
International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

1

CCOM – A Communicational Cohesion Metric for Object-

Oriented Programming

H. B. Vincentraj
Department of Computer Science

Bishop Heber College
Trichy-17, India

S. Hari Ganesh
Department of Computer Science

H.H. The Rajah’s College
Pudukottai -1, India

ABSTRACT
Object-oriented software metrics are the traditional quality

assessment metrics that are aimed to ensure the goodness of the

software. Almost all benefits of the OO programming have

been addressed through software metrics except the factor that

measures the types of cohesion incorporated in software

modules. Software is measured as qualitative with the

incurrence of high cohesion with low coupling. Hence, in our

previous works, we have proposed certain cohesion metrics for

assessing the functional and sequential level of cohesion in the

software. As a continuation, in this work, a novel

Communicational Cohesion Metric (CCOM) is proposed to

evaluate the level of communicational cohesion of the

software. The theoretical validation of the proposed CCOM is

performed and compared with the traditional LCOM metric for

elucidating the need for CCOM.

Keywords

Software metrics, LCOM, Cohesion, Coupling, CCOM

1. INTRODUCTION
Software metric is a quantitative measure or degree with which

of quality of the software system is estimated. Since

quantitative measurements are essential in all sciences, there is

a continuous effort by computer science practitioners and

theoreticians to bring similar approaches to software

development [14]. Software metrics ensure the programmers

adequate confidence on the built product before its delivery.

The goal is to obtain reproducible and quantifiable

measurements, which may have numerous valuable

applications in scheduling and budget planning, cost

estimation, quality assurance testing, software debugging,

software performance optimization, and optimal personnel task

assignments. Software quality metrics have been the

measurement of the frequency of software defects or bugs.

Measurement of the various aspects of software quality is

considered to be an effective tool for the support of control

activities and the initiation of process improvements during the

development and the maintenance phases. These measurements

apply to the functional quality, productivity, and organizational

aspects of the project. Though software metrics are

incorporated almost in all phases of software development life

cycle, its core process is to verify the program code of the

software.

The traditional way of programming the software, may either

be procedure oriented and object oriented. Object oriented

design is becoming more popular in software development

environment. The metrics for object oriented design focus on

measurements that are applied to the class and design

characteristics. These measurements permit designers to access

the software early in process, making changes that will reduce

complexity and improve the continuing capability of the

design.

The term cohesion is defined as an “intra-modular functional

relatedness” in software. A highly cohesive module is often

preferable as it has a direct impact on reducing the complexity

of the program. There are six types of cohesion possible in a

module such as coincidental, logical, temporal, procedural,

communicational, sequential and functional with which the

coincidental cohesion represents a poor design of the module in

contrast to the functional cohesion. As the order of

representation of types of cohesion gradually moves, the

quality of cohesion also increases. Despite of the proposals of

various cohesion metrics, identification of the types of

cohesion is still required as it clearly depicts the quality of the

module. Hence, in this paper, a software metric is proposed to

measure the communicational cohesion of a module.

2. REVIEW OF LITERATURE
Kalantari [1] invented an approach based on fuzzy computing

of cohesion and coupling. They proposed that their approach

helps software engineering to calculate quality parameters with

metrics and coefficient of accuracy. The intension of their

study was how coupling and cohesion relations could be

analyzed. They found if coupling was being high and cohesion

was being low, the failure rate would be decreased and

reliability would be increased.

Gehlot et al [2] introduced a new criterion that focused on the

interactions between class methods and class instances and

developed a cohesion measurement tool for Java programs and

performed a case study on several systems. They proposed

certain measures of cohesion developed to assess the

reusability of Java classes. Their obtained results demonstrated

that class cohesion metric, based on the proposed cohesion

criteria, captured several pairs of related methods, which were

not captured by the existing cohesion metrics.

Panda et al [3] proposed a graph-based cohesion metric to

measure the maintainability of different program parts in an

object-oriented program and predict their fault proneness. The

authors computed the cohesion of the sliced component as a

measure to predict its correctness and preciseness. In addition,

they performed a theoretical validation with the proposed

technique against the existing guidelines of cohesion

measurement and compared it with some existing techniques.

The proposed new cohesion metric named affected component

cohesion (ACCo) was able to measure the maintainability of

different program parts and predict their fault proneness.

