Abstract

Wireless Multimedia Sensor Network (WMSN) is an extension of Wireless Sensor Network (WSN), where in addition to scalar sensors camera sensors are present. In wireless multimedia sensor networks (WMSNs), a high cost of processing and communicating the multimedia data is required. So it is critical to reduce possible data redundancy. Data redundancy occurs due to overlapping of Field of view (FOV) of camera sensors. Data redundancy affects on the communication cost in terms of bandwidth used, CPU processing etc. increases. Therefore, camera sensors should only be actuated when an event is detected within their vicinity. The scalar sensors first detect the occurrence of an event in the region of interest. Then the scalar sensors report their corresponding camera sensors regarding the occurrence of event. In this paper, a distributed actuation scheme is proposed which depends to activate the least number of cameras while still preserving the necessary event coverage to avoid possible redundancy in the multimedia data. Even though the camera sensors have heard from scalar sensors about an occurring event, they may not cover the event. These nodes unnecessarily undergo distributed camera actuation scheme and some or all of them are
activated. So our objective is to keep such cameras in turned off condition and to activate
optimum number of camera sensors while preserving the necessary event coverage. The basic
idea of this scheme is the collaboration of camera sensors that have heard from scalar sensors
about an occurring event to minimize the possible coverage overlaps and also their FoVs
intersect with the event region. This paper also proposes distributed actuation schemes for
monitoring the event boundary. Simulation are presented to show the performance of our and
other work in terms of coverage ratio, and the number of activated camera sensors under
several random deployment schemes.

References

1. I. F. Akyildiz , W. Su , Y. Sankarasubramaniam , Y. , and E. Cayirci , Wireless sensor
393 422.

2. I. F. Akyildiz , T. Melodia , and K. R. Chowdhury , A survey on wireless multimedia sensor

in situ image sensing and interpretation in wireless sensor networks, in: ACM Conference on

camera mote for applications in distributed intelligent surveillance, in: Information Processing in


Institute, 2007.

7. Andrew Newell, Kemal Akkaya,,"Distributed collaborative camera actuation for redundant
data elimination in Wireless Multimedia Sensor Networks", AdHoc Networks, vol 9, pp. 514-527,
2011.

8. K. Akkaya, M. Demirbas, R.S. Aygun, The impact of data aggregation on the performance
171193.

9. Z. Xue, K. Loo, J. Cosmas, P. Yip, Distributed video coding in wireless multimedia sensor
network for multimedia broadcasting, WSEAS Transactions on Communications 7 (2008)
418427.

10. T. Melodia, I.F. Akyildiz, Cross-layer quality of service support for uwb wireless

11. L. Savidge, H. Lee, H. Aghajan, A. Goldsmith, Qos-based geographic routing for
event-driven image sensor networks, in: Broadband Advanced Sensor Networks (BaseNets),
Boston, MA, October 2005.

12. J. ORourke, Open problem from art gallery solved, International Journal of

13. X. Han, X. Cao, E. Lloyd, C.-C. Shen, Deploying directional sensor networks with
guaranteed connectivity and coverage, in: 5th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 2008, SECON 08,


Index Terms

Computer Science Wireless
Keywords

Wireless Multimedia Sensor Network (WMSN), boundary node, event detection, camera actuation, Field of View (FoV), redundancy, scalar sensors