj 

mmms i / w
PR

ij.= min (mmms k / w
PR

kj) for all Pk  °Tj (9) 

CPN(Xats, Mmms) has the same structure and initial marking as 

SPN and the maximal firing speeds are defined according to 

the steady state of the SPN. 

Lemma 2: The asymptotic firing speeds vector Xatc and 

marking vector Mmmc of MTS CPN(Xats, Mmms) satisfy 

equation (10):  

For all Tj, 

atc j mmc i

ats j mms i

x m

x m
 

  (10) 

with mmms i / w
PR

ij.= min (mmms k / w
PR

kj) for all Pk  °Tj.  

Equation (10) means that for all transitions Tj, the ratios of 

average throughputs xatc j / xats j are identical and equal to the 

ratios of mean markings mmmc i / mmms i of the Tj input places 

Pi that drive the asymptotic behaviour of transitions Tj. This 

property will be used in next section to accelerate 

convergence. 

Proof: For all transitions Tj, the asymptotic firing speed xatc j 

satisfies equation (2) and is given by: 

xatc j = (wPR
ij).((xats j) / (mmms i)).min (mmmc k / w

PR
kj) 

for all Pk  °Tj. For join free CPN, the result is obvious: xatc j 

= (wPR
ij).((xats j)/(mmms i)).((mmmc i)/(w

PR
ij)) = (xats j).(mmmc i) / 

(mmms i) = i.xats i with Pi = °Tj. Moreover the parameters i 

are identical because the considered CPN is MTS. Equation 

(10) is obtained as a consequence. 

For non join free but MTS CPN, all candidates for asymptotic 

firing speeds vector Xatc will satisfy: Xatc = . Xats. As a 

consequence we have: xatc j / xats j = min (mmmc k / w
PR

kj).(w
PR

ij) 

/ (mmms i). =  for all Pk  °Tj, and for all j = 1,…,q. A 

necessary condition to be satisfied by the mean markings of 

CPN is min (mmmc k / w
PR

kj) = min (mmms k / w
PR

kj) for all Pk  

°Tj and for all   j = 1,…,q. 

For the example described in Fig. 1,  = 1: the steady state of 

the SPN can be obtained according to a CPN with maximal 

firing speed vector: Xmax = (0.81, 0.81, 0.65, 1, 0.67)T (for 

example xmax 5 = wPR
95.(xats 5) / (mmms 9) = 2.0.5/1.48 = 0.67). 

Convergence of the CPN markings and throughputs is 

illustrated on Fig. 2 and Fig. 3, evolutions (solid lines) can be 

compared with SPN simulations (dashed lines). 
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Fig. 2. Throughput evolution Xatc(t) and Xats(t) of CPN 

(solid line) and SPN (dashed line) in function of time, for 

example of Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Markings evolution Mmmc(t) and Mmms(t) of CPN 

(solid line) and SPN (dashed line) in function of time for 

example of Fig. 1. 

4.4.Convergence acceleration 
At a first glance, the use of CPN(Xats, Mmms) seems to have a 

limited interest as long as the average throughputs and mean 

markings of the stochastic discrete model are required in order 

to work out Xmax. But, the preceding result can be used in 

order to accelerate the convergence of stochastic simulations. 

The idea is to replace in equation (9) the exact average 

throughputs Xats and mean markings Mmms resulting from the 

analysis of the Markov model by their estimated values 

Xats(T) and Mmms(T) resulting from SPN simulation during a 

(short) time window of duration T and then to stop SPN 

simulation and to work out analytically the CPN steady state 

with an approximated maximal firing speed vector. The 

figures 4 and 5 depict the quadratic errors EX and EM  with 

respect to Xats (i.e. EX = (Xats - Xatc)
T.(Xats - Xatc)) and Mmms 

(i.e. EM = (Mmms – Mmmc)
T.(Mmms – Mmmc)) worked out over 

the throughputs of all transitions and over the marking of all 

places. The errors obtained with CPN steady state calculation 

(solid lines) are nearly ever lower than the one obtained 

without CPN (dashed lines). In other words, the CPN steady 

state calculation can be used to accelerate the convergence of 

average throughputs and mean markings estimation. The gain 

in rapidity gr is about 2 to provide the same accuracy and the 

gain in precision gp is also about 2 for the same simulation 

duration. 