Mal et al [4] proposed class cohesion (CC) metric and

empirically validated against the open source software projects

to found the effective quality factors. Their study concluded

that CC continuously gave better correlation with Number Line

of Code (NLOC) compared to other existing cohesion metrics.

The average value of CC (CohS) of a system also predicted the

natures (understandability, modifiability, and maintainability)

of a system.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

2

Qu et al [5] showed that networks formed by software methods

and their calls exhibited relatively significant community

structures. Based on their findings they proposed two new class

cohesion metrics to measure the cohesiveness of object-

oriented programs. An experiment was conducted on 10 large

open-source Java programs to validate the existence of

community structures and the derived metrics gave additional

and useful measurement of class cohesion. As an application

they showed that the new metrics were able to predict software

faults more effectively than existing metrics.

Mann et al [6] presented an improved cohesion metrics through

inherited elements. They suggested that the inherited elements

of cohesion might increase or decrease upon the design

structure of super and sub classes. They proved that their study

would improve the applicability of existing cohesion metrics to

measure the requirement of refactoring the classes. The results

showed that there were some aspects related to inheritance

such as the concepts of public, private, protected and internal

elements require investigation.

Ibrahim et al [7] provided an assessment criterion for

measuring the quality of a software design. In this context,

inherited attributes and methods are considered in the

assessment. This offered a guideline for choosing the proper

Depth of Inheritance Tree (DIT) that referred to the nominated

classes for refactoring. Experiments were carried out on more

than 35K classes from more than 16 open-source projects using

the most used cohesion metrics.

Silva et al [8] presented an initial investigation about the

applicability of concern-based cohesion metric as a change

proneness indicator and also checked that the metric had a

correlation with efferent coupling. The authors conducted an

initial empirical assessment work with two small to medium-

sized systems. The results indicated a moderate to strong

correlation between LCC and change proneness, and also a

strong correlation between LCC and efferent coupling.

Dallal [9] conducted an empirical study by applying the LCOM

metric with and without considering special methods on classes

of two open source java applications and statically analyzed the

results of the experiment. Their results showed that the ability

of LCOM in indicating class quality slightly improved and

predicted the faulty classes when excluding special methods

from the LCOM computation.

Amol et al [10] introduced a framework for a comprehensive

metric to address SDLC requirements

 Integration of fault detection starting from

requirement and architecture.

 Making fault detection-related decisions at each

phase by explicit modeling of faults.

 Developing dedicated tools for fault detection

modeling; providing domain-specific application-

level fault prediction mechanisms.

Okike [11] presented a pedagogic evaluation and discussion

about the LCOM metric using field data from three industrial

systems. Their main objectives of the study was to determine

whether LCOM metric was appropriate in the measurement of

class cohesion and the determination of properly and

improperly designed classes in the studied systems. The result

of the study showed that the LCOM metric measures class

cohesiveness and was appropriate in the determination of

properly and improperly designed classes in the studied

system.

3. MOTIVATION
The poor design of program modules leads to the creation of

complex software which in turn increases the cost of software

development. Moreover, the maintenance phase of complex

software is also very costly in software life cycle. The

deployment of software metrics could potentially reduce the

feasible defects there by increasing the ease of maintenance.

The focus on developing metrics for identifying the highly

cohesive code implementation saves both cost and time for

maintenance and reuse of the project. As the acceptance of the

module also depends upon the types of cohesion, there is a

need to the invention of new metrics to classify the types of

cohesion assimilated in a module in order to make a qualitative

software product.

4. COMMUNICATIONAL COHESION

METRIC
Communicational Cohesion is the grouping up of methods that

operate on the same data within a class or module for

measuring the integrity of methods. Software with high

quotient of communicational cohesion ensures a good

representation of class design that proves the increased

integrity of methods within a module or class. Software metric

that evaluates the level of communicational cohesion in

software modules is a still being considered as a thrust area in

research which is yet to be focused. Hence, in this paper an

attempt is made to propose a communicational cohesion metric

(CCOM) for assessing the percentage wise communicational

cohesion that the software modules are designed with. The low

level communicational cohesion suggests developers for the

modification of software code by increasing the sharing of

attributes within the methods of class or modules. The CCOM

value of a module is the percentage fraction of sum of

intersecting variables between methods by both sums of

intersecting and non-intersecting variables between the

methods which is denoted using formula.

𝐶𝐶𝑂𝑀 =
𝐶𝑀

𝐶𝑀 + 𝑁𝐼𝑉𝐵𝑀
× 100%

CM is the communicational measure which is derived by

multiplying the sum of intersecting variables between methods

by two and can be represented using the formula shown in

Equation.

𝐶𝑀 = 2 × 𝐼𝑉𝐵𝑀

IVBM represents the sum of Intersection of Variables Between

Methods which is denoted using the formula for the

computation of IVBM.

𝐼𝑉𝐵𝑀 = ∀𝑖=1
𝑛 𝑚𝑖 ∩𝑚𝑗

𝑛

𝑗=𝑖+1

where „n‟ denotes the total number of methods in the module,

„mi‟ and „mj‟ denotes ith and jth methods whereas mimj is the

intersection of attributes of mi and mj. Finally, NIVBM

represents the sum Non-intersecting of Variables Between

Methods which is depicted in Equation.

𝑁𝐼𝑉𝐵𝑀 = ∀𝑖=1
𝑛 ! (𝑚𝑖 ∩𝑚𝑗)

𝑛

𝑗=𝑖+1

A software module with the CCOM 100% value denotes a

strong communicational cohesion and 0% value denotes weak

communicational cohesion. The implementation

communicational cohesion in software enhances the

modularity of software program.

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

3

5. ILLUSTRATION
The illustration of CCOM metric is evaluated against the

pseudo code of three java programs which is described

subsequently.

5.1. Pseudo Code: 1
Class EmpPayroll

{

Declare variables bsal, da, hra, netamount as double

Method get ()

{

Assign bsal as 5000

Assign da as 500

Assign hra as 1000

Calculate netamount by adding bsal, da, hra

}

Method disp ()

{

Print bsal, da, hra, netamount

}

Method main

{

Create object for EmpPayroll

Call method get ()

Call method disp ()

}

}

The class EmpPayroll has four variables such as „bsal‟, „da‟,

„hra‟, „netsalary‟ and two methods namely get () and disp ().

Therefore the total number of methods (n) is 2. The first step

in the calibration of CCOM is to compute the IVBM of a class.

Initially the variable i is set to 1 and denotes the get () method

as it in the first position in the order of method calls. Likewise,

the variable j is set to i+1 which is two, denotes the disp()

method as it is in the next consecutive position in the order of

method calls. Hence, the intersection of variables between i th

and jth methods is computed as follows:

i=1; mget = {bsal, da, hra, netamount}

j=2; mdisp = {bsal, da, hra, netamount}

mimj=mgetmdisp={bsal,da,hra,netamount}

𝐼𝐵𝑉𝑀 = ∀𝑖=1
2 𝑚𝑔𝑒𝑡 ∩𝑚𝑑𝑖𝑠𝑝 = 4

2

𝑗=2

Since, there are only two methods are represented in the

module the comparison is made only with those methods and

the IBVM, sum of intersecting variables between methods of

EmpPayroll is 4.

𝐶𝑀 = 2 × 𝐼𝐵𝑉𝑀 = 2 × 4 = 8

The NIBVM, sum of non-intersecting variables between the

methods of get() and disp() is 0. Hence, CCOM measure for

EmpPayroll is computed as:

𝐶𝐶𝑂𝑀 =
𝐶𝑀

𝐶𝑀 + 𝑁𝐼𝐵𝑉𝑀
=

8

8 + 0
× 100% =

8

8
× 100%

= 100%

As the CCOM value of EmpPayroll program is 100%, the class

is said to be communicational cohesive.

5.2. Pseudo Code :2
Class square

{

Declare variables a and b as double

Method first ()

{

Assign a as 10

Print square of a

}

Method second ()

{

Assign b as 20

Print square of b

}

Method main ()

{

Create object for square

Call m1 ();

Call m2 ();

}

}

Class square has two variables namely „a‟ and „b‟ and two

methods such as first() and second(). Therefore the total

number of methods „n‟ is 2. As per the sequence of method

calling, the method first () is called and the variables are

intersected with the next consequent method second () as

follows:

i=1, mfirst = {a}

j=2, msecond = {b}

mimj=mfirstmsecond={}

𝐶𝑀 = 2 × ∀𝑖=1
2 𝑚𝑓𝑖𝑟𝑠𝑡 ∩ 𝑚𝑠𝑒𝑐𝑜𝑛𝑑 = 2 × 0 = 0

2

𝑗=2

Since, there are only two methods are represented in the

module the comparison is made only with those methods and

the CM value is 0.