Fig. 4. Quadratic error on average throughputs for CPN 

(solid line) and SPN (dashed line) in function of time 

Fig. 5. Quadratic error on mean markings for CPN (solid line) 

and SPN (dashed line) in function of time. 

4.5.Firing speed adaptation 
When the steady state of SPN is unknown and cannot be 

estimated, the convergence acceleration described in section 

VI.E is no more applicable. In that case, the maximal firing 

speed vector Xmax can be considered as a function of time and 

adapted with equation (11) in order to compensate the error on 

the firing speeds and markings: 

      max .diag( ). .T

mms c ats cX W M M X X    
 (11) 

under the constraint Xmax  0,where  is the adaptation 

parameter arbitrary fixed to 0.1, diag() (R+)q x q is the 

diagonal matrix with SPN firing rates. 

Consider for example the SPN described in Fig.6 [4], [19]. 

This PN has 1 T-semiflow x = (1 1 1 1)T and 2 P-semiflows y1 

= (0 0 0 1 1), y2 = (1 1 2 1 0). As a consequence only the flow 

of transition T1 and the marking of places P1, P2 and P4 will be 

considered. The corresponding Markov model has 31 states 

and leads to steady state detailed in table 3. In the same table 

are also reported the steady state obtained for CPN with Xmax 

=  (CPN1) and with Xmax given by equation (9) (CPN2). 

Table 3. Average throughputs and mean markings of SPN 

and CPN from fig. 6. 

 x at 1  mat 1 mat 2 mat 4 

SPN 0.80 1.03 0.80 3.01 

CPN1 0.54 0.54 0.54 3.82 

CPN2 1.33 1.70 1.33 1.70 

t(s) 
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Fig. 6. An SPN with firing rate vector µ = (3 1 1 10)
T
  and 

initial marking MI = (5 0 0 0 4)
T
 [4] 

One can notice that the average throughputs and mean 

markings of CPN2 verify the proportionality relations (10):  

1 2 3

1 2 3

1.6582
atc j mmc mmc mmc

ats j mms mms mms

x m m m

x m m m
     

j=1 ,…,4 

Let us notice that place P4 is not concerned in the previous 

relation because mmms 4 / w
PR

42  > mmms 1 / w
PR

12. This relation 

is not verified in the case of CPN1. Marking and troughput 

evolutions are depicted in Fig 7 and 8. 

Fig. 7. Markings evolution of CPN (solid line) and SPN 

(dashed line) in function of time for example of Fig. 6. 

An algorithm identical to the one proposed in section VI.D can 

be used to accelerate the convergence of the stochastic 

estimator of the average throughputs Xats and mean markings 

Mmms of the Markov model. The adaptation parameter 

provided by equation (10) and depicted in Fig. 9 is worked out 

online with estimation Xats(T) and Mmms(T) of Xats and Mmms. 

Then, SPN simulation is stopped and the CPN steady state is 

worked out. The Fig 10 and 11 depict the quadratic errors EX 

and EM with respect to Xats and Mmms. 

 

 

 

Fig. 8. Throughput evolution of CPN (solid line) and SPN 

(dashed line) in functionn of time for example of Fig. 6 

 

Fig. 9. Adaptation parameter xmax 1 / 1 for example of  

Fig. 10. Quadratic error EX for CPN (solid line) and SPN 

(dashed line) in function of time. 

 

 

 

 

 

 

 

 

 

Fig. 11. Quadratic error EM for CPN (solid line) and SPN 

(dashed line) in function of time. 

5. CONCLUSIONS 
In this paper, MTS are considered because this kind of PN 

have been proved to have a unique parameter . Then the 

convergence of SPN to steady state has been accelerated 

thanks to CPN. The maximal firing speed vector of CPN has 

been defined according to the SPN average throughputs and 
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mean markings. As long as these values are unknown, the 

exact values are estimated thanks to a SPN simulation over a 

short time interval. Two solutions are investigated. The first 

solution is to define the maximal firing speeds as constant 

values and the second one is to define these speeds as time 

varying parameters. Both solutions can be used for 

convergence acceleration. In our future works, we will 

continue our investigation about SPN steady state 

approximation by means of CPN. 

The future work is to investigate continuous approximations 

directly derived from the SPNs transition firing rates. 
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