𝐶𝐶𝑂𝑀 =
0

0 + ∀𝑖=1
2 ! (𝑚𝑓𝑖𝑟𝑠𝑡 ∩𝑚𝑠𝑒𝑐𝑜𝑛𝑑)2

𝑗=2

× 100%

=
0

0 + 2
× 100% =

0

2
× 100% = 0%

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

4

The CCOM value for Square class is 0% which denotes that

the class is not communicational cohesive, and may be re-

modified to bind the methods of the module.

5.3. Pseudo Code :3
Class Mark

{

Declare ma1, ma2, ma3, tot and avg as double

Declare name and no as string

Method getpersonal ()

{

Assign no as “ug16cs204”;

Assign name as ”Ramya”;

}

Method getmark ()

{

Assign ma1as 78;

Assign ma2 as 64;

Assign ma3 as 72;

Calculate tot by adding ma1, ma2, ma3;

Calculate avg as tot/3;

}

Method disp ()

{

Print name, no, ma1, ma2, ma3, tot, avg

}

Method main ()

{

Create object for Mark

Call getpersonal ();

Call getmark ();

Call disp ();

}

}

The class Mark has seven variables and three methods with the

order of method calls as getpersonal (), getmark () and disp ().

Therefore the total number of methods „n‟ is 3. Initially the

variable i is set to 1 and denotes the getpersonal () method and

variable j is i+1 which is set to two, denotes the getmark()

method as it is in the consecutive order of method calls. Hence,

the intersection of two methods is computed as follows:

i=1, j=2

i=1, mgetpersonal = {no,name}

j=2, mgetmark = {ma1,ma2,ma3,tot,avg}

mimj=mgetpersonalmgetmark={}

𝐼𝐵𝑉𝑀 = ∀𝑖=1
3 𝑚𝑔𝑒𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ∩𝑚𝑔𝑒𝑡𝑚𝑎𝑟𝑘 = 0

3

𝑗=2

i=1, j=3

i=1, mgetpersonal={no,name}

j=3, mdisp={no,name,ma1,ma2,ma3,avg,tot}

mimj= mgetpersonal mdisp={no, name}

𝐼𝐵𝑉𝑀 = 0 + ∀𝑖=1
3 𝑚𝑔𝑒𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ∩𝑚𝑑𝑖𝑠𝑝 = 0 + 2 = 2

3

𝑗=3

i=1, j=4 limit exceeded

i=2, j=3

i=2, mgetmark={ma1,ma2,ma3,tot,avg,}

j=3, mdisp={no,name,ma1,ma2,ma3,avg,tot}

mimj= mgetmark mdisp={ma1,ma2,ma3,tot,avg}

𝐼𝐵𝑉𝑀 = 2 + ∀𝑖=2
3 𝑚𝑔𝑒𝑡𝑚𝑎𝑟𝑘 ∩𝑚𝑑𝑖𝑠𝑝 = 2 + 5 = 7

3

𝑗=3

i=2, j=4 limit exceeded

i=3, j=4 limit exceeded

i=4 limit exceeded

Hence, the sum of intersecting variables between methods of

class Mark is 7.

𝐶𝑀 = 2 × 𝐼𝐵𝑉𝑀 = 2 × 7 = 14

The NIBVM, sum of non-intersecting variables between the

methods can be calculated as

i=1, j=2

i=1, mgetpersonal = {no,name}

j=2, mgetmark = {ma1,ma2,ma3,tot,avg}

! mimj=!mgetpersonalmgetmark={no, name, ma1, ma2, ma3,

tot, avg}

𝑁𝐼𝐵𝑉𝑀 = ∀𝑖=1
3 ! (𝑚𝑔𝑒𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ∩𝑚𝑔𝑒𝑡𝑚𝑎𝑟𝑘) = 7

3

𝑗=2

i=1, j=3

mgetpersonal={no,name}

mdisp={no,name,ma1,ma2,ma3,avg,tot}

!mimj= !mgetpersonal mdisp={ma1, ma2,ma3,avg,tot}

𝑁𝐼𝐵𝑉𝑀 = 7 + ∀𝑖=1
3 ! (𝑚𝑔𝑒𝑡𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 ∩𝑚𝑑𝑖𝑠𝑝) = 7 + 5

3

𝑗=3

= 12

i=1, j=4 limit exceeded

i=2, j=3

i=2, mgetmark={ma1,ma2,ma3,tot,avg,}

j=3, mdisp={no,name,ma1,ma2,ma3,avg,tot}

!mimj= !mgetmark mdisp={no, name}

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

5

𝑁𝐼𝐵𝑉𝑀 = 12 + ∀𝑖=2
3 ! (𝑚𝑔𝑒𝑡𝑚𝑎𝑟𝑘 ∩𝑚𝑑𝑖𝑠𝑝) = 12 + 2

3

𝑗=3

= 14

i=2, j=4 limit exceeded

i=3, j=4 limit exceeded

i=4 limit exceeded

Hence, the sum of non- intersecting variables between methods

of Class Mark is 7. Hence, the CCOM value of the Mark class

is derived as follows

𝐶𝐶𝑂𝑀 =
𝐶𝑀

𝐶𝑀 + 𝑁𝐼𝐵𝑉𝑀
=

14

14 + 14
× 100% =

14

28
× 100%

= 50%

The evaluated programs are compared with the results of

standard LCOM metrics to be compared with the results of

CCOM and shown in Table 1.

Table 1 . Comparison of Standard LCOM with CCOM

Program Name LCOM CCOM

EmpPayroll -1 100%

Square 0 0%

Mark -3 50%

The values -3 and -1 in LCOM represent only the existence of

cohesion in methods, whereas the results of CCOM more

specifically represents the amount of communicational

cohesion that presents in the module with an intensive analysis

on the programs. Moreover, the results of LCOM do not

precisely describe the differentiation on -1 and -3, but CCOM

explicates that EmpPayroll is 100%, Square is 0% and Mark is

50% communicational which would be useful for further

acceptance or modification.

6. ANALYTICAL EVALUATION OF

CCOM
Many researches have proposed that the acceptance of a new

metric relies upon the satisfaction of certain properties that it

should fulfill. For example, Basili and Reiter [12] suggest that

metrics should be sensitive to externally observable differences

in the development environment, and must also correspond to

intuitive notions about the characteristic differences between

the software artifacts being measured. Weyuker [13] has

developed a formal list of properties for software metrics and

has evaluated a number of existing software metrics using

these properties. These properties include notions of

monotonicity, interaction, non-coarseness, non-uniqueness and

permutation. He developed nine properties.

Property1

Non-coarseness

    ()() R S R S   

Not all class can have the same complexity. If there are „n‟

numbers of classes in the module, CCOM does not rank all „n‟

classes as equally complex. .

Property 2

Granularity

 Let „z‟ be a non-negative number and there could be only

finite number of classes have the complexity z. If the number

of classes in large scale system is finite, the complexity value

of CCOM is also finite. Hence this property is satisfied.

Property 3

Non-uniqueness

   R S 

This property implies that there may be number of modules

have the same complexity. CCOM abides this property, if the

communicational cohesion of the modules is similar, and the

complexity of the modules is also similar.

Property 4

Design details are important

       ()()R S R S and R S    

The property affirms that though if two classes have the same

functionality, they may differ in terms of details of

implementation. If the design implementation of two modules

is different, CCOM produces different complexity values for

each module.

Property 5

Monotonicity

For all modules R and S such that

        (R R S and S R S      

Let the concatenation of two modules R and S be R+S. Hence,

this property states that complexity value of the combined class

may be larger than the complexity of the individual classes R

or S. CCOM abides this property if there is a possibility of

combining the modules R and S and would share the attributes

of the class while concatenation.

Property 6

Non-equivalence of interaction

        ()()()) R S T such that R S does not imply that R T S T         

This property states that if a new method is added to the two

existing classes R and S which has the same class complexity,

this property states that the complexities of the two new

combined classes may be different or the interaction between R

and T may be different than the interaction between S and T

resulting in different complexity values for R + T and S + T.

CCOM for sure yields different complexity values for both

classes R and S since T is dependent upon the fitness of the

classes R and S.

Property 7

Permutation

There are program bodies I and J such that J is formed by

permuting the order of the statements of I and (|I| = |J|). This

property is not taken into the consideration of object oriented

metrics.

Property 8

Renaming

    If R is a renaming of Q then R S 

If module R is renamed as S then |R| = |S|. This property

requires that renaming a module should not affect the

complexity of the module. CCOM does not have any impact

over the change of name of module, hence CCOM satisfies

property 8.

Property 9

Interaction increases complexity

International Journal of Computer Applications (0975 – 8887)

Volume 155 – No 5, December 2016

6

       ()() R S R S R S      

The property says that the class complexity measure of a new

class combined from two classes may be greater than the sum

of two individual class complexity measures. This property is

satisfied with CCOM as the complexity of the combined

classes increases than the individual complexities. Summary of

the CCOM validation is described in Table 2.

Table 2 – CCOM Validation against Weyuker’s Metric

Metric P1 P2 P3 P4 P5 P6 P7 P8 P9

CCOM Y Y Y Y Y Y N Y Y

7. CONCLUSION
The lack of software cohesion metrics in OO programming has

lead to the discovery of CCOM, a novel software metric that is

designed to be incorporated with the testing phase of software

development life cycle. The objective of CCOM metric is to

measure the amount of communicational cohesion of a class.

High communicational cohesion denotes high quotient of

integrity of software modules which is the most preferable

factor for maintainability, modifiability and understandability

of software. Moreover, high communicational cohesion also

reduces the complexity of the overall software. Moreover, the

CCOM assists the developers to evaluate their software

programs to fine-tune the coding part which necessarily cut the

operational and time costs. The evaluation of CCOM metric

has proven as a qualified metric as it satisfies eight out of nine

properties of weyuker‟s metric scale. Hence, the metric may

widely be deployed in software industries for building quality

products.

8. REFERENCES
[1] Kalantari, Samira, Masoomeh Alizadeh, and Homayoun

Motameni. 2015. Evaluation of reliability of object-

oriented systems based on Cohesion and Coupling Fuzzy

computing. Journal of Advances in Computer Research.

[2] Neha Gehlot and Ritu Sindhu. 2015. A Class Cohesion

Measure for Evaluation of Reusability. World

Engineering & Applied Sciences Journal.

[3] Panda, S., and D. P. Mohapatra. 2015. ACCo: a novel

approach to measure cohesion using hierarchical slicing of

Java programs. Innovations in Systems and Software

Engineering.

[4] Mal, Sandip, and Kumar Rajnish. 2014. Theoretical

Validation of New Class Cohesion Metric against Briand

Properties. Intelligent Computing, Networking, and

Informatics. Springer India.

[5] Qu, Yu, et al. 2015. Exploring community structure of

software Call Graph and its applications in class cohesion

measurement. Journal of Systems and Software.

[6] Mann, Ankita, Sandeep Dalal, and Dhreej Chhillar. 2013.

An Effort to Improve Cohesion Metrics Using

Inheritance. International Journal of computational

Engineering research.

[7] Ibrahim, Safwat M. 2012. Identification of nominated

classes for software refactoring using object-oriented

cohesion metrics. International Journal of Computer

Science.

[8] da Silva, Bruno C., Cláudio Sant'Anna, and Christina

Chavez. 2011. Concern-based cohesion as change

proneness indicator: an initial empirical study.

Proceedings of the 2nd International Workshop on

Emerging Trends in Software Metrics.

[9] Al Dallal, Jehad. 2011. Improving object-oriented lack-of-

cohesion metric by excluding special methods.

Proceedings of the 10th WSEAS international conference

on Software engineering, parallel and distributed systems.

[10] Dange, A. S., and S. D. Joshi. 2011. Fault Prediction in

Object Oriented System Using the Coupling and Cohesion

of Classes. International Journal of Computer Science and

Management Studies.

[11] Okike, Ezekiel. 2010. A Pedagogical Evaluation and

Discussion about the Lack of Cohesion in Method

(LCOM) Metric Using Field Experiment. arXiv preprint

arXiv:1004.3277.

[12] Basili, Victor R., and Robert W. Reiter Jr. 1979.

Evaluating automatable measures of software

development. Proceedings on Workshop on Quantitative

Software Models.

[13] Weyuker, E. 1988. Evaluating software complexity

measures. IEEE Transactions on Software Engineering.

[14] S.Hari Ganesh And H.B.Vincentraj. 2015. A Novel Co-

Functional Cohesion Complexity Metric: A Quality Based

Analysis. International Journal of Applied Engineering

Research.

IJCATM : www.ijcaonline.org

